1
|
Kumar AM, Bin Sharfan II, Obot IB, Abdulhamid MA. Sodium alginate and its modified counterpart as sustainable-based corrosion inhibitors for N80 pipeline carbon steel: Experimental and theoretical approach. Int J Biol Macromol 2024; 285:138158. [PMID: 39613069 DOI: 10.1016/j.ijbiomac.2024.138158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Sodium alginate is a highly promising biopolymer for use as an eco-friendly/green corrosion inhibitor (CI), despite its limited solubility. In this study, a green and water-soluble modified sodium alginate (MSA) salt was synthesized and employed as a CI on pipeline N80 carbon steel (N80CS) in artificial sea water (ASW) medium. Various analytical tools related to surface and structure were utilized to describe the properties of the newly synthesized MSA polymer. Along with surface analyses, the corrosion protection characteristics of MSA on N80CS substrates at various concentrations were examined using gravimetric, traditional, and sophisticated electrochemical experimentations. Tafel polarization tests revealed that MSA exhibited mixed-type CI characteristics, with a predominance of anodic inhibition. Inhibition efficiency of MSA raised with increasing concentration, attaining a maximum of 89.85 and 94.90 % at 500 and 750 ppm, respectively. The physiochemical adsorptions of MSA on the N80CS surface were verified through the Langmuir adsorption model isotherm. The corroborated adsorption of MSA on the N80CS surface through the formed inhibitor thin film to prevent metal corrosion was confirmed by the surface characterizations carried out on inhibited surfaces. The experimentally obtained results were confirmed by the theoretical investigations using the molecular dynamics and density functional theoretical aspects.
Collapse
Affiliation(s)
- A Madhan Kumar
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Department of Aerospace Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Ibtisam I Bin Sharfan
- Sustainable and Resilient Materials Lab, Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering & Geosciences (CPG), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - I B Obot
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Chemistry department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mahmoud A Abdulhamid
- Sustainable and Resilient Materials Lab, Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering & Geosciences (CPG), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
2
|
Thabet OA, Alenzi FK, Alshubramy MA, Alamry KA, Hussein MA, Hoogenboom R. New sorbent-based hydrophobic alginic acid derivatives for fat removal in multi-pesticide residues: analysis of a fatty food sample. RSC Adv 2024; 14:2491-2503. [PMID: 38223695 PMCID: PMC10786262 DOI: 10.1039/d3ra07442k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024] Open
Abstract
Hydrophobic alginic acid derivatives were synthesized with various aliphatic hydrocarbon chains for fat removal in an analysis of multi-pesticide residues in a fatty food sample. First, alginic acid was chemically modified using eco-friendly ultrasound-assisted esterification with different alcohols, namely, hydrophobic alginic acid-methanol (HAA-C1), hydrophobic alginic acid-butanol (HAA-C4), and hydrophobic alginic acid-octadecanol (HAA-C18). The degree of esterification (DE) was determined by titration, and the results ranged from 57.3% to 63.7%. The physicochemical properties of the synthesized hydrophobic alginic acids (HAAs) were studied using FT-IR, XRD, TGA, and FE-SEM. Subsequently, the performance of the HAAs was checked and evaluated for the removal of fat from a fatty food sample by calculating the fat removal percentage and the determination of 214 pesticide residues in the fatty food sample. For the fat removal percentage application, the HAAs were able to efficiently remove between 77% and 83% of the fat; HAA-C18 had the highest percentage. Regarding the pesticide residue application, HAAs were also able to remove the fat content from the fatty food sample without a significant effect on the pesticide substances. The recoveries of the detected pesticide compounds were between 80% and 120% for all HAAs. However, there were various missing pesticide compounds for HAAs. The number of missing pesticide compounds was 19, 6, and 33 for HAA-C1, HAA-C4, and HAA-C18, respectively. HAA-C4 had medium hydrophobicity and it lost fewer pesticides than the other HAAs. This was because the multi-pesticide mixture had various classes of chemical structure; hence, it had different polarity powers. We concluded that HAAs are developable and applicable to be safely used as a green material in diverse fatty food sample analysis applications.
