1
|
Hussain B, Zhu H, Xiang C, Mengfei L, Zhu B, Liu S, Ma H, Pu S. Evaluation of the immobilized enzymes function in soil remediation following polycyclic aromatic hydrocarbon contamination. ENVIRONMENT INTERNATIONAL 2024; 194:109106. [PMID: 39571295 DOI: 10.1016/j.envint.2024.109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 12/22/2024]
Abstract
The bioremediation of polycyclic aromatic hydrocarbon (PAHs) from soil utilizing microorganisms, enzymes, microbial consortiums, strains, etc. has attracted a lot of interest due to the environmentally friendly, and cost-effective features. Enzymes can efficiently break down PAHs in soil by hydroxylating the benzene ring, breaking the C-C bond, and catalyze the hydroxylation of a variety of benzene ring compounds via single-electron transfer oxidation. However, the practical application is limited by its instability and ease to loss function under harsh environmental conditions such as pH, temperature, and edaphic stress etc. Therefore, this paper focused on the techniques used to immobilize enzymes and remediate PAHs in soil. Moreover, previous research has not adequately covered this topic, despite the employment of several immobilized enzymes in aqueous solution cultures to remediate other types of organic pollutants. Bibliometric analysis further highlighted the research trends from 2000 to 2023 on this field of growing interest and identified important challenges regarding enzyme stability and interaction with soil matrices. The findings indicated that immobilized enzymes may catalyzed PAHs via oxidation of OH groups in benzene rings, and generate benzyl radicals (i.e., •OH and •O2) that undergo further reaction and release water. As a result, the intermediate products of PAHs further catalyze by enzyme and enzyme induced microbes producing carbon dioxide and water. Meanwhile efficiency, activity, lifetime, resilience, and sustainability of immobilized enzyme need to be further improved for the large-scale and field-scale clean-up of PAHs polluted soils. This could be possible by integrating enzyme-based with microbial and plant-based remediation strategies. It can be coupled with another line of research focused on using a new set of support materials that can be derived from natural resources.
Collapse
Affiliation(s)
- Babar Hussain
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hongqing Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Chunyu Xiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Luo Mengfei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Bowei Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Shibin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China.
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
2
|
Chen LH, Ban C, Helal MH, El-Bahy SM, Zeinhom M, Song S, Zhao YG, Lu Y. Preparation and modification of polymer microspheres, application in wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121807. [PMID: 39025011 DOI: 10.1016/j.jenvman.2024.121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
The removal of various pollutants from water is necessary due to the increasing requirements for the removal of various pollutants from wastewater and the quality of drinking water. Polymer microspheres are regarded as exemplary adsorbent materials due to their high adsorption efficiency, excellent adsorption performance, and ease of handling. Herein, the advantages and disadvantages of different preparation methods, modifications, applications and the current research status of polymer microspheres are summarized at large. Furthermore, the enhanced performance of modified composite microspheres is emphasized, including adsorption efficiency, thermal stability, and significant improvements in physical and chemical properties. Subsequently, the current applications and potential of polymeric microspheres for wastewater treatment, including the removal of inorganic and organic pollutants, heavy metal ions, and other contaminants are summarized. Finally, future research directions for polymer microspheres are proposed, outlining the challenges and solutions associated with the application of polymer microspheres in wastewater treatment.
Collapse
Affiliation(s)
- Li-Hui Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Cao Ban
- Zhejiang Institute of Geosciences, Zhejiang, 310015, China
| | - Mohamed H Helal
- Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, Saudi Arabia
| | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University, Turabah, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - M Zeinhom
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Yin Lu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
3
|
Weber AC, da Silva BE, Cordeiro SG, Henn GS, Costa B, Dos Santos JSH, Corbellini VA, Ethur EM, Hoehne L. Immobilization of commercial horseradish peroxidase in calcium alginate-starch hybrid support and its application in the biodegradation of phenol red dye. Int J Biol Macromol 2023; 246:125723. [PMID: 37419265 DOI: 10.1016/j.ijbiomac.2023.125723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
In this study, horseradish peroxidase (HRP) was immobilized for the first time on Ca alginate-starch hybrid beads and employed for the biodegradation of phenol red dye. The optimal protein loading was 50 mg/g of support. Immobilized HRP demonstrated improved thermal stability and maximum catalytic activity at 50 °C and pH 6.0, with an increase in half-life (t1/2) and enzymatic deactivation energy (Ed) compared to free HRP. After 30 days of storage at 4 °C, immobilized HRP retained 109% of its initial activity. Compared to free HRP, the immobilized enzyme exhibited higher potential for phenol red dye degradation, as evidenced by the removal of 55.87% of initial phenol red after 90 min, which was 11.5 times greater than free HRP. In sequential batch reactions, the immobilized HRP demonstrated good potential efficiency for the biodegradation of phenol red dye. The immobilized HRP was used for a total of 15 cycles, degrading 18.99% after 10 cycles and 11.69% after 15 cycles, with a residual enzymatic activity of 19.40% and 12.34%, respectively. Overall, the results suggest that HRP immobilized on Ca alginate-starch hybrid supports shows promise as a biocatalyst for industrial and biotechnological applications, particularly for the biodegradation of recalcitrant compounds such as phenol red dye.
