1
|
Chen W, Nie M, Gan J, Xia N, Wang D, Sun L. Tailoring cell sheets for biomedical applications. SMART MEDICINE 2024; 3:e20230038. [PMID: 39188516 PMCID: PMC11235941 DOI: 10.1002/smmd.20230038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 08/28/2024]
Abstract
Cell sheet technology has emerged as a novel scaffold-free approach for cell-based therapies in regenerative medicine. Techniques for harvesting cell sheets are essential to preserve the integrity of living cell sheets. This review provides an overview of fundamental technologies to fabricate cell sheets and recent advances in cell sheet-based tissue engineering. In addition to the commonly used temperature-responsive systems, we introduce alternative approaches, such as ROS-induced, magnetic-controlled, and light-induced cell sheet technologies. Moreover, we discuss the modification of the cell sheet to improve its function, including stacking, genetic modification, and vascularization. With the significant advances in cell sheet technology, cell sheets have been widely applied in various tissues and organs, including but not limited to the lung, cornea, cartilage, periodontium, heart, and liver. This review further describes both the preclinical and clinical applications of cell sheets. We believe that the progress in cell sheet technology would further propel its biomedical applications.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Min Nie
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Jingjing Gan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Nan Xia
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Dandan Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
- Department of Rheumatology and ImmunologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
2
|
Bulut E. Assessment of temperature-sensitive properties of ionically crosslinked sodium alginate/hydroxypropyl cellulose blend microspheres: preparation, characterization, and in vitro release of paracetamol. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:565-586. [PMID: 36218277 DOI: 10.1080/09205063.2022.2135077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Today, polymer systems can be formed to respond to single stimuli or multiple stimuli by changing their properties. The use of these systems, which are designed to be sensitive to stimuli, is expanding in a wide range of applications. Herein, microspheres of sodium alginate (NaAlg) and hydroxypropyl cellulose (HPC) sensitive to dual stimuli for the controlled release of model drug paracetamol were produced by the ionotropic gelation method in the presence of Zn2+ ions. FTIR, DSC, TGA, SEM, and particle size measurements were used to describe the blend microspheres. Low critical solution temperatures (LCST) of polymer blends at different ratios were determined and the biggest change according to the LCST value of HPC was found to be approximately 1-2 °C lower than 41 °C in microspheres with a NaAlg/HPC ratio of 50/50. In vitro release experiments of paracetamol from microspheres were carried out in a gastrointestinal tract simulation environment at two different temperatures (37 °C and 47 °C). From the release profiles, paracetamol release varied depending on the NaAlg/HPC ratio, the paracetamol content in the microspheres, the exposure time to Zn2+ ions, and the pH of the medium. Among the microsphere formulations, the highest entrapment efficiency was 57.86%, obtained for B7 formulation microspheres with a NaAlg/HPC ratio of 70/30, a paracetamol loading percentage of 20%, and a crosslinking time of 5 min.RESEARCH HIGHLIGHTSMicrospheres of sodium alginate (NaAlg) and hydroxypropyl cellulose (HPC) sensitive to dual stimuli for the controlled release of model drug paracetamol were produced by the ionotropic gelation method in the presence of Zn2+ ions.LCST values of the microspheres with a NaAlg/HPC ratio of 50/50 were significantly lower by 1-2 °C than the LCST value of HPC, and the release results supported the temperature sensitivity of the microspheres.Among the microsphere formulations, the highest entrapment efficiency was 57.86% obtained for B7 formulation microspheres.These microspheres can be used as a temperature-sensitive drug delivery system in the biomedical field and also as an encapsulation system of cancer drugs for cancer treatment modalities such as hyperthermia.