Collapse
Affiliation(s)
- Omar A Thabet
- Department of Chemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Saudi Food and Drug Authority Jeddah 22311 Saudi Arabia
| | | | - Maha A Alshubramy
- Department of Chemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Khalid A Alamry
- Department of Chemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Mahmoud A Hussein
- Department of Chemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry (CMaC)Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| |
Collapse
|
3
|
Liu Z, Chen X, Wen Y, Bao C, Liu C, Cao S, Yan H, Lin Q. Chemical modification of alginate with tosylmethyl isocyanide, propionaldehyde and octylamine via the Ugi reaction for hydrophobic drug delivery. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Gong H, Zhou Q, Lin F, Qin W, Zhang S, Yang S, Li J, Feng Y. Preparation and application of uniform TiO 2 electrospun nanofiber based on pickering emulsion stabilized by TiO 2/amphiphilic sodium alginate/polyoxyethylene. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2075884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Houkui Gong
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials and Chemical Engineering, Hainan University, Haikou, China
| | - Qichang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials and Chemical Engineering, Hainan University, Haikou, China
| | - Feilin Lin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials and Chemical Engineering, Hainan University, Haikou, China
| | - Wenqi Qin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials and Chemical Engineering, Hainan University, Haikou, China
| | - Siqi Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials and Chemical Engineering, Hainan University, Haikou, China
| | - Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials and Chemical Engineering, Hainan University, Haikou, China
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials and Chemical Engineering, Hainan University, Haikou, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials and Chemical Engineering, Hainan University, Haikou, China
| |
Collapse
|
5
|
Iliou K, Kikionis S, Ioannou E, Roussis V. Marine Biopolymers as Bioactive Functional Ingredients of Electrospun Nanofibrous Scaffolds for Biomedical Applications. Mar Drugs 2022; 20:md20050314. [PMID: 35621965 PMCID: PMC9143254 DOI: 10.3390/md20050314] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 02/01/2023] Open
Abstract
Marine biopolymers, abundantly present in seaweeds and marine animals, feature diverse structures and functionalities, and possess a wide range of beneficial biological activities. Characterized by high biocompatibility and biodegradability, as well as unique physicochemical properties, marine biopolymers are attracting a constantly increasing interest for the development of advanced systems for applications in the biomedical field. The development of electrospinning offers an innovative technological platform for the production of nonwoven nanofibrous scaffolds with increased surface area, high encapsulation efficacy, intrinsic interconnectivity, and structural analogy to the natural extracellular matrix. Marine biopolymer-based electrospun nanofibrous scaffolds with multifunctional characteristics and tunable mechanical properties now attract significant attention for biomedical applications, such as tissue engineering, drug delivery, and wound healing. The present review, covering the literature up to the end of 2021, highlights the advancements in the development of marine biopolymer-based electrospun nanofibers for their utilization as cell proliferation scaffolds, bioadhesives, release modifiers, and wound dressings.
Collapse
|
6
|
Chen X, Zhu Q, Wen Y, Li Z, Cao S, Yan H, Lin Q. Chemical modification of alginate via the oxidation-reductive amination reaction for the development of alginate derivative electrospun composite nanofibers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Self-aggregate performance of hexyl alginate ester derivative synthesized via SN2 reaction for controlled release of λ-cyhalothrin. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04103-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Wen Y, Chen X, Liu Z, Zhu Q, Li Z, He G, Yan H, Lin Q. Hydrophobically Modified Alginate Derivatives via the Ugi Multicomponent Reaction for the Development of Hydrophobic Pharmaceutical Formulations. ChemistrySelect 2021. [DOI: 10.1002/slct.202103041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yanshi Wen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education College of Chemistry and Chemical Engineering Hainan Normal University Haikou 571158 Hainan P. R. China
- Key Laboratory of Natural Polymer Functional Material of Haikou City College of chemistry and chemical engineering Hainan Normal University Haikou 571158, Hainan P. R. China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province College of chemistry and chemical engineering Hainan Normal University Haikou 571158 Hainan P. R. China
| | - Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education College of Chemistry and Chemical Engineering Hainan Normal University Haikou 571158 Hainan P. R. China
- Key Laboratory of Natural Polymer Functional Material of Haikou City College of chemistry and chemical engineering Hainan Normal University Haikou 571158, Hainan P. R. China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province College of chemistry and chemical engineering Hainan Normal University Haikou 571158 Hainan P. R. China
