1
|
Sayed MM, Noby H, Zkria A, Mousa HM, Yoshitake T, ElKady M. Engineered eco-friendly composite membranes with superhydrophobic/hydrophilic dual-layer for DCMD system. CHEMOSPHERE 2024; 352:141468. [PMID: 38382717 DOI: 10.1016/j.chemosphere.2024.141468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Considerable advancements have been made in the development of hydrophobic membranes for membrane distillation (MD). Nonetheless, the environmentally responsible disposal of these membranes poses a critical concern due to their synthetic composition. Herein, an eco-friendly dual-layered biopolymer-based membrane was fabricated for water desalination. The membrane was electrospun from two bio-polymeric layers. The top hydrophobic layer comprises polycaprolactone (PCL) and the bottom hydrophilic layer from cellulose acetate (CA). Additionally, silica nanoparticles (SiO2 NPs) were electrosprayed onto the top layer of the dual-layered PCL/CA membrane to enhance the hydrophobicity. The desalination performance of the modified PCL-SiO2/CA membrane was compared with the unmodified PCL/CA membrane using a direct contact membrane distillation (DCMD) unit. Results revealed that silica remarkably improves membrane hydrophobicity. The modified PCL-SiO2/CA membrane demonstrated a significant increase in water contact angle of 152.4° compared to 119° for the unmodified membrane. In addition, PCL-SiO2/CA membrane has a smaller average pore size of 0.23 ± 0.16 μm and an exceptional liquid entry pressure of water (LEPw), which is 3.8 times higher than that of PCL/CA membrane. Moreover, PCL-SiO2/CA membrane achieved a durable permeate flux of 15.6 kg/m2.h, while PCL/CA membrane showed unstable permeate flux decreasing approximately from 25 to 12 kg/m2.h over the DCMD test time. Furthermore, the modified PCL-SiO2/CA membrane achieved a high salt rejection value of 99.97% compared to a low value of 86.2% for the PCL/CA membrane after 24 h continuous DCMD operation. In conclusion, the proposed modified PCL-SiO2/CA dual-layer biopolymeric-based membrane has considerable potential to be used as an environmentally friendly membrane for the MD process.
Collapse
Affiliation(s)
- Mostafa M Sayed
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology, Alexandria, 21934, Egypt; Materials Engineering and Design, Faculty of Energy Engineering, Aswan University, Aswan, 81528, Egypt.
| | - H Noby
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology, Alexandria, 21934, Egypt; Materials Engineering and Design, Faculty of Energy Engineering, Aswan University, Aswan, 81528, Egypt
| | - Abdelrahman Zkria
- Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan; Department of Physics, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Hamouda M Mousa
- Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena, 83523, Egypt; Faculty of Technological Industry and Energy, Thebes Technological University, Thebes, 85863, Luxor, Egypt
| | - Tsuyoshi Yoshitake
- Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
| | - Marwa ElKady
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology, Alexandria, 21934, Egypt; Fabrication Technology Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technology Applications, Alexandria, 21934, Egypt.
| |
Collapse
|
2
|
Saeed A, Akhtar M, Zulfiqar S, Hanif F, Alsafari IA, Agboola PO, Haider S, Warsi MF, Shakir I. Thiamine-functionalized silver–copper bimetallic nanoparticles-based electrochemical sensor for sensitive detection of anti-inflammatory drug 4-aminoantipyrine. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Sousa JC, Costa ARM, Lima JC, Arruda SA, Almeida YMB. Crystallization kinetics modeling, thermal properties and biodegradability of poly (ε-caprolactone)/niobium pentoxide and alumina compounds. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Mallakpour S, Abbasi M. Hydroxyapatite mineralization on chitosan-tragacanth gum/silica@silver nanocomposites and their antibacterial activity evaluation. Int J Biol Macromol 2020; 151:909-923. [DOI: 10.1016/j.ijbiomac.2020.02.167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 01/09/2023]
|
5
|
Mallakpour S, Khani Z. An eco-friendly method for the preparation of poly(N-vinyl-2-pyrrolidone)–poly(vinyl alcohol) blend nanocomposite films containing vitamin B1-modified silica nanoparticles to enhance thermal and wettability properties. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02814-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Fernández-Villa D, Jiménez Gómez-Lavín M, Abradelo C, San Román J, Rojo L. Tissue Engineering Therapies Based on Folic Acid and Other Vitamin B Derivatives. Functional Mechanisms and Current Applications in Regenerative Medicine. Int J Mol Sci 2018; 19:E4068. [PMID: 30558349 PMCID: PMC6321107 DOI: 10.3390/ijms19124068] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/30/2022] Open
Abstract
B-vitamins are a group of soluble vitamins which are cofactors of some of the enzymes involved in the metabolic pathways of carbohydrates, fats and proteins. These compounds participate in a number of functions as cardiovascular, brain or nervous systems. Folic acid is described as an accessible and multifunctional niche component that can be used safely, even combined with other compounds, which gives it high versatility. Also, due to its non-toxicity and great stability, folic acid has attracted much attention from researchers in the biomedical and bioengineering area, with an increasing number of works directed at using folic acid and its derivatives in tissue engineering therapies as well as regenerative medicine. Thus, this review provides an updated discussion about the most relevant advances achieved during the last five years, where folic acid and other vitamins B have been used as key bioactive compounds for enhancing the effectiveness of biomaterials' performance and biological functions for the regeneration of tissues and organs.
Collapse
Affiliation(s)
- Daniel Fernández-Villa
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain.
| | - Mirta Jiménez Gómez-Lavín
- Departamento de Química y Bioquímica. Facultad de Farmacia Universidad CEU San Pablo, 28668 Madrid, Spain.
| | - Cristina Abradelo
- Departamento de Química y Bioquímica. Facultad de Farmacia Universidad CEU San Pablo, 28668 Madrid, Spain.
| | - Julio San Román
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain.
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain.
| |
Collapse
|
7
|
Mallakpour S, Darvishzadeh M. Nanocomposite materials based on poly(vinyl chloride) and bovine serum albumin modified ZnO through ultrasonic irradiation as a green technique: Optical, thermal, mechanical and morphological properties. ULTRASONICS SONOCHEMISTRY 2018; 41:85-99. [PMID: 29137802 DOI: 10.1016/j.ultsonch.2017.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
In this project, physicochemical properties of poly(vinyl chloride) (PVC) reinforced by ZnO nanoparticles (NPs) were studied. Firstly, ZnO NPs were modified with bovine serum albumin (BSA) as an organo-modifier and biocompatible substance through ultrasound irradiation as environmental friendly, low cost and rapid means. Nanocomposite (NC) films were prepared by loadings of various ratios of ZnO/BSA NPs (3, 6 and 9wt%) inside the PVC. Structural morphology and physical properties of the ZnO-BSA NPs and NC films were investigated via Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis (TGA), transmission electron microscopy and field emission scanning electron microscopy. According to the obtained information from the TGA, an increase in the thermal stability can be clearly observed. Also the results of contact angle analysis indicated with increasing percent of ZnO/BSA NPs into PVC the hydrophilic behaviors of NCs were increased.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Marzieh Darvishzadeh
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|