Collapse
Affiliation(s)
- Emine Bulut
- Department of Food Processing, Bolvadin Vocational School, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
3
|
Design and Optimization of pH‐Responsive Chitosan‐Coated Zn‐Carboxymethyl Cellulose Hydrogel Bead Carriers for Amoxicillin Trihydrate Delivery. ChemistrySelect 2022. [DOI: 10.1002/slct.202200471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Hurtado A, Aljabali AAA, Mishra V, Tambuwala MM, Serrano-Aroca Á. Alginate: Enhancement Strategies for Advanced Applications. Int J Mol Sci 2022; 23:4486. [PMID: 35562876 PMCID: PMC9102972 DOI: 10.3390/ijms23094486] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/06/2023] Open
Abstract
Alginate is an excellent biodegradable and renewable material that is already used for a broad range of industrial applications, including advanced fields, such as biomedicine and bioengineering, due to its excellent biodegradable and biocompatible properties. This biopolymer can be produced from brown algae or a microorganism culture. This review presents the principles, chemical structures, gelation properties, chemical interactions, production, sterilization, purification, types, and alginate-based hydrogels developed so far. We present all of the advanced strategies used to remarkably enhance this biopolymer's physicochemical and biological characteristics in various forms, such as injectable gels, fibers, films, hydrogels, and scaffolds. Thus, we present here all of the material engineering enhancement approaches achieved so far in this biopolymer in terms of mechanical reinforcement, thermal and electrical performance, wettability, water sorption and diffusion, antimicrobial activity, in vivo and in vitro biological behavior, including toxicity, cell adhesion, proliferation, and differentiation, immunological response, biodegradation, porosity, and its use as scaffolds for tissue engineering applications. These improvements to overcome the drawbacks of the alginate biopolymer could exponentially increase the significant number of alginate applications that go from the paper industry to the bioprinting of organs.
Collapse
Affiliation(s)
- Alejandro Hurtado
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| |
Collapse
|
5
|
Geyik G, Işıklan N. Design and fabrication of hybrid triple-responsive κ-carrageenan-based nanospheres for controlled drug delivery. Int J Biol Macromol 2021; 192:701-715. [PMID: 34637816 DOI: 10.1016/j.ijbiomac.2021.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
In the last two decades, the utilization of magnetic nanospheres in intelligent polymeric structures have received increased attention of researchers in numerous biomedical applications. Here, hybrid nanostructured triple-responsive magnetic nanospheres (κ-Car-g-P(AA/DMA)@Fe3O4) containing inorganic iron oxide core (Fe3O4) and organic graft copolymeric shell based on κ-carrageenan (κ-Car) and poly(acrylic acid/dimethylaminoethyl methacrylate) (P(AA/DMA)) were synthesized by microwave induced co-precipitation technique. The structure, size, surface morphology, magnetic property and stability of synthesized κ-Car-g-P(AA/DMA)@Fe3O4 magnetic nanospheres were characterized using FTIR, UV, XRD, TEM, Zeta-sizer, and VSM. κ-Car-g-P(AA/DMA)@Fe3O4 nanospheres were loaded with 5-Fluorouracil (5-FU) as an antineoplastic drug, and their 5-FU release behavior was explored in diverse graft yields, pH values, temperatures and in the existence of an alternating magnetic field. The κ-Car-g-P(AA/DMA)@Fe3O4 nanospheres demonstrated pH-, thermo-, and magnetic field-responsive 5-FU release with good biocompatibility and excellent anticancer activity. In addition, 5-FU release under 50 mT magnetic field reached to 100% within 4 h. This work exhibits that hybrid nanospheres have a triple stimuli-responsive influence, which is of principal importance for the future design and application of multi-functional responsive platforms to develop externally stimulated release of active agents and their healthcare capability.
Collapse
Affiliation(s)
- Gülcan Geyik
- Alaca Avni Çelik Vocational School, Hitit University, Çorum, Turkey; Department of Chemistry, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan, 71450 Kırıkkale, Turkey
| | - Nuran Işıklan
- Department of Chemistry, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan, 71450 Kırıkkale, Turkey.