| | - Zhaowen Liu
- Key Laboratory of Natural Polymer Functional Material of Haikou City College of chemistry and chemical engineering Hainan Normal University Haikou 571158, Hainan P. R. China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province College of chemistry and chemical engineering Hainan Normal University Haikou 571158 Hainan P. R. China
| | - Qingmei Zhu
- Key Laboratory of Natural Polymer Functional Material of Haikou City College of chemistry and chemical engineering Hainan Normal University Haikou 571158, Hainan P. R. China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province College of chemistry and chemical engineering Hainan Normal University Haikou 571158 Hainan P. R. China
| | - Zhengyue Li
- Key Laboratory of Natural Polymer Functional Material of Haikou City College of chemistry and chemical engineering Hainan Normal University Haikou 571158, Hainan P. R. China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province College of chemistry and chemical engineering Hainan Normal University Haikou 571158 Hainan P. R. China
| | - Guoqing He
- Key Laboratory of Natural Polymer Functional Material of Haikou City College of chemistry and chemical engineering Hainan Normal University Haikou 571158, Hainan P. R. China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province College of chemistry and chemical engineering Hainan Normal University Haikou 571158 Hainan P. R. China
| | - Huiqiong Yan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education College of Chemistry and Chemical Engineering Hainan Normal University Haikou 571158 Hainan P. R. China
- Key Laboratory of Natural Polymer Functional Material of Haikou City College of chemistry and chemical engineering Hainan Normal University Haikou 571158, Hainan P. R. China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province College of chemistry and chemical engineering Hainan Normal University Haikou 571158 Hainan P. R. China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education College of Chemistry and Chemical Engineering Hainan Normal University Haikou 571158 Hainan P. R. China
- Key Laboratory of Natural Polymer Functional Material of Haikou City College of chemistry and chemical engineering Hainan Normal University Haikou 571158, Hainan P. R. China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province College of chemistry and chemical engineering Hainan Normal University Haikou 571158 Hainan P. R. China
| |
Collapse
|
9
|
Chen X, Zhu Q, Liu C, Li D, Yan H, Lin Q. Esterification of Alginate with Alkyl Bromides of Different Carbon Chain Lengths via the Bimolecular Nucleophilic Substitution Reaction: Synthesis, Characterization, and Controlled Release Performance. Polymers (Basel) 2021; 13:3351. [PMID: 34641167 PMCID: PMC8512272 DOI: 10.3390/polym13193351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022] Open
Abstract
To extend the alginate applicability for the sustained release of hydrophobic medicine in drug delivery systems, the alkyl alginate ester derivative (AAD), including hexyl alginate ester derivative (HAD), octyl alginate ester derivative (OAD), decyl alginate ester derivative (DAD), and lauryl alginate ester derivative (LAD), were synthesized using the alkyl bromides with different lengths of carbon chain as the hydrophobic modifiers under homogeneous conditions via the bimolecular nucleophilic substitution (SN2) reaction. Experimental results revealed that the successful grafting of the hydrophobic alkyl groups onto the alginate molecular backbone via the SN2 reaction had weakened and destroyed the intramolecular hydrogen bonds, thus enhancing the molecular flexibility of the alginate, which endowed the AAD with a good amphiphilic property and a critical aggregation concentration (CAC) of 0.48~0.0068 g/L. Therefore, the resultant AAD could form stable spherical self-aggregated micelles with the average hydrodynamic diameter of 285.3~180.5 nm and zeta potential at approximately -44.8~-34.4 mV due to the intra or intermolecular hydrophobic associations. With the increase of the carbon chain length of the hydrophobic side groups, the AAD was more prone to self-aggregation, and therefore was able to achieve the loading and sustained release of hydrophobic ibuprofen. Additionally, the swelling and degradation of AAD microcapsules and the diffusion of the loaded drug jointly controlled the release rate of ibuprofen. Meanwhile, the AAD also displayed low cytotoxicity to the murine macrophage RAW264.7 cells. Thanks to the good amphiphilic property, colloidal interface activity, hydrophobic drug-loading performance, and cytocompatibility, the synthesized AAD exhibited a great potential for the development of hydrophobic pharmaceutical formulations.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (Q.Z.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qingmei Zhu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (Q.Z.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Chang Liu
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Dongze Li
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Huiqiong Yan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (Q.Z.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (Q.Z.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
10
|
