1
|
Le TA, Huynh TP. Hemicellulose-Based Sensors: When Sustainability Meets Complexity. ACS Sens 2024; 9:4975-5001. [PMID: 39344466 DOI: 10.1021/acssensors.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hemicelluloses (HCs) are promising sustainable biopolymers with a great natural abundance, excellent biocompatibility, and biodegradability. Yet, their potential sensing applications remain limited due to intrinsic challenges in their heterogeneous chemical composition, structure, and physicochemical properties. Herein, recent advances in the development of HC-based sensors for different chemical analytes and physical stimuli using different transduction mechanisms are reviewed and discussed. HCs can be utilized as carbonaceous precursors, reducing, capping, and stabilizing agents, binders, and active components for sensing applications. In addition, different strategies to develop and improve the sensing capacity of HC-based sensors are also highlighted.
Collapse
Affiliation(s)
- Trung-Anh Le
- Department of Chemistry, Faculty of Science, University of Helsinki, A.I. Virtasen aukio 1, 00560 Helsinki, Finland
| | - Tan-Phat Huynh
- Laboratory of Molecular Sciences and Engineering, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
2
|
Kaur H, Gogoi B, Sharma I, Das DK, Azad MA, Pramanik DD, Pramanik A. Hydrogels as a Potential Biomaterial for Multimodal Therapeutic Applications. Mol Pharm 2024; 21:4827-4848. [PMID: 39290162 PMCID: PMC11462506 DOI: 10.1021/acs.molpharmaceut.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Hydrogels, composed of hydrophilic polymer networks, have emerged as versatile materials in biomedical applications due to their high water content, biocompatibility, and tunable properties. They mimic natural tissue environments, enhancing cell viability and function. Hydrogels' tunable physical properties allow for tailored antibacterial biomaterial, wound dressings, cancer treatment, and tissue engineering scaffolds. Their ability to respond to physiological stimuli enables the controlled release of therapeutics, while their porous structure supports nutrient diffusion and waste removal, fostering tissue regeneration and repair. In wound healing, hydrogels provide a moist environment, promote cell migration, and deliver bioactive agents and antibiotics, enhancing the healing process. For cancer therapy, they offer localized drug delivery systems that target tumors, minimizing systemic toxicity and improving therapeutic efficacy. Ocular therapy benefits from hydrogels' capacity to form contact lenses and drug delivery systems that maintain prolonged contact with the eye surface, improving treatment outcomes for various eye diseases. In mucosal delivery, hydrogels facilitate the administration of therapeutics across mucosal barriers, ensuring sustained release and the improved bioavailability of drugs. Tissue regeneration sees hydrogels as scaffolds that mimic the extracellular matrix, supporting cell growth and differentiation for repairing damaged tissues. Similarly, in bone regeneration, hydrogels loaded with growth factors and stem cells promote osteogenesis and accelerate bone healing. This article highlights some of the recent advances in the use of hydrogels for various biomedical applications, driven by their ability to be engineered for specific therapeutic needs and their interactive properties with biological tissues.