Collapse
Affiliation(s)
- Ani Caroline Weber
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Bruno Eduardo da Silva
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Sabrina Grando Cordeiro
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Guilherme Schwingel Henn
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Bruna Costa
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | | | | | - Eduardo Miranda Ethur
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| | - Lucélia Hoehne
- Postgraduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
4
|
Tocco D, Wisser D, Fischer M, Schwieger W, Salis A, Hartmann M. Immobilization of Aspergillus sp. laccase on hierarchical silica MFI zeolite with embedded macropores. Colloids Surf B Biointerfaces 2023; 226:113311. [PMID: 37060651 DOI: 10.1016/j.colsurfb.2023.113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/31/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
Laccase from Aspergillus sp. (LC) was immobilized on functionalized silica hierarchical (microporous-macroporous) MFI zeolite (ZMFI). The obtained immobilized biocatalyst (LC#ZMFI) was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (ATR-FTIR), N2 adsorption/desorption isotherms, solid-state NMR spectroscopy and thermogravimetric analysis (TGA) confirming the chemical anchoring of the enzyme to the zeolitic support. The optimal pH, kinetic parameters (KM and Vmax), specific activity, as well as both storage and operational stability of LC#ZMFI were determined. The LC#ZMFI KM and Vmax values amount to 10.3 µM and 0.74 µmol·mg-1 min-1, respectively. The dependence of specific activity on the pH for free and immobilized LC was investigated in the pH range of 2-7, The highest specific activity was obtained at pH = 3 for both free LC and LC#ZMFI. LC#ZMFI retained up to 50 % and 30 % of its original activity after storage of 21 and 30 days, respectively. Immobilization of laccase on hierarchical silica MFI zeolite allows to carry out the reaction under acidic pH values without affecting the support structure.
Collapse
Affiliation(s)
- Davide Tocco
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany; Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, SS 554 Bivio Sestu, 09042, Monserrato, CA, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via Della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Dorothea Wisser
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Marcus Fischer
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Wilhelm Schwieger
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, SS 554 Bivio Sestu, 09042, Monserrato, CA, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via Della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Martin Hartmann
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
| |
Collapse
|
5
|
Study of Membrane-Immobilized Oxidoreductases in Wastewater Treatment for Micropollutants Removal. Int J Mol Sci 2022; 23:ijms232214086. [PMID: 36430564 PMCID: PMC9699638 DOI: 10.3390/ijms232214086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The development of efficient strategies for wastewater treatment to remove micropollutants is of the highest importance. Hence, in this study, we presented a rapid approach to the production of biocatalytic membranes based on commercially available cellulose membrane and oxidoreductase enzymes including laccase, tyrosinase, and horseradish peroxidase. Effective enzyme deposition was confirmed based on Fourier transform infrared spectra, whereas results of spectrophotometric measurements showed that immobilization yield for all proposed systems exceeded 80% followed by over 80% activity recovery, with the highest values (over 90%) noticed for the membrane-laccase system. Further, storage stability and reusability of the immobilized enzyme were improved, reaching over 75% after, respectively, 20 days of storage, and 10 repeated biocatalytic cycles. The key stage of the study concerned the use of produced membranes for the removal of hematoporphyrin, (2,4-dichlorophenoxy)acetic acid (2,4-D), 17α-ethynylestradiol, tetracycline, tert-amyl alcohol (anesthetic drug), and ketoprofen methyl ester from real wastewater sampling at various places in the wastewater treatment plant. Although produced membranes showed mixed removal rates, all of the analyzed compounds were at least partially removed from the wastewater. Obtained data clearly showed, however, that composition of the wastewater matrix, type of pollutants as well as type of enzyme strongly affect the efficiency of enzymatic treatment of wastewater.
Collapse
|
6
|
Polymer/Enzyme Composite Materials—Versatile Catalysts with Multiple Applications. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A significant interest was granted lately to enzymes, which are versatile catalysts characterized by natural origin, with high specificity and selectivity for particular substrates. Additionally, some enzymes are involved in the production of high-valuable products, such as antibiotics, while others are known for their ability to transform emerging contaminates, such as dyes and pesticides, to simpler molecules with a lower environmental impact. Nevertheless, the use of enzymes in industrial applications is limited by their reduced stability in extreme conditions and by their difficult recovery and reusability. Rationally, enzyme immobilization on organic or inorganic matrices proved to be one of the most successful innovative approaches to increase the stability of enzymatic catalysts. By the immobilization of enzymes on support materials, composite biocatalysts are obtained that pose an improved stability, preserving the enzymatic activity and some of the support material’s properties. Of high interest are the polymer/enzyme composites, which are obtained by the chemical or physical attachment of enzymes on polymer matrices. This review highlights some of the latest findings in the field of polymer/enzyme composites, classified according to the morphology of the resulting materials, following their most important applications.
Collapse
|
7
|
Somu P, Narayanasamy S, Gomez LA, Rajendran S, Lee YR, Balakrishnan D. Immobilization of enzymes for bioremediation: A future remedial and mitigating strategy. ENVIRONMENTAL RESEARCH 2022; 212:113411. [PMID: 35561819 DOI: 10.1016/j.envres.2022.113411] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Over the years, extensive urbanization and industrialization have led to xenobiotics contamination of the environment and also posed a severe threat to human health. Although there are multiple physical and chemical techniques for xenobiotic pollutants management, bioremediation seems to be a promising technology from the environmental perspective. It is an eco-friendly and low-cost method involving the application of microbes, plants, or their enzymes to degrade xenobiotics into less toxic or non-toxic forms. Moreover, bioremediation involving enzymes has gained an advantage over microorganisms or phytoremediation due to better activity for pollutant degradation with less waste generation. However, the significant disadvantages associated with the application of enzymes are low stability (storage, pH, and temperature) as well as the low possibility of reuse as it is hard to separate from reaction media. The immobilization of enzymes without affecting their activity provides a possible solution to the problems and allows reusability by easing the process of separation with improved stability to various environmental factors. The present communication provides an overview of the importance of enzyme immobilization in bioremediation, carrier selection, and immobilization methods, as well as the pros and cons of immobilization and its prospects.