Chen X, Zhu Q, Li Z, Yan H, Lin Q. The Molecular Structure and Self-Assembly Behavior of Reductive Amination of Oxidized Alginate Derivative for Hydrophobic Drug Delivery. Molecules 2021; 26:5821. [PMID: 34641365 PMCID: PMC8510318 DOI: 10.3390/molecules26195821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
On account of the rigid structure of alginate chains, the oxidation-reductive amination reaction was performed to synthesize the reductive amination of oxidized alginate derivative (RAOA) that was systematically characterized for the development of pharmaceutical formulations. The molecular structure and self-assembly behavior of the resultant RAOA was evaluated by an FT-IR spectrometer, a 1H NMR spectrometer, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), a fluorescence spectrophotometer, rheology, a transmission electron microscope (TEM) and dynamic light scattering (DLS). In addition, the loading and in vitro release of ibuprofen for the RAOA microcapsules prepared by the high-speed shearing method, and the cytotoxicity of the RAOA microcapsules against the murine macrophage RAW264.7 cell were also studied. The experimental results indicated that the hydrophobic octylamine was successfully grafted onto the alginate backbone through the oxidation-reductive amination reaction, which destroyed the intramolecular hydrogen bond of the raw sodium alginate (SA), thereby enhancing its molecular flexibility to achieve the self-assembly performance of RAOA. Consequently, the synthesized RAOA displayed good amphiphilic properties with a critical aggregation concentration (CAC) of 0.43 g/L in NaCl solution, which was significantly lower than that of SA, and formed regular self-assembled micelles with an average hydrodynamic diameter of 277 nm (PDI = 0.19) and a zeta potential of about -69.8 mV. Meanwhile, the drug-loaded RAOA microcapsules had a relatively high encapsulation efficiency (EE) of 87.6 % and good sustained-release properties in comparison to the drug-loaded SA aggregates, indicating the good affinity of RAOA to hydrophobic ibuprofen. The swelling and degradation of RAOA microcapsules and the diffusion of the loaded drug jointly controlled the release rate of ibuprofen. Moreover, it also displayed low cytotoxicity against the RAW264.7 cell, similar to the SA aggregates. In view of the excellent advantages of RAOA, it is expected to become the ideal candidate for hydrophobic drug delivery in the biomedical field.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China;
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.Z.); (Z.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qingmei Zhu
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.Z.); (Z.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Zhengyue Li
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.Z.); (Z.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Huiqiong Yan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China;
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.Z.); (Z.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China;
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.Z.); (Z.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
11
|
Synthesis and self-assembly behavior of decyl alginate ester derivative via bimolecular nucleophilic substitution reaction. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04902-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
|
13
|
Asadi L, Mokhtari J, Abbasi M. An alginate-PHMB-AgNPs based wound dressing polyamide nanocomposite with improved antibacterial and hemostatic properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:7. [PMID: 33471210 PMCID: PMC7817589 DOI: 10.1007/s10856-020-06484-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Wound dressing should be impenetrable against microorganisms and it should keep the wound wet. Gauze and polyamide (PA) substrate were treated with various concentrations of AgNPs (25, 50, 75, and 100 ppm), PHMB (0.2, 0.4, 0.6, 0.8, and 1% w/v), and constant concentration of alginate (0.5% W/V) using a simple dipping method. Prepared samples were characterized by various techniques including Fourier transform infrared spectroscopy and scanning electron microscopy. The results indicated that the particles were successfully applied onto both substrates with an average diameter of particle size of 78 nm on gauze and 172 nm on the PA substrate surface (based on 50 nanoparticles). Antibacterial activity of the prepared nanocomposite against Staphylococcus aureus (gram-positive) bacteria on PA substrate and gauze were evaluated using the disc diffusion method. The results indicated that the prepared nanocomposites offer favorable antibacterial properties and bacteria would not grow in culture media. The water uptake capacity test of the treated samples was assessed and the data demonstrated that the water absorption rate significantly increases on both treated substrates (gauze and PA substrate) due to the presence of alginate polymer. Also, observing the results of the coagulation test showed that treated samples caused blood clots on the dressing. This is due to the presence of alginate polymer. The present work demonstrates that the prepared samples offer excellent antibacterial properties and good water uptake capacity that capable of being a potential candidate for wound dressings. Due to the results, the produced PA substrate could be an appropriate replacement for the cotton gauze as a wound dressing.
