1
|
Nageshwar P, Wajge SW, Dhakar GL, Thakre AA, Tripathi S, Singh S, Maji PK, Das C. Fabrication of Zinc(II) Mediated Poly(Acrylamide Co Acrylic Acid) Hydrogel with Thixotropic and Tribological Properties. Macromol Rapid Commun 2024:e2400670. [PMID: 39461892 DOI: 10.1002/marc.202400670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Hydrogels have emerged as promising candidates for biomedical applications, such as replacing natural articular cartilage, owing to their unique viscoelastic properties. However, sufficient mechanical properties, self-healing ability, and adhesive nature are some issues limiting its application window. Here, a facile one-pot synthesis of dual cross-linked zinc-coordinated copolymer hydrogels is presented. The network structure of the copolymer hydrogels is strategically developed via dynamic and reversible physical cross-linking by Zn2+ ions and simultaneous covalent cross-linking through a covalent cross-linker viz methylene bisacrylamide. Fourier-transform infrared (FTIR), X-ray diffraction (XRD) scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) analysis have thoroughly characterized the structure of the synthesized hydrogels. The introduction of Zn2+ offers dynamic and reversible complexation, leading to excellent mechanical properties and self-healing features. Moreover, the percentage of the equilibrium water content of zinc-coordinated copolymer hydrogel samples is comparable with that of natural articular cartilage. The Shear sliding study shows the dominant adhesive behavior of HGel-Zn(NO3)2 sample compared to the parent HGel sample. This facile dual cross-linked hydrogel, HGel-Zn(NO3)2, with a combination of good mechanical properties, efficient self-recovery, adequate water content, and favorable adhesive nature, seems very promising to mimic the articular cartilage.
Collapse
Affiliation(s)
- Paresh Nageshwar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - Suraj W Wajge
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - Gopal Lal Dhakar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - Avinash A Thakre
- Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - Swapnil Tripathi
- Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - Shiva Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee, Saharanpur Campus, Saharanpur, 247001, India
| | - Pradip K Maji
- Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee, Saharanpur Campus, Saharanpur, 247001, India
| | - Chayan Das
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| |
Collapse
|
2
|
Oladipo A, Kpomah B, Ejeromedoghene O, Oladoye PO, Xu W, Zhong Y, Fu FF. Facile fabrication and antibacterial properties of chitosan/acrylamide/gold nanocomposite hydrogel incorporated with Chaetomium globosium extracts from Gingko biloba leaves. Int J Biol Macromol 2024; 255:128194. [PMID: 37984578 DOI: 10.1016/j.ijbiomac.2023.128194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Microorganisms are a unique part of our ecosystem because they affect the survival of living organisms. Although pathogenic microorganisms could be detrimental to the plants, animals, and humans, beneficial microbes have provided significant improvement in the growth and development of living organisms. In this study, the fungus Chaetomium globosium was isolated from the medicinal tree Gingko biloba, and then incorporated into a polymerization system to fabricate chitosan/acrylamide/gold (CS/Am/Au) nanocomposite hydrogels. The as-prepared hydrogel displayed increased mechanical strength due to the reinforcement of Au (gold) nanocomposites within the hydrogel matrix. Also, the equilibrium pH responsive swelling rates of the hydrogels gradually increased as the pH increases due to partial acid and basic hydrolysis occurring in the hydrogel as well as formation of hydrogen bond. In addition, the hydrogel demonstrated promising antibacterial activities against selected gram-positive (Staphylococcus epidermidis and Staphylococcus aureus) and gram-negative (Pseudomonas aeruginosa) bacterial strains with an average MIC90 of 0.125 mg/mL at a dosage of 1.0 mg/L. The obtained results are quite promising towards resolving several health challenges and advancing the pharmaceutical industries.
Collapse
Affiliation(s)
- Abiodun Oladipo
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Bridget Kpomah
- Department of Chemistry, Delta State University, Abraka 330105, Nigeria
| | - Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Peter Olusakin Oladoye
- Department of Chemistry and Biochemistry, Florida International University, Miami 33199, USA
| | - Wei Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yinxiao Zhong
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Fang-Fang Fu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Abd El-Salam HM, El Shafey AM, Samadi A, Abdel-Latif MK. Novel Grafted Hydrogel for Iron and Ammonia Removal from Groundwater: A Synthesis and Computational Chemistry Study. Gels 2023; 9:781. [PMID: 37888354 PMCID: PMC10606057 DOI: 10.3390/gels9100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Current research is moving towards iron and ammonia elimination from groundwater. Here, we are using a poly acrylic-poly acrylamide hydrogel that is grafted with 3-chloroaniline. This copolymer was synthesized by addition polymerization technique. The effects of agitation time, dosage and adsorbent temperature on the removal process sensitivity were investigated. The copolymer was described experientially and theoretically. Isothermal kinetic adsorption models are discussed. This hydrogel could be regenerated efficiently (98.3% removal of iron and 100% removal of ammonia). The density functional theory (DFT) method, using B3LYP/6-311G(d,p), and the LANL2DZ level of the theory were managed to investigate the stationary states of the grafted copolymer and the complexation energy of the hydrogel with the studied cations. DFT has been used to investigate the Natural Bond Orbital (NBO) properties to locate the most negative centers on the hydrogel. The calculated complexation energy showed hydrogel selectivity with regard to the studied cations.