Collapse
Affiliation(s)
- Prathap Somu
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea; Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 600124, India
| | - Saranya Narayanasamy
- Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 600124, India
| | - Levin Anbu Gomez
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to Be University), Coimbatore, 641114, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| |
Collapse
|
8
|
Alzahrani HA. Encapsulation of peroxidase on hydrogel sodium polyacrylate spheres incorporated by silver and gold nanoparticles: A comparative study. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-220033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The selectivity of biocatalysts based on enzymes, eco-friendly reaction systems, and strong catalyst performance is exceptionally compelling. For improving enzyme recyclability and stability, a good option that has been proved is immobilization. For enzyme immobilization, hydrogel sodium polyacrylate combined with nanoparticles is an interesting class of support matrices as compared to others. This study synthesizes and uses the cross-linked hydrogel sodium polyacrylate-decorated gold or silver nanoparticles (HSP/AuNPs or AgNPs) as immobilized support for peroxidase and FTIR characterizes it. The novel supports immobilized system properties enhanced biocompatibility. They have attained a greater immobilization yield (91% with HSP/AuNPs and 84% with HSP/AgNPs). The rest of the immobilized peroxidase activity, after 10 recurring cycles of HSP/AuNPs was 61% and HSP/AgNPs was 54% . The remaining activity of the immobilized enzyme onto HSP/AgNPs, after storing at 4°C for 6 weeks, was 73% and HSP/AuNPs was 75% of its initial activity. It was revealed that the optimum temperature for the free enzyme and the immobilized enzyme was 50°C and 50–60°C, respectively. For the immobilized enzyme, the optimum pH is 7–7.5, as compared to the optimum pH of free enzyme pH 6.5.
Collapse
Affiliation(s)
- Hassan A.H. Alzahrani
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Pekgenc E, Yavuzturk Gul B, Vatanpour V, Koyuncu I. Biocatalytic membranes in anti-fouling and emerging pollutant degradation applications: Current state and perspectives. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Immobilized enzymes and cell systems: an approach to the removal of phenol and the challenges to incorporate nanoparticle-based technology. World J Microbiol Biotechnol 2022; 38:42. [PMID: 35043353 DOI: 10.1007/s11274-022-03229-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/04/2022] [Indexed: 12/07/2022]
Abstract
The presence of phenol in wastewater poses a risk to ecosystems and human health. The traditional processes to remove phenol from wastewater, although effective, have several drawbacks. The best alternative is the application of ecological biotechnology tools since they involve biological systems (enzymes and microorganisms) with moderate economic and environmental impact. However, these systems have a high sensitivity to environmental factors and high substrate concentrations that reduce their effectiveness in phenol removal. This can be overcome by immobilization-based technology to increase the performance of enzymes and bacteria. A key component to ensure successful immobilization is the material (polymeric matrices) used as support for the biological system. In addition, by incorporating magnetic nanoparticles into conventional immobilized systems, a low-cost process is achieved but, most importantly, the magnetically immobilized system can be recovered, recycled, and reused. In this review, we study the existing alternatives for treating wastewater with phenol, from physical and chemical to biological techniques. The latter focus on the immobilization of enzymes and microorganisms. The characteristics of the support materials that ensure the viability of the immobilization are compared. In addition, the challenges and opportunities that arise from incorporating magnetic nanoparticles in immobilized systems are addressed.
Collapse
|
11
|
Removal of Persistent Sulfamethoxazole and Carbamazepine from Water by Horseradish Peroxidase Encapsulated into Poly(Vinyl Chloride) Electrospun Fibers. Int J Mol Sci 2021; 23:ijms23010272. [PMID: 35008696 PMCID: PMC8745486 DOI: 10.3390/ijms23010272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/27/2022] Open
Abstract
Enzymatic conversion of pharmaceutically active ingredients (API), using immobilized enzymes should be considered as a promising industrial tool due to improved reusability and stability of the biocatalysts at harsh process conditions. Therefore, in this study horseradish peroxidase was immobilized into sodium alginate capsules and then trapped into poly(vinyl chloride) electrospun fibers to provide additional enzyme stabilization and protection against the negative effect of harsh process conditions. Due to encapsulation immobilization, 100% of immobilization yield was achieved leading to loading of 25 μg of enzyme in 1 mg of the support. Immobilized in such a way, enzyme showed over 80% activity retention. Further, only slight changes in kinetic parameters of free (Km = 1.54 mM) and immobilized horseradish peroxidase (Km = 1.83 mM) were noticed, indicating retention of high catalytic properties and high substrate affinity by encapsulated biocatalyst. Encapsulated horseradish peroxidase was tested in biodegradation of two frequently occurring in wastewater API, sulfamethoxazole (antibiotic) and carbamazepine (anticonvulsant). Over 80% of both pharmaceutics was removed by immobilized enzyme after 24 h of the process from the solution at a concentration of 1 mg/L, under optimal conditions, which were found to be pH 7, temperature 25 °C and 2 mM of H2O2. However, even from 10 mg/L solutions, it was possible to remove over 40% of both pharmaceuticals. Finally, the reusability and storage stability study of immobilized horseradish peroxidase showed retention of over 60% of initial activity after 20 days of storage at 4 °C and after 10 repeated catalytic cycles, indicating great practical application potential. By contrast, the free enzyme showed less than 20% of its initial activity after 20 days of storage and exhibited no recycling potential.