| |
Collapse
|
6
|
Thermal responsive poly-N-isopropylacrylamide/galactomannan copolymer nanoparticles as a potential amphotericin delivery carrier. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
Bulut E, Turhan Y. Synthesis and characterization of temperature-sensitive microspheres based on acrylamide grafted hydroxypropyl cellulose and chitosan for the controlled release of amoxicillin trihydrate. Int J Biol Macromol 2021; 191:1191-1203. [PMID: 34614414 DOI: 10.1016/j.ijbiomac.2021.09.193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/12/2021] [Accepted: 09/28/2021] [Indexed: 02/01/2023]
Abstract
This study deals with the preparation of temperature-sensitive chitosan/hydroxypropyl cellulose-graft-polyacrylamide (CS/HPC-g-PAAm) blend microspheres as a controlled drug release system. For this purpose, HPC-g-PAAm copolymers of hydroxypropyl cellulose (HPC) with acrylamide (AAm) were synthesized using cerium (IV) ammonium nitrate as initiator. The HPC-g-PAAm copolymers were characterized by using Fourier transform infrared spectroscopy (FTIR), elemental analysis, and differential scanning calorimetry (DSC). Lower critical solution temperatures (LCST) of the synthesized copolymers were determined. Temperature-sensitive blend microspheres of HPC-g-PAAm and chitosan were prepared by emulsion cross-linking method using glutaraldehyde (GA) as a cross-linker in the hydrochloric acid catalyst (HCl) and they were used to achieve controlled release of amoxicillin trihydrate (AMX), an antibiotic drug. The microspheres were characterized by DSC, X-ray diffraction (X-RD), and FTIR spectroscopy. In addition, surfaces of empty and drug-loaded microspheres were examined by scanning electron microscopy (SEM). The effects of variables such as CS/HPC-g-PAAm ratio, drug/polymer ratio, amount of cross-linker, and reaction time of grafting on AMX release were investigated at three different pH environments (1.2, 6.8, 7.4) at 25 °C, 37 °C, and 50 °C. The release results showed that the microspheres had temperature sensitivity and the AMX release was slightly more controlled by especially increasing graft yield (%).
Collapse
Affiliation(s)
- Emine Bulut
- Department of Food Processing, Bolvadin Vocational School, Afyon Kocatepe University, 03300 Afyonkarahisar, Turkey.
| | - Yakup Turhan
- Department of Chemistry, Science and Arts Faculty, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| |
Collapse
|
8
|
Jia W, Wang L, Shu H, Xu Y, Zhao G, Fang F, Fu Y. Investigation into the Output Force Characteristics of an Electric Actuator Based on Sodium Alginate and Polyvinyl Alcohol. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weikun Jia
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Lan Wang
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Haisheng Shu
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yan Xu
- Engineering Training Center, Harbin Engineering University, Harbin 150001, China
| | - Gang Zhao
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Fujian Fang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150001, China
| | - Yu Fu
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
9
|
Development and optimization of Fe 3+-crosslinked sodium alginate-methylcellulose semi-interpenetrating polymer network beads for controlled release of ibuprofen. Int J Biol Macromol 2020; 168:823-833. [PMID: 33242553 DOI: 10.1016/j.ijbiomac.2020.11.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
In this study, ionically crosslinked beads of sodium alginate (NaAlg) and methylcellulose (MC) were prepared as semi-interpenetrating polymer networks (semi-IPN) in the size range of 1.97 ± 0.09-1.22 ± 0.13 mm by crosslinking with FeCl3 and loaded with ibuprofen (IBU), which is a nonsteroidal anti-inflammatory drug. The highest 93.33% entrapment efficiency of IBU was achieved, and the drug release behaviors, mean particle size, and entrapment efficiency of beads were investigated in terms of the polymer composition, a ratio of ibuprofen to polymer, exposure time to crosslinker, and concentration of the crosslinking agent. Semi-IPN formulations prepared were also characterized using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), X-ray Diffraction (X-RD), and scanning electron microscopy (SEM). It was observed that IBU-loaded beads displayed better release performance with an increase amount of NaAlg in the structure. Finally, the optimum IBU release was obtained as 93.9% for beads containing 66.7% (w/w) NaAlg, 33.3% (w/w) MC, IBU/polymer ratio of 1/4, FeCl3 concentration of 0.1 M, and crosslinking time of 90 min. The in vitro release rate was fitted to five empirical equations, and the diffusion exponent n, which indicated that the release mechanism of IBU from beads followed the Anomalous and Case II transport mechanism.