Collapse
Affiliation(s)
- H. M. Abd El-Salam
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef City 62514, Egypt; (H.M.A.E.-S.); (A.M.E.S.)
| | - Ali M. El Shafey
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef City 62514, Egypt; (H.M.A.E.-S.); (A.M.E.S.)
| | - Abdelouahid Samadi
- Chemistry Department, Collage of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates;
| | - Mahmoud K. Abdel-Latif
- Chemistry Department, Collage of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates;
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef City 62514, Egypt
| |
Collapse
|
4
|
Bardajee GR, Mahmoodian H, Boraghi SA, Elmizadeh H, Ziarani NB, Rezanejad Z, Tyagi I, Gaur R, Javadian H. Nanoporous hydrogel absorbent based on salep: Swelling behavior and methyl orange adsorption capacity. ENVIRONMENTAL RESEARCH 2023; 225:115571. [PMID: 36871943 DOI: 10.1016/j.envres.2023.115571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
This study used the gas-blowing method to develop a nanoporous hydrogel using poly (3-sulfopropyl acrylate-co-acrylic acid-co-acrylamide) grafted onto salep. The synthesis of the nanoporous hydrogel was optimized by various parameters for maximum swelling capacity. The nanoporous hydrogel was characterized using FT-IR, TGA, XRD, TEM, and SEM analyses. Images from SEM showed numerous pores and channels in the hydrogel with an average size of about 80 nm, forming a honeycomb-like shape. The change in surface charge was investigated by zeta potential and revealed that the surface charge of the hydrogel ranged from 20 mV at acidic conditions to -25 mV at basic conditions. The swelling behavior of optimum superabsorbent hydrogel was determined under different environmental conditions, such as different pH values, ionic strengths of the environment, and solvents. In addition, the swelling kinetics and the absorbance under loading of the hydrogel sample in different environments were investigated. Moreover, Methyl Orange (MO) dye was removed from aqueous solutions using the nanoporous hydrogel as an adsorbent. The adsorption behavior of the hydrogel was examined under various conditions, and the adsorption capacity of the hydrogel was found tobe 400 mg g-1. The maximum water uptake was obtained under the following conditions: Salep weight = 0.01 g, AA = 60 μL, MBA = 300 μL, APS = 60 μL, TEMED = 90 μL, AAm = 600 μL, and SPAK = 90 μL. Lastly, the adsorption kinetics was studied by employing pseudo-first-order, pseudo-second-order, and intra-particle diffusion models.
Collapse
Affiliation(s)
| | - Hossein Mahmoodian
- Department of Chemistry, Payame Noor University, P.O.BOX: 19395-3697, Tehran, Iran; Department of Chemistry and Biochemistry, Chemistrytech Company, Tehran, Iran.
| | - Seyed Ata Boraghi
- Department of Chemistry, Payame Noor University, P.O.BOX: 19395-3697, Tehran, Iran; Department of Chemistry and Biochemistry, Chemistrytech Company, Tehran, Iran
| | - Hamideh Elmizadeh
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | | | - Zahir Rezanejad
- Department of Chemistry, Payame Noor University, P.O.BOX: 19395-3697, Tehran, Iran
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 700137, West Bengal, India.