Collapse
|
12
|
Varamini M, Zamani H, Hamedani H, Namdari S, Rastegari B. Immobilization of horseradish peroxidase on lysine-functionalized gum Arabic-coated Fe 3O 4 nanoparticles for cholesterol determination. Prep Biochem Biotechnol 2021; 52:737-747. [PMID: 34871533 DOI: 10.1080/10826068.2021.1992780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Horseradish Peroxidase (HRP) is ranked as one of the most important industrial enzymes that is extensively used in industry. Cholesterol is routinely detected indirectly by cholesterol oxidase in the presence of O2, liberating H2O2 as a by-product. The H2O2 content is determined through the HRP activity in the presence of a redox dye, producing a red colored quinoneimine which can be measured quantitatively. Herein, we have designed a magnetic nanoparticle for reusing and easily separating HRP as the most expensive compartment for the low-cost cholesterol assay. METHODS The gum Arabic coated magnetic nanoparticles were functionalized with L-lysine linker for maintaining protein flexibility on nanoparticle. Enzyme-loaded nanoparticles were characterized by TEM, FTIR, DLS, VSM and XRD analysis. RESULTS The immobilization efficiency was ∼65% and the immobilized HRP retained 60% of its activity after 8 times reuse. The optimum pH and thermal stability shifted from 7.0 to 8.0 and 60 to 70 °C after immobilization, respectively. Storage stability of HRP was improved by 10%, at 4 °C for 60 days. Immobilized HRP showed more catalytic activity in presence of Fe2+, Ca2+ and Na+. The designed system has cholesterol detection linearity range from 0.2 to 5.0 mM and detection limit of 0.08 mM and acceptable correlation coefficient of 0.9973 and 0.9982 on sample serum using both chromogens. CONCLUSION The HRP-loaded magnetic nanoparticles are capable of being used as a cost-effective system for cholesterol determination in laboratory due to its reusability and stability benefits.
Collapse
Affiliation(s)
- Morteza Varamini
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Zamani
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Hale Hamedani
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Sepide Namdari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Banafsheh Rastegari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Tocco D, Carucci C, Todde D, Shortall K, Otero F, Sanjust E, Magner E, Salis A. Enzyme immobilization on metal organic frameworks: Laccase from Aspergillus sp. is better adapted to ZIF-zni rather than Fe-BTC. Colloids Surf B Biointerfaces 2021; 208:112147. [PMID: 34634655 DOI: 10.1016/j.colsurfb.2021.112147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
Laccase from Aspergillus sp. (LC) was immobilized within Fe-BTC and ZIF-zni metal organic frameworks through a one-pot synthesis carried out under mild conditions (room temperature and aqueous solution). The Fe-BTC, ZIF-zni MOFs, and the LC@Fe-BTC, LC@ZIF-zni immobilized LC samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The kinetic parameters (KM and Vmax) and the specific activity of the free and immobilized laccase were determined. Immobilized LCs resulted in a lower specific activity compared with that of the free LC (7.7 µmol min-1 mg-1). However, LC@ZIF-zni was almost 10 times more active than LC@Fe-BTC (1.32 µmol min-1 mg-1 vs 0.17 µmol min-1 mg-1) and only 5.8 times less active than free LC. The effect of enzyme loading showed that LC@Fe-BTC had an optimal loading of 45.2 mg g-1, at higher enzyme loadings the specific activity decreased. In contrast, the specific activity of LC@ZIF-zni increased linearly over the loading range investigated. The storage stability of LC@Fe-BTC was low with a significant decrease in activity after 5 days, while LC@ZIF retained up to 50% of its original activity after 30 days storage. The difference in activity and stability between LC@Fe-BTC and LC@ZIF-zni is likely due to release of Fe3+ and the low stability of Fe-BTC MOF. Together, these results indicate that ZIF-zni is a superior support for the immobilization of laccase.
Collapse
Affiliation(s)
- Davide Tocco
- Department of Chemical and Geological Sciences, University of Cagliari, and Centro NanoBiotecnologie Sardegna (CNBS), Cittadella Universitaria, SS 554 bivio Sestu, 09042, Monserrato (CA), Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy; Unità Operativa University of Cagliari, Italy; Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy
| | - Cristina Carucci
- Department of Chemical and Geological Sciences, University of Cagliari, and Centro NanoBiotecnologie Sardegna (CNBS), Cittadella Universitaria, SS 554 bivio Sestu, 09042, Monserrato (CA), Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy; Unità Operativa University of Cagliari, Italy; Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy.
| | - Debora Todde
- Department of Chemical and Geological Sciences, University of Cagliari, and Centro NanoBiotecnologie Sardegna (CNBS), Cittadella Universitaria, SS 554 bivio Sestu, 09042, Monserrato (CA), Italy
| | - Kim Shortall
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Fernando Otero
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Enrico Sanjust
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy; Unità Operativa University of Cagliari, Italy; Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari, and Centro NanoBiotecnologie Sardegna (CNBS), Cittadella Universitaria, SS 554 bivio Sestu, 09042, Monserrato (CA), Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy; Unità Operativa University of Cagliari, Italy; Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy.
| |
Collapse
|
14
|
Reshmy R, Philip E, Sirohi R, Tarafdar A, Arun KB, Madhavan A, Binod P, Kumar Awasthi M, Varjani S, Szakacs G, Sindhu R. Nanobiocatalysts: Advancements and applications in enzyme technology. BIORESOURCE TECHNOLOGY 2021; 337:125491. [PMID: 34320770 DOI: 10.1016/j.biortech.2021.125491] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Nanobiocatalysts are one of the most promising biomaterials produced by synergistically integrating advanced biotechnology and nanotechnology. These have a lot of potential to improve enzyme stability, function, efficiencyand engineering performance in bioprocessing. Functional nanostructures have been used to create nanobiocatalystsbecause of their specific physicochemical characteristics and supramolecular nature. This review covers a wide range of nanobiocatalysts including polymeric, metallic, silica and carbon nanocarriers as well as their recent developments in controlling enzyme activity. The enormous potential of nanobiocatalysts in bioprocessing in designing effective laboratory trials forapplications in various fields such as food, pharmaceuticals, biofuel, and bioremediation is also discussed extensively.