Collapse
|
10
|
Alginate-chitosan/MWCNTs nanocomposite: a novel approach for sustained release of Ibuprofen. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02342-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Alginate-based electrospun core/shell nanofibers containing dexpanthenol: A good candidate for wound dressing. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101708] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Wang Y, Zhou G, Xu C, Jiang W, Zhang Z. Synthesis and characteristics of a novel dust suppressant with good weatherability for controlling dust in open coal yards. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19327-19339. [PMID: 32212079 DOI: 10.1007/s11356-020-08309-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
This study aims to synthesize a dust suppressant for controlling coal dust pollution in open yards using natural polymers. Guided by graft copolymerization theory, potassium persulfate acts as an initiator to excite the free radicals of collagen and sodium alginate, allowing them to combine with acrylic acid and acrylamide to form a new polymer. The TG curve indicates that the thermal stability of the polymer is superior to that of the raw material. Scanning electron microscope (SEM) images show that the product can reduce the generation of dust by bonding the pulverized coal. With CCD method, when the monomer concentration increases in a certain range, the cohesive ability of the product to coal increases first and then decreases. Initiators and crosslinkers showed the same pattern. A series of performance experiments show that the product has a dust suppression rate of 98.7% at a wind speed of 14 m/s, and maintain one of 94.5% at a wind speed of 8 m/s after a rainstorm. In addition, there was no significant loss in dust suppression performance and compressive strength of the solidified layer after wind and rain. Sunlight, low temperature, and high temperature have little influence on the dust suppression effect of the product, which indicates that the product has better weather resistance and helps to suppress dust for a longer time in open air conditions.
Collapse
Affiliation(s)
- Yuying Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Gang Zhou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Cuicui Xu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Wenjing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhixue Zhang
- Production Technology Department, Shandong Energy Feicheng Mining Group, Feicheng, 271608, China
| |
Collapse
|
13
|
Ma Y, Zhou G, Li S, Ding J. Synthesis and Properties of a Conglomeration–Wetting Spray Agent for Dust Suppression. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yunlong Ma
- College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Gang Zhou
- College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
- Energy Flagship, Commonwealth Scientific and Industrial Research Organisation, P.O. Box 883,
Kenmore, Brisbane, QLD 4069, Australia
| | - Shuailong Li
- College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jianfei Ding
- College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
14
|
Işıklan N, Altınışık Z. Temperature-responsive alginate-g
-poly(N
,N
-diethylacrylamide) copolymer: Synthesis, characterization, and swelling behavior. J Appl Polym Sci 2018. [DOI: 10.1002/app.46688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nuran Işıklan
- Department of Chemistry, Faculty of Arts and Sciences; Kırıkkale University; Yahşihan Kırıkkale 71450 Turkey
| | - Zeynep Altınışık
- Department of Chemistry, Faculty of Arts and Sciences; Kırıkkale University; Yahşihan Kırıkkale 71450 Turkey
| |
Collapse
|
15
|
Synthesis and characterization of dual responsive sodium alginate-g-acryloyl phenylalanine-poly N -isopropyl acrylamide smart hydrogels for the controlled release of anticancer drug. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.12.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Preparation and characteristics of a multifunctional dust suppressant with agglomeration and wettability performance used in coal mine. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.02.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Characterization and in vitro release kinetics of antimalarials from whey protein-based hydrogel biocomposites. INTERNATIONAL JOURNAL OF INDUSTRIAL CHEMISTRY 2018. [DOI: 10.1007/s40090-018-0139-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Ebrahimi R, Salavaty M. Controlled drug delivery of ciprofloxacin from ultrasonic hydrogel. E-POLYMERS 2018. [DOI: 10.1515/epoly-2017-0123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractCiprofloxacin is an antibacterial fluoroquinolone that stops the DNA synthesis, after penetration into the bacterial cells. This drug is applied in the curing of bacterial infections, as well as in antibiotics to treat urinary infections in women, infectious diarrhea and typhoid fever. The objective of the present work is to study controlled release of ciprofloxacin by hydrogel prepared by ultrasound. For this, first the swelling properties of hydrogel and then the absorption of drug were evaluated. The swollen hydrogel was dried in oven (50°C) and was ready for release experiments. During release, the loaded powder of the hydrogel was added to a buffer solution of pH 7.4, similar to human body condition. Then drug concentration was measured using a UV-visible (UV-Vis) spectrophotometer and a calibration curve. The results showed that the hydrogel is sensitive to pH, which makes it a good candidate for ciprofloxacin delivery in intestine. In addition, it was shown that the drug absorption is proportional with the swelling content of the hydrogel and the drug concentration in the loading process. The chemical structure and morphology of the hydrogels and loaded drug were characterized using Fourier transform infrared, UV-Vis, scanning electronic microscopy and thermal gravimetric analysis spectroscopy. According to the results presented here, acrylic-based hydrogels can be used in biomedical fields, especially for controlled drug release.