Collapse
Affiliation(s)
- Laleh Asadi
- Department of Textile Engineering, Faculty of Engineering, University of Guilan, Rasht, 41635-3756, Iran
| | - Javad Mokhtari
- Department of Textile Engineering, Faculty of Engineering, University of Guilan, Rasht, 41635-3756, Iran.
| | - Marjan Abbasi
- Department of Textile Engineering, Faculty of Engineering, University of Guilan, Rasht, 41635-3756, Iran
| |
Collapse
|
14
|
Lü T, Wu Y, Tao Y, Zhang D, Qi D, Zhao H. Facile synthesis of octyl-modified alginate for oil-water emulsification. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Wu T, Fang X, Yang Y, Meng W, Yao P, Liu Q, Zhang B, Liu F, Zou A, Cheng J. Eco-friendly Water-Based λ-Cyhalothrin Polydopamine Microcapsule Suspension with High Adhesion on Leaf for Reducing Pesticides Loss. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12549-12557. [PMID: 33112140 DOI: 10.1021/acs.jafc.0c02245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recently, innovations of nano/microcarrier formulations have been focused on improving application efficiencies and retention time. In this study, a water-based 2.5% λ-cyhalothrin (LC) microcapsule suspension (CS) was developed by orthogonal test with biodegradable and adhesive polydopamine (PDA) microcapsules (MCs) as carriers. The obtained LC-PDA CS had good suspension properties, flow behavior, storage stability, and rheological properties. LC-PDA CS had higher retention, wettability, and decreased rainwater washing out on the leaves than commercial CS. LC-PDA CS displayed higher insecticidal activity against Lipaphis erysimi compared to commercial CS. LC-PDA CS reduced the toxicity of LC to the aquatic organism Danio rerio compared to LC. The above results demonstrated that LC-PDA CS would be eco-friendly water-based pesticides carrier system for prolonging the retention time on target leaf and reducing toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Tong Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xialun Fang
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenyan Meng
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pengji Yao
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bo Zhang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Engineering Research Center of Green Energy Chemical Engineering, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271001, China
| | - Aihua Zou
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Caro‐Briones R, García‐Pérez BE, Báez‐Medina H, San Martín‐Martínez E, Martínez‐Mejía G, Jiménez‐Juárez R, Martínez‐Gutiérrez H, Corea M. Influence of monomeric concentration on mechanical and electrical properties of poly(styrene‐
co
‐acrylonitrile) and poly(styrene‐
co
‐acrylonitrile/acrylic acid) yarns electrospun. J Appl Polym Sci 2020. [DOI: 10.1002/app.49166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rubén Caro‐Briones
- Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco Ciudad de México México
| | - Blanca Estela García‐Pérez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas Prolongación de Carpio y Plan de Ayala S/N Col. Santo Tomas Ciudad de México México
| | - Héctor Báez‐Medina
- Centro de Investigación en ComputaciónInstituto Politécnico Nacional, Av. Juan de Dios Bátiz, Esq. Miguel Othón de Mendizábal, Col. Nueva Industrial Vallejo Ciudad de México México
| | - Eduardo San Martín‐Martínez
- Centro de Investigación en Ciencia Aplicada y Tecnología AvanzadaInstituto Politécnico Nacional Ciudad de México México
| | - Gabriela Martínez‐Mejía
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas Prolongación de Carpio y Plan de Ayala S/N Col. Santo Tomas Ciudad de México México
| | - Rogelio Jiménez‐Juárez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas Prolongación de Carpio y Plan de Ayala S/N Col. Santo Tomas Ciudad de México México
| | - Hugo Martínez‐Gutiérrez
- Centro de Nanociencias y Micro‐NanotecnologíasInstituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco Ciudad de México México
| | - Mónica Corea
- Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco Ciudad de México México
| |
Collapse
|
17
|
Yan H, Chen X, Bao C, Wu S, He S, Lin Q. Alginate derivative-functionalized silica nanoparticles: surface modification and characterization. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02736-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Qin H, Zhou X, Gu D, Li L, Kan C. Preparation and Characterization of a Novel Waterborne Lambda-Cyhalothrin/Alkyd Nanoemulsion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10587-10594. [PMID: 31497957 DOI: 10.1021/acs.jafc.9b03681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inefficient usage and overdosage of conventional pesticide formulations has resulted in large economic losses and environmental pollution due to their poor water solubility and weak adhesion to foliage. In order to develop a green and efficient pesticide formulation, a kind of alkyd resin (AR) based on vegetable oil was first synthesized and used to fabricate the lambda-cyhalothrin/AR (LC/AR) nanoemulsion via in situ phase inverse emulsification, and its properties were then investigated. Results showed that the particle size of the LC/AR nanoemulsion was 50-150 nm with maximum LC loading capacity of as much as 40.9 wt %, high encapsulation efficiency >90%, and great stability in multiple environments. The LC/AR nanoemulsion exhibited better controlled release characteristics compared with LC commercial formulations, and a stronger adhesion on the foliage of the resulted nanoemulsion was also observed, which was attributed to low surface tension and strong interactions with foliar surfaces.