Collapse
Affiliation(s)
- R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, Kerala 690 110, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, Kerala 690 110, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Ayon Tarafdar
- Division of Livestock Production and Management, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - K B Arun
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, Kerala 695 014, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, Kerala 695 014, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695 019, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | | | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695 019, India.
| |
Collapse
|
15
|
Morshed MN, Behary N, Bouazizi N, Guan J, Nierstrasz VA. An overview on biocatalysts immobilization on textiles: Preparation, progress and application in wastewater treatment. CHEMOSPHERE 2021; 279:130481. [PMID: 33894516 DOI: 10.1016/j.chemosphere.2021.130481] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The immobilization of biocatalysts or other bioactive components often means their transformation from a soluble to an insoluble state by attaching them to a solid support material. Various types of fibrous textiles from both natural and synthetic sources have been studied as suitable support material for biocatalysts immobilization. Strength, inexpensiveness, high surface area, high porosity, pore size, availability in various forms, and simple preparation/functionalization techniques have made textiles a primary choice for various applications. This led to the concept of a new domain called-biocatalysts immobilization on textiles. By addressing the growing advancement in biocatalysts immobilization on textile, this study provides the first detailed overview on this topic based on the terms of preparation, progress, and application in wastewater treatment. The fundamental reason behind the necessity of biocatalysts immobilized textile as well as the potential preparation methods has been identified and discussed. The overall progress and performances of biocatalysts immobilized textile have been scrutinized and summarized based on the form of textile, catalytic activity, and various influencing factors. This review also highlighted the potential challenges and future considerations that can enhance the pervasive use of such immobilized biocatalysts in various sustainable and green chemistry applications.
Collapse
Affiliation(s)
- Mohammad Neaz Morshed
- Department of Textile Technology, The Swedish School of Textiles, Faculty of Textiles, Engineering and Business, University of Borås, SE-50190, Borås, Sweden; Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), GEMTEX Laboratory, 2 allée Louise et Victor Champier BP 30329, 59056, Roubaix, France; Université de Lille, Nord de France, F-59000, Lille, France; College of Textile and Clothing Engineering, Soochow University, 215006, Suzhou, China.
| | - Nemeshwaree Behary
- Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), GEMTEX Laboratory, 2 allée Louise et Victor Champier BP 30329, 59056, Roubaix, France; Université de Lille, Nord de France, F-59000, Lille, France.
| | - Nabil Bouazizi
- Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), GEMTEX Laboratory, 2 allée Louise et Victor Champier BP 30329, 59056, Roubaix, France; Université de Lille, Nord de France, F-59000, Lille, France.
| | - Jinping Guan
- College of Textile and Clothing Engineering, Soochow University, 215006, Suzhou, China.
| | - Vincent A Nierstrasz
- Department of Textile Technology, The Swedish School of Textiles, Faculty of Textiles, Engineering and Business, University of Borås, SE-50190, Borås, Sweden.
| |
Collapse
|
16
|
Ghide MK, Yan Y. 1,3-Dioleoyl-2-palmitoyl glycerol (OPO)-Enzymatic synthesis and use as an important supplement in infant formulas. J Food Biochem 2021; 45:e13799. [PMID: 34080206 DOI: 10.1111/jfbc.13799] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 01/09/2023]
Abstract
1,3-dioleolyl-2-palmitate (OPO) is an important component of the human milk fat. Its unique fatty acid composition and distribution play an important role in proper infant growth and development. Owing to this, it has been attracting researchers and manufacturers to synthesize and commercialize OPO as an important human milk fat substitute added to infant formulas. In this review, the role of OPO in human milk, the benefits of OPO (sn-2 palmitate)-supplemented infant formulas over the conventional infant formulas on infant growth, and lipase-catalyzed synthesis of OPO are discussed. Over the last 20 years of research on the benefits of OPO (sn2 palmitate)-supplemented infant formulas are summarized. Similarly, studies carried out on lipase catalyzed production of OPO for the last 21 years (1999-2019) are also done focusing on the raw materials, sn1,3-regiospecific lipases, immobilization materials, and solvents used in the laboratory-scale experiments. In addition, OPO-based products currently in the market and future research trends are briefly covered in this review. PRACTICAL APPLICATIONS: This work focuses on lipase-catalyzed synthesis of 1,3-dioleoyl-2-palmitoylglycerol (the most abundant triacyl glycerol in human milk fat) and its benefits to infants when it is added in infant formulas. Over the last 20 years of published research from the literature are summarized and future research trends for efficient OPO synthesis are also covered. This will provide current and future researchers on the field with the necessary background information on OPO synthesis and design their research plans accordingly for cost-effective production of OPO and OPO-supplemented infant formulas.