Collapse
Affiliation(s)
- Rajabali Ebrahimi
- Department of Chemistry, College of Science, Takestan Branch, Islamic Azad University, Takestan, Iran, Phone: +989123825118
| | - Molod Salavaty
- Department of Chemistry, Payame Noor University, P.O. BOX 19395-3697 Tehran, Iran
| |
Collapse
|
19
|
In situ gelation behavior of thermoresponsive poly(N-vinylpyrrolidone)/poly(N-isopropylacrylamide) microgels synthesized by soap-free emulsion polymerization. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2271-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Feng L, Yang H, Dong X, Lei H, Chen D. pH-sensitive polymeric particles as smart carriers for rebar inhibitors delivery in alkaline condition. J Appl Polym Sci 2017. [DOI: 10.1002/app.45886] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lijuan Feng
- Shandong Peninsula Blue Economy and Engineering Research Institute, Weifang University of Science and Technology; Shouguang Weifang 262700 People's Republic of China
| | - Huaiyu Yang
- State Key Laboratory for Corrosion and Protection; Institute of Metal Research, Chinese Academic of Sciences; Shenyang 110016 People's Republic of China
| | - Xiqing Dong
- Shandong Peninsula Blue Economy and Engineering Research Institute, Weifang University of Science and Technology; Shouguang Weifang 262700 People's Republic of China
| | - Haibo Lei
- Shandong Peninsula Blue Economy and Engineering Research Institute, Weifang University of Science and Technology; Shouguang Weifang 262700 People's Republic of China
| | - Di Chen
- Shandong Peninsula Blue Economy and Engineering Research Institute, Weifang University of Science and Technology; Shouguang Weifang 262700 People's Republic of China
| |
Collapse
|
21
|
Switchable on/off drug release from gold nanoparticles-grafted dual light- and temperature-responsive hydrogel for controlled drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:242-248. [DOI: 10.1016/j.msec.2017.03.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/04/2017] [Accepted: 03/04/2017] [Indexed: 01/16/2023]
|
22
|
Xue R, Zhang W, Sun P, Zada I, Guo C, Liu Q, Gu J, Su H, Zhang D. Angle-independent pH-sensitive composites with natural gyroid structure. Sci Rep 2017; 7:42207. [PMID: 28165044 PMCID: PMC5292694 DOI: 10.1038/srep42207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/06/2017] [Indexed: 12/04/2022] Open
Abstract
pH sensor is an important and practical device with a wide application in environmental protection field and biomedical industries. An efficient way to enhance the practicability of intelligent polymer composed pH sensor is to subtilize the three-dimensional microstructure of the materials, adding measurable features to visualize the output signal. In this work, C. rubi wing scales were combined with pH-responsive smart polymer polymethylacrylic acid (PMAA) through polymerization to achieve a colour-tunable pH sensor with nature gyroid structure. Morphology and reflection characteristics of the novel composites, named G-PMAA, are carefully investigated and compared with the original biotemplate, C. rubi wing scales. The most remarkable property of G-PMAA is a single-value corresponding relationship between pH value and the reflection peak wavelength (λmax), with a colour distinction degree of 18 nm/pH, ensuring the accuracy and authenticity of the output. The pH sensor reported here is totally reversible, which is able to show the same results after several detection circles. Besides, G-PMAA is proved to be not influenced by the detection angle, which makes it a promising pH sensor with superb sensitivity, stability, and angle-independence.
Collapse
Affiliation(s)
- Ruiyang Xue
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Wang Zhang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Peng Sun
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Imran Zada
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Cuiping Guo
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Qinglei Liu
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Jiajun Gu
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Huilan Su
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Di Zhang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
23
|
A new approach for synthesis of SiO2/poly(2-hydroxyethyl methacrylate):Tb3+ nanohybrids by combination of surface-initiated raft polymerization and coordination chemistry. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1712-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Zhu X, Zhao J, Wang C. Acid and base dual-controlled cargo molecule release from polyaniline gated-hollow mesoporous silica nanoparticles. Polym Chem 2016. [DOI: 10.1039/c6py01507g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyaniline chains grafted onto the surface of hollow mesoporous silica served as the gate to realize drug dual-controlled release.
Collapse
Affiliation(s)
- Xinyun Zhu
- School of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| | - Jianliang Zhao
- School of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| | - Caiqi Wang
- School of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| |
Collapse
|