Collapse
Affiliation(s)
- He Qin
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education of China , Tsinghua University , Beijing 100084 , China
| | - Xiaoteng Zhou
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education of China , Tsinghua University , Beijing 100084 , China
| | - Danfei Gu
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education of China , Tsinghua University , Beijing 100084 , China
| | - Lingxiao Li
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education of China , Tsinghua University , Beijing 100084 , China
| | - Chengyou Kan
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education of China , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
19
|
Zhao C, Miao J, Sui M, Liu X, Yu Y. Colloidal Characteristics, Drug Encapsulation, and Oil‐in‐Water Emulsion of Dodecenyl‐Modified Alginate. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Cong Zhao
- Key laboratory of Eco‐chemical Engineering, College of Chemistry and Molecular EngineeringQingdao University of Science and Technology 53 Zhengzhou Road, Qingdao 266042 P. R. China
| | - Junkui Miao
- Key laboratory of Eco‐chemical Engineering, College of Chemistry and Molecular EngineeringQingdao University of Science and Technology 53 Zhengzhou Road, Qingdao 266042 P. R. China
| | - Meiyu Sui
- Key laboratory of Eco‐chemical Engineering, College of Chemistry and Molecular EngineeringQingdao University of Science and Technology 53 Zhengzhou Road, Qingdao 266042 P. R. China
| | - Xisheng Liu
- Key laboratory of Eco‐chemical Engineering, College of Chemistry and Molecular EngineeringQingdao University of Science and Technology 53 Zhengzhou Road, Qingdao 266042 P. R. China
| | - Yueqin Yu
- Key laboratory of Eco‐chemical Engineering, College of Chemistry and Molecular EngineeringQingdao University of Science and Technology 53 Zhengzhou Road, Qingdao 266042 P. R. China
| |
Collapse
|
20
|
Ghayempour S, Montazer M. A novel controlled release system based on Tragacanth nanofibers loaded Peppermint oil. Carbohydr Polym 2019; 205:589-595. [DOI: 10.1016/j.carbpol.2018.10.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/02/2018] [Accepted: 10/24/2018] [Indexed: 11/15/2022]
|
21
|
Feng M, Gu C, Bao C, Chen X, Yan H, Shi Z, Liu X, Lin Q. Synthesis of a benzyl-grafted alginate derivative and its effect on the colloidal stability of nanosized titanium dioxide aqueous suspensions for Pickering emulsions. RSC Adv 2018; 8:34397-34407. [PMID: 35548610 PMCID: PMC9086954 DOI: 10.1039/c8ra04300k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022] Open
Abstract
TiO2 nanoparticles (nano-TiO2) as one of the most extensively used nanoscale materials easily undergo spontaneous aggregation and gravity sedimentation ascribed to their high adsorption energy, which significantly restricts their actual applications. For this reason, a benzyl-grafted alginate derivative (BAD) with good colloidal interface activity, prepared by a bimolecular nucleophilic substitution (SN2) reaction, was used as the dispersant to stabilize nano-TiO2. The structure and colloidal properties of BAD was evaluated by FT-IR spectroscopy, 1H NMR spectroscopy, thermal gravimetric analysis (TGA) and dynamic light scattering (DLS). The effects of pH and ionic strength on the dispersion stability of BAD/nano-TiO2 suspensions were also examined by DLS. To further probe its feasibility as a drug delivery system, the BAD/nano-TiO2 complex was applied as particulate emulsifiers to fabricate drug-loaded Pickering emulsions. Meanwhile, the morphology properties and the sustained release performance of the drug-loaded Pickering emulsions were also investigated. Experimental results showed that the adsorption of BAD on nano-TiO2 was achieved by an intermolecular hydrogen bond between the carboxylic functional groups of BAD and the Ti-OH of TiO2. The adsorption of BAD enhanced the electrostatic repulsion and steric hindrance between nano-TiO2 improving the dispersion stability of nano-TiO2 at different pH and ionic strength. Additionally, the obtained Pickering emulsions displayed good drug-loading capacity and sustained release performance with the release mechanism of non-Fickian transport, which exhibited great potential in the pharmaceutical field.