Collapse
Affiliation(s)
- Harpreet Kaur
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Bishmita Gogoi
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Ira Sharma
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Deepak Kumar Das
- Department
of Chemistry and Nanoscience, GLA University, Mathura, Uttar Pradesh 281 406, India
| | - Mohd Ashif Azad
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | | | - Arindam Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
- School
of Medicine, University of Leeds, Leeds LS97TF, United Kingdom
| |
Collapse
|
3
|
Greeny A, Nair A, Sadanandan P, Satarker S, Famurewa AC, Nampoothiri M. Epigenetic Alterations in Alzheimer's Disease: Impact on Insulin Signaling and Advanced Drug Delivery Systems. BIOLOGY 2024; 13:157. [PMID: 38534427 DOI: 10.3390/biology13030157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that predominantly affects the hippocampus and the entorhinal complex, leading to memory lapse and cognitive impairment. This can have a negative impact on an individual's behavior, speech, and ability to navigate their surroundings. AD is one of the principal causes of dementia. One of the most accepted theories in AD, the amyloid β (Aβ) hypothesis, assumes that the buildup of the peptide Aβ is the root cause of AD. Impaired insulin signaling in the periphery and central nervous system has been considered to have an effect on the pathophysiology of AD. Further, researchers have shifted their focus to epigenetic mechanisms that are responsible for dysregulating major biochemical pathways and intracellular signaling processes responsible for directly or indirectly causing AD. The prime epigenetic mechanisms encompass DNA methylation, histone modifications, and non-coding RNA, and are majorly responsible for impairing insulin signaling both centrally and peripherally, thus leading to AD. In this review, we provide insights into the major epigenetic mechanisms involved in causing AD, such as DNA methylation and histone deacetylation. We decipher how the mechanisms alter peripheral insulin signaling and brain insulin signaling, leading to AD pathophysiology. In addition, this review also discusses the need for newer drug delivery systems for the targeted delivery of epigenetic drugs and explores targeted drug delivery systems such as nanoparticles, vesicular systems, networks, and other nano formulations in AD. Further, this review also sheds light on the future approaches used for epigenetic drug delivery.
Collapse
Affiliation(s)
- Alosh Greeny
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Ayushi Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi 682041, India
| | - Prashant Sadanandan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi 682041, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo 482123, Nigeria
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
4
|
Ahmadi M, Ritter CA, von Woedtke T, Bekeschus S, Wende K. Package delivered: folate receptor-mediated transporters in cancer therapy and diagnosis. Chem Sci 2024; 15:1966-2006. [PMID: 38332833 PMCID: PMC10848714 DOI: 10.1039/d3sc05539f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
Neoplasias pose a significant threat to aging society, underscoring the urgent need to overcome the limitations of traditional chemotherapy through pioneering strategies. Targeted drug delivery is an evolving frontier in cancer therapy, aiming to enhance treatment efficacy while mitigating undesirable side effects. One promising avenue utilizes cell membrane receptors like the folate receptor to guide drug transporters precisely to malignant cells. Based on the cellular folate receptor as a cancer cell hallmark, targeted nanocarriers and small molecule-drug conjugates have been developed that comprise different (bio) chemistries and/or mechanical properties with individual advantages and challenges. Such modern folic acid-conjugated stimuli-responsive drug transporters provide systemic drug delivery and controlled release, enabling reduced dosages, circumvention of drug resistance, and diminished adverse effects. Since the drug transporters' structure-based de novo design is increasingly relevant for precision cancer remediation and diagnosis, this review seeks to collect and debate the recent approaches to deliver therapeutics or diagnostics based on folic acid conjugated Trojan Horses and to facilitate the understanding of the relevant chemistry and biochemical pathways. Focusing exemplarily on brain and breast cancer, recent advances spanning 2017 to 2023 in conjugated nanocarriers and small molecule drug conjugates were considered, evaluating the chemical and biological aspects in order to improve accessibility to the field and to bridge chemical and biomedical points of view ultimately guiding future research in FR-targeted cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| | - Christoph A Ritter
- Institute of Pharmacy, Section Clinical Pharmacy, University of Greifswald Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center Ferdinand-Sauerbruch-Straße 17475 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center Strempelstr. 13 18057 Rostock Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| |
Collapse
|
5
|
Bongiovanni Abel S, Busatto CA, Karp F, Estenoz D, Calderón M. Weaving the next generation of (bio)materials: Semi-interpenetrated and interpenetrated polymeric networks for biomedical applications. Adv Colloid Interface Sci 2023; 321:103026. [PMID: 39491440 DOI: 10.1016/j.cis.2023.103026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 11/05/2024]
Abstract
Advances in polymer science have led to the development of semi-interpenetrated and interpenetrated networks (SIPN/IPN). The interpenetration procedure allows enhancing several important properties of a polymeric material, including mechanical properties, swelling capability, stimulus-sensitive response, and biological performance, among others. More interestingly, the interpenetration (or semi-interpenetration) can be achieved independent of the material size, that is at the macroscopic, microscopic, or nanometric scale. SIPN/IPN have been used for a wide range of applications, especially in the biomedical field, including tissue engineering, delivery of chemical compounds or biological macromolecules, and multifunctional systems as theragnostic platforms. In the last years, this fascinating field has gained a great interest in the area of polymers for therapeutics; therefore, a comprehensive revision of the topic is timely. In this review, we describe in detail the most relevant synthetic approaches to fabricate polymeric IPN and SIPN, ranging from nanoscale to macroscale. The advantages of typical synthetic methods are analyzed, as well as novel and promising trends in the field of advanced material fabrication. Furthermore, the characterization techniques employed for these materials are summarized from physicochemical, thermal, mechanical, and biological perspectives. The applications of novel (semi-)interpenetrated structures are discussed with a focus on drug delivery, tissue engineering, and regenerative medicine, as well as combinations thereof.