| | - Rama Gaur
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raysan, Gandhinagar, Gujarat, 382426, India
| | - Hamedreza Javadian
- Chemistry & Chemical Engineering Research Center of Iran (CCERCI), P.O. Box 14335-186, Tehran, Iran
| |
Collapse
|
5
|
Pourmadadi M, Farokh A, Rahmani E, Eshaghi MM, Aslani A, Rahdar A, Ferreira LFR. Polyacrylic acid mediated targeted drug delivery nano-systems: A review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Cao H, Ma X, Wei Z, Tan Y, Chen S, Ye T, Yuan M, Yu J, Wu X, Yin F, Xu F. Behavior and mechanism of the adsorption of lead by an eco-friendly porous double-network hydrogel derived from keratin. CHEMOSPHERE 2022; 289:133086. [PMID: 34848225 DOI: 10.1016/j.chemosphere.2021.133086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, a novel eco-friendly porous double-network keratin/polyacrylic acid (keratin-PAA) hydrogel was prepared using the one-pot method to improve the adsorption performance of the hydrogel toward Pb(II). The obtained porous keratin-PAA hydrogel was then characterized using nitrogen adsorption-desorption isotherms, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The interaction mechanism of Pb(II) and the keratin-PAA hydrogel was further investigated using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The results showed that keratin-PAA hydrogel was successfully synthesized, with a specific surface area of 49.35 m2/g and a uniform pore distribution of 6.20 nm. The synthesized keratin-PAA hydrogel only took 6 min to adsorb nearly 70% of Pb(II) from the solution because of the interconnected porous network. The keratin-PAA hydrogel also showed a maximal adsorption amount of 234.6 mg/g, and satisfactory selectivity toward Pb(II). The adsorption kinetics of the keratin-PAA hydrogel binding to Pb(II) could be better described by the pseudo-second-order model, whereas the adsorption isotherms could be fitted using the Langmuir equation; this suggested that chemisorption was the main rate-limiting step. The XPS and FT-IR analysis results indicated that the sulfur-, nitrogen- and oxygen-containing groups in the keratin-PAA hydrogel were the main binding sites for Pb(II). In real aqueous samples, the keratin-PAA hydrogel could remove 93-104% of Pb(II). It is clear that the keratin-PAA hydrogel is an outstanding adsorbent material for the removal of Pb(II) from aqueous samples.
Collapse
Affiliation(s)
- Hui Cao
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Xiuna Ma
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Ziqi Wei
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Yang Tan
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Siwei Chen
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Tai Ye
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Min Yuan
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Jinsong Yu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Xiuxiu Wu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Fengqin Yin
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Fei Xu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China.
| |
Collapse
|
7
|
High electrochemical and mechanical performance of zinc conducting-based gel polymer electrolytes. Sci Rep 2021; 11:13268. [PMID: 34168235 PMCID: PMC8225769 DOI: 10.1038/s41598-021-92671-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022] Open
Abstract
Zinc ionic conducting-based gel polymer electrolytes (GPEs) were fabricated from carboxymethyl cellulose (CMC) and three different zinc salts in a mass ratio ranging within 0–30 wt%. The effects of zinc salt and loading level on the structure, thermal, mechanical, mechanical stability, and morphological properties, as well as electrochemical properties of the GPEs films, were symmetrically investigated. The mechanical properties and mechanical stability of CMC were improved with the addition of zinc acetate, zinc sulphate, and zinc triflate, approaching the minimum requirement of a solid state membrane for battery. The maximum ionic conductivity of 2.10 mS cm−1 was achieved with the addition of 15 wt% zinc acetate (ZnA), GPEA15. The supported parameters, indicating the presence of the amorphous region that likely supported Zn2+ movement in the CMC chains, were clearly revealed with the increase in the number of mobile Zn2+ carriers in FT-IR spectra and the magnitude of ionic transference number, the decrease of the enthalpy of fusion in DSC thermogram, and the shifting to lower intensity of 2θ in XRD pattern. The developed CMC/ZnA complex-based GPEs are very promising for their high ionic conductivity as well as good mechanical properties and the ability for long-term utilization in a zinc ion battery.
Collapse
|
8
|
Erceg T, Stupar A, Cvetinov M, Vasić V, Ristić I. Investigation the correlation between chemical structure and swelling, thermal and flocculation properties of carboxymethylcellulose hydrogels. J Appl Polym Sci 2021. [DOI: 10.1002/app.50240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tamara Erceg
- Faculty of Technology Novi Sad University of Novi Sad Novi Sad Serbia
| | - Alena Stupar
- Institute of Food Technology in Novi Sad, University of Novi Sad Novi Sad Serbia
| | | | - Vesna Vasić
- Faculty of Technology Novi Sad University of Novi Sad Novi Sad Serbia
| | - Ivan Ristić
- Faculty of Technology Novi Sad University of Novi Sad Novi Sad Serbia
| |
Collapse
|
9
|
Tanan W, Panpinit S, Saengsuwan S. Comparison of microwave-assisted and thermal-heated synthesis of P(HEMA-co-AM)/PVA interpenetrating polymer network (IPN) hydrogels for Pb(II) removal from aqueous solution: Characterization, adsorption and kinetic study. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Erceg T, Dapčević-Hadnađev T, Hadnađev M, Ristić I. Swelling kinetics and rheological behaviour of microwave synthesized poly(acrylamide-co-acrylic acid) hydrogels. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04763-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|