Collapse
Affiliation(s)
- Meixi Feng
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China +86 898 66187313 +86 898 66275138
| | - Chuanhai Gu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China +86 898 66187313 +86 898 66275138
| | - Chaoling Bao
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China +86 898 66187313 +86 898 66275138
| | - Xiuqiong Chen
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China +86 898 66187313 +86 898 66275138
| | - Huiqiong Yan
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China +86 898 66187313 +86 898 66275138
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China
| | - Zaifeng Shi
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China +86 898 66187313 +86 898 66275138
| | - Xiaohong Liu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China +86 898 66187313 +86 898 66275138
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China +86 898 66187313 +86 898 66275138
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China
| |
Collapse
|
22
|
Chen X, Yan H, Sun W, Chen G, Yu C, Feng W, Lin Q. Construction of myoglobin–amphiphilic alginate caprylamide–graphene composite modified electrode for the direct electron transfer between redox proteins and electrode and electrocatalysis of myoglobin. RSC Adv 2018; 8:38003-38012. [PMID: 35558618 PMCID: PMC9089794 DOI: 10.1039/c8ra07117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/31/2018] [Indexed: 11/25/2022] Open
Abstract
To achieve the dispersion of the hydrophobic graphene (GR), the amphiphilic alginate caprylamide (ACA) was synthesized to fabricate electroactive Nafion/Mb–ACA–GR/CILE for the accurate determination of trichloroacetic acid (TCA). SEM observation, FT-IR and UV-Vis spectroscopic analysis indicated that ACA could tightly immobilize Mb and GR on the electrode surface by constructing biointerfaces, which not only provided Mb a suitable microenvironment to maintain its biological activity, but also shortened the distances between the active centers of Mb with carbon ionic liquid electrode (CILE), thus promoting the electron transfer rate. The electrochemical characterization of Nafion/Mb–ACA–GR/CILE showed that the direct electron transfer of Mb was realized on the modified electrode, which was attributed to the high electrical conductivity and excellent electrocatalytic activity of GR and good biocompatibility of ACA. Moreover, Nafion/Mb–ACA–GR/CILE exhibited good electrocatalytic activity towards TCA with the linear range from 2.5 to 47.3 mmol L−1 and lower KMapp value of 8.3 mmol L−1. Moreover, the modified electrode also revealed good stability, reproducibility and accurate detection of tap-water, exhibiting great potential for the applications as the third-generation electrochemical biosensors. To achieve the dispersion of the hydrophobic graphene (GR), the amphiphilic alginate caprylamide (ACA) was synthesized to fabricate electroactive Nafion/Mb–ACA–GR/CILE for the accurate determination of trichloroacetic acid (TCA).![]()
Collapse
Affiliation(s)
- Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- China
| | - Huiqiong Yan
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- China
| | - Wei Sun
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- China
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- China
| | - Changjiang Yu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- China
| | - Wen Feng
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- China
| |
Collapse
|
23
|
Novel oleyl amine-modified polymannuronic acid micelle loading tacrolimus for therapy of allergic conjunctivitis. Int J Biol Macromol 2017; 104:862-873. [DOI: 10.1016/j.ijbiomac.2017.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/29/2016] [Accepted: 06/13/2017] [Indexed: 01/02/2023]
|
24
|
Qin H, Zhang H, Li L, Zhou X, Li J, Kan C. Preparation and properties of lambda-cyhalothrin/polyurethane drug-loaded nanoemulsions. RSC Adv 2017. [DOI: 10.1039/c7ra10640h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A new lambda-cyhalothrin/castor oil-based polyurethane formulation with controlled-release behavior and good foliage adhesion properties is prepared.