Collapse
Affiliation(s)
- Silvestre Bongiovanni Abel
- Biomedical Polymers Division, INTEMA (National University of Mar del Plata-CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Carlos A Busatto
- Group of Polymers and Polymerization Reactors, INTEC (National University of Litoral-CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Federico Karp
- Group of Polymeric Nanomaterials, INIFTA (National University of La Plata-CONICET), Diagonal 113, La Plata 1900, Argentina
| | - Diana Estenoz
- Group of Polymers and Polymerization Reactors, INTEC (National University of Litoral-CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
6
|
Zhang S, Liu H, Li W, Liu X, Ma L, Zhao T, Ding Q, Ding C, Liu W. Polysaccharide-based hydrogel promotes skin wound repair and research progress on its repair mechanism. Int J Biol Macromol 2023; 248:125949. [PMID: 37494997 DOI: 10.1016/j.ijbiomac.2023.125949] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Polysaccharides, being a natural, active, and biodegradable polymer, have garnered significant attention due to their exceptional properties. These properties make them ideal for creating multifunctional hydrogels that can be used as wound dressings for skin injuries. Polysaccharide hydrogel has the ability to both simulate the natural extracellular matrix, promote cell proliferation, and provide a suitable environment for wound healing while protecting it from bacterial invasion. Polysaccharide hydrogels offer a promising solution for repairing damaged skin. This review provides an overview of the mechanisms involved in skin damage repair and emphasizes the potential of polysaccharide hydrogels in this regard. For different skin injuries, polysaccharide hydrogels can play a role in promoting wound healing. However, we still need to conduct more research on polysaccharide hydrogels to provide more possibilities for skin damage repair.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Hongyuan Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Xinglong Liu
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Lina Ma
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Ting Zhao
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China.
| |
Collapse
|
7
|
Getya D, Gitsov I. Synthesis and Applications of Hybrid Polymer Networks Based on Renewable Natural Macromolecules. Molecules 2023; 28:6030. [PMID: 37630282 PMCID: PMC10458063 DOI: 10.3390/molecules28166030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Macromolecules obtained from renewable natural sources are gaining increasing attention as components for a vast variety of sustainable polymer-based materials. Natural raw materials can facilitate continuous-flow production due to their year-round availability and short replenishment period. They also open new opportunities for chemists and biologists to design and create "bioreplacement" and "bioadvantaged" polymers, where complex structures produced by nature are being modified, upgraded, and utilized to create novel materials. Bio-based macromonomers are expected not only to compete with but to replace some petroleum-based analogs, as well. The development of novel sustainable materials is an ongoing and very dynamic process. There are multiple strategies for transforming natural macromolecules into sophisticated value-added products. Some methods include chemical modification of macromolecules, while others include blending several components into one new system. One of the most promising approaches for incorporating renewable macromolecules into new products is the synthesis of hybrid networks based on one or more natural components. Each one has unique characteristics, so its incorporation into a network brings new sustainable materials with properties that can be tuned according to their end-use. This article reviews the current state-of-the-art and future potential of renewable natural macromolecules as sustainable building blocks for the synthesis and use of hybrid polymer networks. The most recent advancements and applications that involve polymers, such as cellulose, chitin, alginic acid, gellan gum, lignin, and their derivatives, are discussed.