Collapse
Affiliation(s)
- Michael Kidane Ghide
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
The dye adsorption and antibacterial properties of composite polyacrylamide cryogels modified with ZnO. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Tailor-made novel electrospun polystyrene/poly(d,l-lactide-co-glycolide) for oxidoreductases immobilization: Improvement of catalytic properties under extreme reaction conditions. Bioorg Chem 2021; 114:105036. [PMID: 34120021 DOI: 10.1016/j.bioorg.2021.105036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022]
Abstract
Immobilized enzymes find applications in many areas such as pharmacy, medicine, food production and environmental protection. However, protecting these biocatalysts against harsh reaction conditions and retaining their enzymatic activity even after several biocatalytic cycles are major challenges. Properly selected supports and type of surface modifier therefore seem to be crucial for achieving high retention of catalytic activity of immobilized biomolecules. Here we propose production of novel composite electrospun fibers from polystyrene/poly(d,l-lactide-co-glycolide) (PS/PDLG) and its application as a support for immobilization of oxidoreductases such as alcohol dehydrogenase (ADH) and laccase (LAC). Two strategies of covalent binding, (i) (3-aminopropyl)triethoxysilane (APTES) with glutaraldehyde (GA) and (ii) polydopamine (PDA), were applied to attach oxidoreductases to PS/PDLG. The average fiber diameter was shown to increase from 1.252 µm to even 3.367 µm after enzyme immobilization. Effective production of PS/PDLG fibers and biomolecule attachment were confirmed by Fourier transform infrared spectroscopy analysis. The highest substrate conversion efficiency was observed at pH 6.5 and 5 for ADH and LAC, respectively, and at 25 °C for enzymes attached using the APTES + GA approach. Improvement of enzyme stabilization at high temperatures was confirmed in that relative activities of enzymes immobilized onto PS/PDLG fibers were over 20% higher than those of the free biomolecules, and enzyme leaching from the support using acetate and MES buffers was below 10 mg/g.
Collapse
|
19
|
Nano-organic supports for enzyme immobilization: Scopes and perspectives. Colloids Surf B Biointerfaces 2021; 204:111774. [PMID: 33932893 DOI: 10.1016/j.colsurfb.2021.111774] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
A variety of organic nanomaterials and organic polymers are used for enzyme immobilization to increase enzymes stability and reusability. In this study, the effects of the immobilization of enzymes on organic and organic-inorganic hybrid nano-supports are compared. Immobilization of enzymes on organic support nanomaterials was reported to significantly improve thermal, pH and storage stability, acting also as a protection against metal ions inhibitory effects. In particular, the effects of enzyme immobilization on reusability, physical, kinetic and thermodynamic parameters were considered. Due to their biocompatibility with low health risks, organic support nanomaterials represent a good choice for the immobilization of enzymes. Organic nanomaterials, and especially organic-inorganic hybrids, can significantly improve the kinetic and thermodynamic parameters of immobilized enzymes compared to macroscopic supports. Moreover, organic nanomaterials are more environment friendly for medical applications, such as prodrug carriers and biosensors. Overall, organic hybrid nanomaterials are receiving increasing attention as novel nano-supports for enzyme immobilization and will be used extensively.
Collapse
|
20
|
Jankowska K, Zdarta J, Grzywaczyk A, Degórska O, Kijeńska-Gawrońska E, Pinelo M, Jesionowski T. Horseradish peroxidase immobilised onto electrospun fibres and its application in decolourisation of dyes from model sea water. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Bilal M, Ashraf SS, Cui J, Lou WY, Franco M, Mulla SI, Iqbal HMN. Harnessing the biocatalytic attributes and applied perspectives of nanoengineered laccases-A review. Int J Biol Macromol 2021; 166:352-373. [PMID: 33129906 DOI: 10.1016/j.ijbiomac.2020.10.195] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/24/2020] [Indexed: 02/08/2023]
Abstract
In the recent past, numerous new types of nanostructured carriers, as support matrices, have been engineered to advance the traditional enzyme immobilization strategies. The current research aimed to develop a robust enzyme-based biocatalytic platform and its effective deployment in the industrial biotechnology sectors at large and catalysis area, in particular, as low-cost biocatalytic systems. Suitable coordination between the target enzyme molecules and surface pendent multifunctional entities of nanostructured carriers has led an effective and significant contribution in myriad novel industrial, biotechnological, and biomedical applications. As compared to the immobilization on planar two-dimensional (2-D) surface, the unique physicochemical, structural and functional attributes of nano-engineered matrices, such as high surface-to-volume ratio, surface area, robust chemical and mechanical stability, surface pendant functional groups, outstanding optical, thermal, and electrical characteristics, resulted in the concentration of the immobilized entity being substantially higher, which is highly requisite from applied bio-catalysis perspective. Besides inherited features, nanostructured materials-based enzyme immobilization aided additional features, such as (1) ease in the preparation or green synthesis route, (2) no or minimal use of surfactants and harsh reagents, (3) homogeneous and well-defined core-shell nanostructures with thick enzyme shell, and (4) nano-size can be conveniently tailored within utility limits, as compared to the conventional enzyme immobilization. Moreover, the growing catalytic needs can be fulfilled by multi-enzymes co-immobilization on these nanostructured materials-based support matrices. This review spotlights the unique structural and functional attributes of several nanostructured materials, including carbon nanotubes, graphene, and its derivate constructs, nanoparticles, nanoflowers, and metal-organic frameworks as robust matrices for laccase immobilization. The later half of the review focuses on the applied perspective of immobilized laccases for the degradation of emergent contaminants, biosensing cues, and lignin deconstruction and high-value products.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - S Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Marcelo Franco
- Department of Exact and Technological Sciences, State University of Santa Cruz, 45654-370 Ilhéus, Brazil
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore 560064, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
22
|
Bilal M, Barceló D, Iqbal HMN. Nanostructured materials for harnessing the power of horseradish peroxidase for tailored environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142360. [PMID: 33370916 DOI: 10.1016/j.scitotenv.2020.142360] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 02/05/2023]