Collapse
Affiliation(s)
- He Qin
- Department of Chemical Engineering
- Key Laboratory of Advanced Materials of Ministry of Education of China
- Tsinghua University
- Beijing 100084
- China
| | - Hong Zhang
- Department of Chemical Engineering
- Key Laboratory of Advanced Materials of Ministry of Education of China
- Tsinghua University
- Beijing 100084
- China
| | - Lingxiao Li
- Department of Chemical Engineering
- Key Laboratory of Advanced Materials of Ministry of Education of China
- Tsinghua University
- Beijing 100084
- China
| | - Xiaoteng Zhou
- Department of Chemical Engineering
- Key Laboratory of Advanced Materials of Ministry of Education of China
- Tsinghua University
- Beijing 100084
- China
| | - Junpei Li
- Department of Chemical Engineering
- Key Laboratory of Advanced Materials of Ministry of Education of China
- Tsinghua University
- Beijing 100084
- China
| | - Chengyou Kan
- Department of Chemical Engineering
- Key Laboratory of Advanced Materials of Ministry of Education of China
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
25
|
Feng L, Cao Y, Xu D, Wang S, Zhang J. Molecular weight distribution, rheological property and structural changes of sodium alginate induced by ultrasound. ULTRASONICS SONOCHEMISTRY 2017; 34:609-615. [PMID: 27773287 DOI: 10.1016/j.ultsonch.2016.06.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 06/25/2016] [Accepted: 06/25/2016] [Indexed: 06/06/2023]
Abstract
In this study, the effects of ultrasound with different ultrasonic frequencies on the properties of sodium alginate (ALG) were investigated, which were characterized by the means of the multi-angle laser light scattering photometer analysis (GPC-MALLS), rheological analysis, circular dichroism (CD) spectrometer and scanning electron microscope (SEM). It showed that the molecular weight (Mw) and molecular number (Mn) of the untreated ALG was 1.927×105g/mol and 4.852×104g/mol, respectively. The Mw of the ultrasound treated ALG was gradually increased from 3.50×104g/mol to 7.34×104g/mol while the Mn of ALG was increased and then decreased with the increase of the ultrasonic frequency. The maximum value of Mn was 9.988×104g/mol when the ALG was treated by ultrasound at 40kHz. It indicated that ultrasound could induce ALG degradation and rearrangement. The number of the large molecules and small molecules of ALG was changed by ultrasound. The value of dn/dc suggested that the ultrasound could enhance the stability of ALG. Furthermore, it was found that ALG treated by ultrasound at 50kHz tended to be closer to a Newtonian behavior, while the untreated and treated ALG solutions exhibited pseudoplastic behaviours. Moreover, CD spectra demonstrated that ultrasound could be used to improve the strength of the gel by changing the ratio of M/G, which showed that the minimum ratio of M/G of ALG treated at 135kHz was 1.34. The gel-forming capacity of ALG was correlated with the content of G-blocks. It suggested that ALG treated by ultrasound at 135kHz was stiffer in the process of forming gels. The morphology results indicated that ultrasound treatment of ALG at 135kHz increased its hydrophobic interaction and interfacial activity. This study is important to explore the effect of ultrasound on ALG in improving the physical properties of ALG as food additives, enzyme and drug carriers.
Collapse
Affiliation(s)
- Liping Feng
- Beijing Advanced Innovation Center for Food Nutrition & Human Health (BTBU), School of Food & Chemical Engineering, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing 100048, China
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition & Human Health (BTBU), School of Food & Chemical Engineering, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing 100048, China.
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition & Human Health (BTBU), School of Food & Chemical Engineering, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing 100048, China
| | - Shaojia Wang
- Beijing Advanced Innovation Center for Food Nutrition & Human Health (BTBU), School of Food & Chemical Engineering, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing 100048, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Food Nutrition & Human Health (BTBU), School of Food & Chemical Engineering, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing 100048, China
| |
Collapse
|
26
|
A Smart pH-responsive Nano-Carrier as a Drug Delivery System: A hybrid system comprised of mesoporous nanosilica MCM-41 (as a nano-container) & a pH-sensitive polymer (as smart reversible gatekeepers): Preparation, characterization and in vitro release studies of an anti-cancer drug. Eur J Pharm Sci 2016; 93:64-73. [PMID: 27497878 DOI: 10.1016/j.ejps.2016.08.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/09/2016] [Accepted: 08/02/2016] [Indexed: 01/27/2023]
|