Collapse
Affiliation(s)
- Dariya Getya
- Department of Chemistry, State University of New York—ESF, Syracuse, NY 13210, USA;
- The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
| | - Ivan Gitsov
- Department of Chemistry, State University of New York—ESF, Syracuse, NY 13210, USA;
- The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
- The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
8
|
Toader G, Podaru AI, Diacon A, Rusen E, Mocanu A, Brincoveanu O, Alexandru M, Zorila FL, Bacalum M, Albota F, Gavrila AM, Trica B, Rotariu T, Ionita M, Istrate M. Nanocomposite Hydrogel Films Based on Sequential Interpenetrating Polymeric Networks as Drug Delivery Platforms. Polymers (Basel) 2023; 15:3176. [PMID: 37571071 PMCID: PMC10420953 DOI: 10.3390/polym15153176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, novel materials have been obtained via a dual covalent and ionic crosslinking strategies, leading to the formation of a fully interpenetrated polymeric network with remarkable mechanical performances as drug delivery platforms for dermal patches. The polymeric network was obtained by the free-radical photopolymerization of N-vinylpyrrolidone using tri(ethylene glycol) divinyl ether as crosslinker in the presence of sodium alginate (1%, weight%). The ionic crosslinking was achieved by the addition of Zn2+, ions which were coordinated by the alginate chains. Bentonite nanoclay was incorporated in hydrogel formulations to capitalize on its mechanical reinforcement and adsorptive capacity. TiO2 and ZnO nanoparticles were also included in two of the samples to evaluate their influence on the morphology, mechanical properties and/or the antimicrobial activity of the hydrogels. The double-crosslinked nanocomposite hydrogels presented a good tensile resistance (1.5 MPa at 70% strain) and compression resistance (12.5 MPa at a strain of 70%). Nafcillin was loaded into nanocomposite hydrogel films with a loading efficiency of up to 30%. The drug release characteristics were evaluated, and the profile was fitted by mathematical models that describe the physical processes taking place during the drug transfer from the polymer to a PBS (phosphate-buffered saline) solution. Depending on the design of the polymeric network and the nanofillers included, it was demonstrated that the nafcillin loaded into the nanocomposite hydrogel films ensured a high to moderate activity against S. aureus and S. pyogenes and no activity against E. coli. Furthermore, it was demonstrated that the presence of zinc ions in these polymeric matrices can be correlated with the inactivation of E. coli.
Collapse
Affiliation(s)
- Gabriela Toader
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.I.P.); (T.R.)
| | - Alice Ionela Podaru
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.I.P.); (T.R.)
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania;
| | - Aurel Diacon
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.I.P.); (T.R.)
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania;
| | - Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania;
| | - Alexandra Mocanu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania;
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Oana Brincoveanu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
- Research Institute of the University of Bucharest, University of Bucharest, Soseaua Panduri, nr. 90, Sector 5, 050663 Bucharest, Romania
| | - Mioara Alexandru
- Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Magurele, Romania; (M.A.); (F.L.Z.); (M.B.); (F.A.)
| | - Florina Lucica Zorila
- Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Magurele, Romania; (M.A.); (F.L.Z.); (M.B.); (F.A.)
- Department of Genetics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Indepententei, 050095 Bucharest, Romania
| | - Mihaela Bacalum
- Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Magurele, Romania; (M.A.); (F.L.Z.); (M.B.); (F.A.)
| | - Florin Albota
- Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Magurele, Romania; (M.A.); (F.L.Z.); (M.B.); (F.A.)
| | - Ana Mihaela Gavrila
- National Institute of Research and Development for Chemistry and Petrochemistry, 202 Splaiul Independentei, 060041 Bucharest, Romania; (A.M.G.); (B.T.)
| | - Bogdan Trica
- National Institute of Research and Development for Chemistry and Petrochemistry, 202 Splaiul Independentei, 060041 Bucharest, Romania; (A.M.G.); (B.T.)