Abstract
High catalytic efficiency, stereoselectivity, and sustainability outcomes of enzymes entice chemists for considering biocatalytic transformations to supplant conventional synthetic routes. As a green and versatile enzyme, horseradish peroxidase (HRP)-based enzymatic catalysis has been widely employed in a range of biological and chemical transformation processes. Nevertheless, like many other enzymes, HRP is likely to denature or destabilize in harsh realistic conditions due to its intrinsic fragile nature, which results in inevitably shortened lifespan and immensely high bioprocess cost. Enzyme immobilization has proven as a prospective strategy for improving their biocatalytic performance in continuous industrial processes. Nanostructured materials with huge accessible surface area, abundant porous structures, exceptional functionalities, and high chemical and mechanical stability have recently garnered intriguing research interests as novel kinds of supporting matrices for HRP immobilization. Many reported immobilized biocatalytic systems have demonstrated high catalytic performances than that to the free form of enzymes, such as enhanced enzyme efficiency, selectivity, stability, and repeatability due to the protective microenvironments provided by nanostructures. This review delineates an updated overview of HRP immobilization using an array of nanostructured materials. Furthermore, the general physicochemical aspects, improved catalytic attributes, and the robust practical implementations of engineered HRP-based catalytic cues are also discussed with suitable examples. To end, concluding remarks, challenges, and worthy suggestions/perspectives for future enzyme immobilization are also given.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Damiá Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
23
|
Designing of a stable and selective glucose biosensor by glucose oxidase immobilization on glassy carbon electrode sensitive to H2O2 via nanofiber interface. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01502-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Bilal M, Ashraf SS, Ferreira LFR, Cui J, Lou WY, Franco M, Iqbal HMN. Nanostructured materials as a host matrix to develop robust peroxidases-based nanobiocatalytic systems. Int J Biol Macromol 2020; 162:1906-1923. [PMID: 32818568 DOI: 10.1016/j.ijbiomac.2020.08.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/05/2023]
Abstract
Nanostructured materials constitute an interesting and novel class of support matrices for the immobilization of peroxidase enzymes. Owing to the high surface area, robust mechanical stability, outstanding optical, thermal, and electrical properties, nanomaterials have been rightly perceived as immobilization matrices for enzyme immobilization with applications in diverse areas such as nano-biocatalysis, biosensing, drug delivery, antimicrobial activities, solar cells, and environmental protection. Many nano-scale materials have been employed as support matrices for the immobilization of different classes of enzymes. Nanobiocatalysts, enzymes immobilized on nano-size materials, are more stable, catalytically robust, and could be reused and recycled in multiple reaction cycles. In this review, we illustrate the unique structural/functional features and potentialities of nanomaterials-immobilized peroxidase enzymes in different biotechnological applications. After a comprehensive introduction to the immobilized enzymes and nanocarriers, the first section reviewed carbonaceous nanomaterials (carbon nanotube, graphene, and its derivatives) as a host matrix to constitute robust peroxidases-based nanobiocatalytic systems. The second half covers metallic nanomaterials (metals, and metal oxides) and some other novel materials as host carriers for peroxidases immobilization. The next section vetted the potential biotechnological applications of the resulted nanomaterials-immobilized robust peroxidases-based nanobiocatalytic systems. Concluding remarks, trends, and future recommendations for nanomaterial immobilized enzymes are also given.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - S Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas 300, Farolândia, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300 - Prédio do ITP, Farolândia, 49032-490 Aracaju, SE, Brazil
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Marcelo Franco
- Department of Exact and Technological Sciences, State University of Santa Cruz, 45654-370 Ilhéus, Brazil
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
25
|
Smith S, Goodge K, Delaney M, Struzyk A, Tansey N, Frey M. A Comprehensive Review of the Covalent Immobilization of Biomolecules onto Electrospun Nanofibers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2142. [PMID: 33121181 PMCID: PMC7692479 DOI: 10.3390/nano10112142] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023]
Abstract
Biomolecule immobilization has attracted the attention of various fields such as fine chemistry and biomedicine for their use in several applications such as wastewater, immunosensors, biofuels, et cetera. The performance of immobilized biomolecules depends on the substrate and the immobilization method utilized. Electrospun nanofibers act as an excellent substrate for immobilization due to their large surface area to volume ratio and interconnectivity. While biomolecules can be immobilized using adsorption and encapsulation, covalent immobilization offers a way to permanently fix the material to the fiber surface resulting in high efficiency, good specificity, and excellent stability. This review aims to highlight the various covalent immobilization techniques being utilized and their benefits and drawbacks. These methods typically fall into two categories: (1) direct immobilization and (2) use of crosslinkers. Direct immobilization techniques are usually simple and utilize the strong electrophilic functional groups on the nanofiber. While crosslinkers are used as an intermediary between the nanofiber substrate and the biomolecule, with some crosslinkers being present in the final product and others simply facilitating the reactions. We aim to provide an explanation of each immobilization technique, biomolecules commonly paired with said technique and the benefit of immobilization over the free biomolecule.
Collapse
Affiliation(s)
- Soshana Smith
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA; (K.G.); (N.T.); (M.F.)
| | - Katarina Goodge
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA; (K.G.); (N.T.); (M.F.)
| | - Michael Delaney
- Robert Frederick Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; (M.D.); (A.S.)
| | - Ariel Struzyk
- Robert Frederick Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; (M.D.); (A.S.)
| | - Nicole Tansey
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA; (K.G.); (N.T.); (M.F.)
| | - Margaret Frey
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA; (K.G.); (N.T.); (M.F.)