| | - Traian Rotariu
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.I.P.); (T.R.)
| | - Mariana Ionita
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania;
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
- eBio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania
| | - Marcel Istrate
- S.C. Stimpex S.A., 46-48 Nicolae Teclu Street, 032368 Bucharest, Romania;
| |
Collapse
|
9
|
Raina N, Rani R, Thakur VK, Gupta M. New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. ACS OMEGA 2023; 8:19145-19167. [PMID: 37305231 PMCID: PMC10249123 DOI: 10.1021/acsomega.2c08016] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023]
Abstract
Skin, the largest organ in humans, is an efficient route for the delivery of drugs as it circumvents several disadvantages of the oral and parenteral routes. These advantages of skin have fascinated researchers in recent decades. Drug delivery via a topical route includes moving the drug from a topical product to a locally targeted region with dermal circulation throughout the body and deeper tissues. Still, due to the skin's barrier function, delivery through the skin can be difficult. Drug delivery to the skin using conventional formulations with micronized active components, for instance, lotions, gels, ointments, and creams, results in poor penetration. The use of nanoparticulate carriers is one of the promising strategies, as it provides efficient delivery of drugs through the skin and overcomes the disadvantage of traditional formulations. Nanoformulations with smaller particle sizes contribute to improved permeability of therapeutic agents, targeting, stability, and retention, making nanoformulations ideal for drug delivery through a topical route. Achieving sustained release and preserving a localized effect utilizing nanocarriers can result in the effective treatment of numerous infections or skin disorders. This article aims to evaluate and discuss the most recent developments of nanocarriers as therapeutic agent vehicles for skin conditions with patent technology and a market overview that will give future directions for research. As topical drug delivery systems have shown great preclinical results for skin problems, for future research directions, we anticipate including in-depth studies of nanocarrier behavior in various customized treatments to take into account the phenotypic variability of the disease.
Collapse
Affiliation(s)
- Neha Raina
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Radha Rani
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, SRUC (Scotland’s Rural College), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Madhu Gupta
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| |
Collapse
|
10
|
Phase Behavior of NR/PMMA Semi-IPNs and Development of Porous Structures. Polymers (Basel) 2023; 15:polym15061353. [PMID: 36987133 PMCID: PMC10058802 DOI: 10.3390/polym15061353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
In this research, the porous polymer structures (IPN) were made from natural isoprene rubber (NR) and poly(methyl methacrylate) (PMMA). The effects of molecular weight and crosslink density of polyisoprene on the morphology and miscibility with PMMA were determined. Sequential semi-IPNs were prepared. Viscoelastic, thermal and mechanical properties of semi-IPN were studied. The results showed that the key factor influencing the miscibility in semi-IPN was the crosslinking density of the natural rubber. The degree of compatibility was increased by doubling the crosslinking level. The degree of miscibility at two different compositions was compared by simulations of the electron spin resonance spectra. Compatibility of semi-IPNs was found to be more efficient when the PMMA content was less than 40 wt.%. A nanometer-sized morphology was obtained for a NR/PMMA ratio of 50/50. Highly crosslinked elastic semi-IPN followed the storage modulus of PMMA after the glass transition as a result of certain degree of phase mixing and interlocked structure. It was shown that the morphology of the porous polymer network could be easily controlled by the proper choice of concentration and composition of crosslinking agent. A dual phase morphology resulted from the higher concentration and the lower crosslinking level. This was used for developing porous structures from the elastic semi-IPN. The mechanical performance was correlated with morphology, and the thermal stability was comparable with respect to pure NR. Investigated materials might be interesting for use as potential carriers of bioactive molecules aimed for innovative applications such as in food packaging.
Collapse
|
11
|
Aldaais EA. A comprehensive review on the COVID-19 vaccine and drug delivery applications of interpenetrating polymer networks. Drug Deliv Transl Res 2023; 13:738-756. [PMID: 36443634 PMCID: PMC9707272 DOI: 10.1007/s13346-022-01254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/30/2022]
Abstract
An interpenetrating polymer network (IPNs) is a concoction of two or more polymers (natural, synthetic, and/or a combination of both) in which at least one polymer is synthesized or crosslinked in the intimate presence of the other. These three-dimensional networked systems have gained prominence in a series of biomedical applications, especially in the last two decades. The last decades witnessed a surge in the meaningful applications of interpenetrating polymer networks, especially in drug delivery as simple IPN systems advanced and resulted in the formation of highly efficient microspheres, nanoparticles, nanogels, and hydrogels, intelligent enough to sense and respond to changes in external stimuli such as temperature, pH, and ionic strength. The structure of the polymers, crosslinking agents, crosslinking density, and polymerization method play an integral role in determining the properties and application of IPNs in drug delivery. This review article is a modest effort to highlight the importance and applications of different types of interpenetrating polymer networks for the sustained, site-specific drug delivery of various therapeutic formulations, as witnessed in scientific research literature over the past 22 years (2000-2022). A special section of the manuscript is devoted to studying the efficacy of network polymers in vaccine delivery and highlighting the future scope (if any) of incorporating the IPN system in COVID-related vaccine/drug delivery. Four key focus areas in this review article [1, 2].
Collapse
Affiliation(s)
- Ebtisam A Aldaais
- Department of Radiological Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 2435, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
12
|
IPN beads prepared by tailoring of cassia tora gum and sodium carboxymethyl cellulose using Al+++ for controlled drug delivery. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
13
|
Tuteja M, Nagpal K. Recent Advances and Prospects for Plant Gum-Based Drug Delivery Systems: A Comprehensive Review. Crit Rev Ther Drug Carrier Syst 2023; 40:83-124. [PMID: 36734914 DOI: 10.1615/critrevtherdrugcarriersyst.2022042252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This work is an effort to first introduce plant-based gums and discussing their drug delivery applications. The composition of these plant gums and their major characteristics, which make them suitable as pharmaceutical excipients are also described in detail. The various modifications methods such as physical and chemical modifications of gums and polysaccharides have been discussed along with their applications in different fields. Consequently, plant-based gums modification such as etherification and grafting is attracting much scientific attention to satisfy industrial demand. The evaluation tests to characterize gum-based drug delivery systems have been summarized. The release behavior of drug from plant-gum-based drug delivery is being discussed. Thus, this review is an attempt to critically summarize different aspect of plant-gum-based polysaccharides to be utilized in drug delivery systems having potential industrial applications.
Collapse
Affiliation(s)
- Minkal Tuteja
- Gurugram Global College of Pharmacy, Farrukhnagar, Gurugram, Haryana, 122506, India
| | - Kalpana Nagpal
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, UP-201303, India
| |
Collapse
|
14
|
Chatterjee S, Ghosal K, Kumar M, Mahmood S, Thomas S. A detailed discussion on interpenetrating polymer network (IPN) based drug delivery system for the advancement of health care system. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Saghir S, Imenes K, Schiavone G. Integration of hydrogels in microfabrication processes for bioelectronic medicine: Progress and outlook. Front Bioeng Biotechnol 2023; 11:1150147. [PMID: 37034261 PMCID: PMC10079906 DOI: 10.3389/fbioe.2023.1150147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Recent research aiming at the development of electroceuticals for the treatment of medical conditions such as degenerative diseases, cardiac arrhythmia and chronic pain, has given rise to microfabricated implanted bioelectronic devices capable of interacting with host biological tissues in synergistic modalities. Owing to their multimodal affinity to biological tissues, hydrogels have emerged as promising interface materials for bioelectronic devices. Here, we review the state-of-the-art and forefront in the techniques used by research groups for the integration of hydrogels into the microfabrication processes of bioelectronic devices, and present the manufacturability challenges to unlock their further clinical deployment.