| |
Collapse
|
26
|
Jankowska K, Zdarta J, Grzywaczyk A, Kijeńska-Gawrońska E, Biadasz A, Jesionowski T. Electrospun poly(methyl methacrylate)/polyaniline fibres as a support for laccase immobilisation and use in dye decolourisation. ENVIRONMENTAL RESEARCH 2020; 184:109332. [PMID: 32151845 DOI: 10.1016/j.envres.2020.109332] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Novel electrospun poly(methyl methacrylate)/polyaniline electrospun fibres were produced, characterised, modified, and used as a support for laccase immobilisation by two methods: adsorption and covalent binding. Effective deposition of laccase by both methods was confirmed by FTIR and CLSM results. Nevertheless, the main objective of the study was to select the most favourable immobilisation conditions and prepare heterogeneous biocatalysts with the best possible catalytic properties. The highest relative activity of enzymes immobilised by adsorption and covalent binding were obtained after 1 h of immobilisation using laccase solution at a concentration of 1 mg/mL, at pH 5 and 25 °C. It was found that the immobilised enzymes, which were present in amounts of 110 mg/g and 185 mg/g for systems with adsorbed and covalently bonded laccase respectively, exhibited slightly lower substrate affinity, and in consequence also a lower maximum reaction rate, than the free enzyme. The stability of laccase improved significantly upon immobilisation: both heterogeneous biocatalysts retained over 80% relative activity even after 10 repeated catalytic cycles and 30 days of storage. The obtained systems were used for decolourisation of Remazol Brilliant Blue R dye from a model aqueous solution, resulting in removal efficiencies of 87% and 58% using adsorbed and covalently bonded laccase, respectively. The described approach to the removal of textile dye from model solution is significant for the sustainable and environmentally friendly decolourisation of various compounds from wastewater.
Collapse
Affiliation(s)
- Katarzyna Jankowska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Adam Grzywaczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Ewa Kijeńska-Gawrońska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, PL-02507, Warsaw, Poland
| | - Andrzej Biadasz
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, PL-60965, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland.
| |
Collapse
|
27
|
Zdarta J, Jankowska K, Wyszowska M, Kijeńska-Gawrońska E, Zgoła-Grześkowiak A, Pinelo M, Meyer AS, Moszyński D, Jesionowski T. Robust biodegradation of naproxen and diclofenac by laccase immobilized using electrospun nanofibers with enhanced stability and reusability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109789. [DOI: 10.1016/j.msec.2019.109789] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/10/2019] [Accepted: 05/23/2019] [Indexed: 01/27/2023]
|
28
|
Characterization and antibacterial activity evaluation of curcumin loaded konjac glucomannan and zein nanofibril films. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108293] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Sharifi M, Karim AY, Mustafa Qadir Nanakali N, Salihi A, Aziz FM, Hong J, Khan RH, Saboury AA, Hasan A, Abou-Zied OK, Falahati M. Strategies of enzyme immobilization on nanomatrix supports and their intracellular delivery. J Biomol Struct Dyn 2019; 38:2746-2762. [DOI: 10.1080/07391102.2019.1643787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Majid Sharifi
- Faculty of Advanced Sciences and Technology, Department of Nanotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abdulkarim Yasin Karim
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
- Research Center, Knowledge University, Erbil, Kurdistan Region, Iraq
| | - Nadir Mustafa Qadir Nanakali
- Department of Biology, College of Science, Cihan University, Erbil, Iraq
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
- Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Falah Mohammad Aziz
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Jun Hong
- School of Life Sciences, Henan University, China
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Ali Akbar Saboury
- Inistitute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Research Centre (BRC), Qatar University, Doha, Qatar
| | - Osama K. Abou-Zied
- Department of Chemistry, Faculty of Science,Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Mojtaba Falahati
- Faculty of Advanced Sciences and Technology, Department of Nanotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
30
|
Almulaiky YQ, Al-Harbi SA. A novel peroxidase from Arabian balsam (Commiphora gileadensis) stems: Its purification, characterization and immobilization on a carboxymethylcellulose/Fe3O4 magnetic hybrid material. Int J Biol Macromol 2019; 133:767-774. [DOI: 10.1016/j.ijbiomac.2019.04.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 01/11/2023]
|
31
|
Bilal M, Iqbal HM. Chemical, physical, and biological coordination: An interplay between materials and enzymes as potential platforms for immobilization. Coord Chem Rev 2019; 388:1-23. [DOI: 10.1016/j.ccr.2019.02.024] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
32
|
Correa S, Puertas S, Gutiérrez L, Asín L, Martínez de la Fuente J, Grazú V, Betancor L. Design of stable magnetic hybrid nanoparticles of Si-entrapped HRP. PLoS One 2019; 14:e0214004. [PMID: 30933987 PMCID: PMC6443235 DOI: 10.1371/journal.pone.0214004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/05/2019] [Indexed: 12/17/2022] Open
Abstract
Hybrid and composite nanoparticles represent an attractive material for enzyme integration due to possible synergic advantages of the structural builders in the properties of the nanobiocatalyst. In this study, we report the synthesis of a new stable hybrid nanobiocatalyst formed by biomimetic silica (Si) nanoparticles entrapping both Horseradish Peroxidase (HRP) (EC 1.11.1.7) and magnetic nanoparticles (MNPs). We have demonstrated that tailoring of the synthetic reagents and post immobilization treatments greatly impacted physical and biocatalytic properties such as an unprecedented ~280 times increase in the half-life time in thermal stability experiments. The optimized nanohybrid biocatalyst that showed superparamagnetic behaviour, was effective in the batch conversion of indole-3-acetic acid, a prodrug used in Direct Enzyme Prodrug Therapy (DEPT). Our system, that was not cytotoxic per se, showed enhanced cytotoxic activity in the presence of the prodrug towards HCT-116, a colorectal cancer cell line. The strategy developed proved to be effective in obtaining a stabilized nanobiocatalyst combining three different organic/inorganic materials with potential in DEPT and other biotechnological applications.
Collapse
Affiliation(s)
- Sonali Correa
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Montevideo, Uruguay
| | | | - Lucía Gutiérrez
- Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Campus Río Ebro, Edificio I+D, Zaragoza, Spain
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científica, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Laura Asín
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Jesús Martínez de la Fuente
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científica, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Valeria Grazú
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científica, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Montevideo, Uruguay
| |
Collapse
|