Collapse
|
16
|
Raina N, Pahwa R, Thakur VK, Gupta M. Polysaccharide-based hydrogels: New insights and futuristic prospects in wound healing. Int J Biol Macromol 2022; 223:1586-1603. [PMID: 36395945 DOI: 10.1016/j.ijbiomac.2022.11.115] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Polysaccharides elicit enormous and promising applications due to their extensive obtainability, innocuousness, and biodegradability. Various outstanding features of polysaccharides can be employed to fabricate biomimetic and multifunctional hydrogels as efficient wound dressings. These hydrogels mimic the natural extracellular matrix and also boost the proliferation of cells. Owing to distinctive architectures and abundance of functional groups, polysaccharide-derived hydrogels have exceptional physicochemical properties and unique therapeutic interventions. Hydrogels designed using polysaccharides can effectively safeguard wounds from bacterial attack. This review includes wound physiology and emphasises on numerous polysaccharide-based hydrogels for wound repair applications. Polysaccharide hydrogels for different wound types and diverse therapeutic agents loaded in hydrogels for wound repair with recent patents are portrayed in the current manuscript, debating the potential of fascinating hydrogels for effective wound healing. More research is required to engineer multifaceted advanced polysaccharide hydrogels with tuneable and adjustable properties to attain huge potential in wound healing.
Collapse
Affiliation(s)
- Neha Raina
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Rakesh Pahwa
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College(SRUC), Edinburgh EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India.
| |
Collapse
|
17
|
Kumari A, Raina N, Wahi A, Goh KW, Sharma P, Nagpal R, Jain A, Ming LC, Gupta M. Wound-Healing Effects of Curcumin and Its Nanoformulations: A Comprehensive Review. Pharmaceutics 2022; 14:2288. [PMID: 36365107 PMCID: PMC9698633 DOI: 10.3390/pharmaceutics14112288] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 08/13/2023] Open
Abstract
Wound healing is an intricate process of tissue repair or remodeling that occurs in response to injury. Plants and plant-derived bioactive constituents are well explored in the treatment of various types of wounds. Curcumin is a natural polyphenolic substance that has been used since ancient times in Ayurveda for its healing properties, as it reduces inflammation and acts on several healing stages. Several research studies for curcumin delivery at the wound site reported the effectiveness of curcumin in eradicating reactive oxygen species and its ability to enhance the deposition of collagen, granulation tissue formation, and finally, expedite wound contraction. Curcumin has been widely investigated for its wound healing potential but its lower solubility and rapid metabolism, in addition to its shorter plasma half-life, have limited its applications in wound healing. As nanotechnology has proven to be an effective technique to accelerate wound healing by stimulating appropriate mobility through various healing phases, curcumin-loaded nanocarriers are used for targeted delivery at the wound sites. This review highlights the potential of curcumin and its nanoformulations, such as liposomes, nanoparticles, and nano-emulsions, etc. in wound healing. This paper emphasizes the numerous biomedical applications of curcumin which collectively prepare a base for its antibiofilm and wound-healing action.
Collapse
Affiliation(s)
- Amrita Kumari
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Neha Raina
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Abhishek Wahi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Pratibha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Riya Nagpal
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Atul Jain
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Long Chiau Ming
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Madhu Gupta
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| |
Collapse
|
18
|
Sellamuthu K, Angappan S. Design, development and characterization of interpenetrating polymer network hydrogel bead for controlled release of glipizide drug. Drug Dev Ind Pharm 2022; 48:491-501. [PMID: 36173727 DOI: 10.1080/03639045.2022.2130939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the current study, a novel interpenetrating polymer network (IPN) hydrogel bead was developed by encapsulation of antidiabetic drug glipizide using sodium alginate (SAL) and xanthan gum (XAG) biopolymers by ionotropic gelation technique with calcium chloride as cross-linking agent. In light of the fact that IPN hydrogel beads posses greater benefits in controlling the release of such short acting drug, sodium alginate and xanthan gum IPN hydrogel beads were prepared at different mass ratios (SAL:XAG =10:0, 9:1, 8:2, 7:3, 6:4, 5:5). Similarly, drug-loaded IPN hydrogel beads were also developed. The prepared hydrogel beads were investigated using Fourier transform infrared spectroscopy, X-ray powder diffraction, and thermogravimetric studies to understand the type of interactions between the composite beads. Surface morphology changes were studied by scanning electron microscopy. The particle size, drug entrapment efficiency, and swelling behavior of prepared hydrogel beads were also studied. Based on In-vitro drug dissolution studies, it was observed that SXF4 preparation containing SAL and XAG polymers at 7:3 ratio showed extended drug release of 97.53% at 9 h. This study demonstrated that inclusion of XAG has extended the drug release and able to achieve zero-order drug release profile.
Collapse
Affiliation(s)
- Kalaiarasan Sellamuthu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore - 632 014, Tamil Nadu, India
| | - Sheela Angappan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore - 632 014, Tamil Nadu, India
| |
Collapse
|
19
|
Synthesis and Characterization of Polymeric Blends Containing Polysulfone Based on Cyclic Bisphenol. Polymers (Basel) 2022; 14:polym14153148. [PMID: 35956662 PMCID: PMC9371159 DOI: 10.3390/polym14153148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
The elaboration of the composition and methods of preparation of new types of materials is an important issue from the plastics industry’s point of view. The paper presents the polysulfone synthesis based on 4,4′-cyclohexylidenebisphenol (bisphenol Z). This compound was used (in an amount of 5 or 10 wt.% sample) for the synthesis and characterization of new polymeric blends based on the two different acrylic resins (EB-150 and EB-600) and the active solvent N-vinyl-2-pyrrolidone (NVP). The weight ratio of the used resin to solvent was 1:2; 1:1 or 2:1. These new materials were obtained applying the photoinitiated free radical polymerization with 2,2-dimethoxy-2-phenyloacetophenone as a photoinitiator used in an amount of 1 wt.%. Six polymeric blends and six copolymers without polysulfone were cured by this method. By means of ATR/FT-IR (Attenuated Total Reflection–Fourier Transform Infrared) spectroscopy the chemical structure of the synthesized polysulfone was proved. The effect of the presence of the polysulfone presence on the thermal properties of the obtained blends was analyzed by means of thermogravimetry and differential thermogravimetry (TG/DTG), as well as differential scanning calorimetry (DSC). Moreover, the dynamic mechanical studies (DMA) of these materials were also carried out, demonstrating which of the materials showed the influence of the percentage of polysulfone on the selected properties in the blended- and parent-copolymers samples.
Collapse
|
20
|
Highly efficient chlorinated solvent uptake by novel covalent organic networks via thiol-ene chemistry. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Immobilization of osteopontin on poly(ε-caprolactone) scaffolds by polyelectrolyte multilayer deposition to improve the osteogenic differentiation of MC3T3-E1 cells. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Sreehari H, Gopika V, Jayan JS, Sethulekshmi A, Saritha A. A comprehensive review on bio epoxy based IPN: Synthesis, properties and applications. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Liu Z, Zhang S, Gao C, Meng X, Wang S, Kong F. Temperature/pH-Responsive Carboxymethyl Cellulose/Poly (N-isopropyl acrylamide) Interpenetrating Polymer Network Aerogels for Drug Delivery Systems. Polymers (Basel) 2022; 14:polym14081578. [PMID: 35458328 PMCID: PMC9029649 DOI: 10.3390/polym14081578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Temperature/pH-responsive carboxymethyl cellulose/poly (N-isopropyl acrylamide) interpenetrating polymer network (IPN) aerogels (CMC/Ca2+/PNIPAM aerogels) were developed as a novel drug delivery system. The aerogel has a highly open network structure with a porosity of more than 90%, which provides convenient conditions for drug release. The morphology and structure of the CMC/Ca2+/PNIPAM aerogels were characterized via scanning electron microscopy (SEM), Micro-CT, X-ray photoelectron spectroscopy (XPS), pore size analysis, and cytotoxicity analysis. The analysis results demonstrate that the aerogel is non-toxic and has more active sites, temperatures, and pH response performances. The anticancer drug 5-fluorouracil (5-FU) was successfully loaded into aerogels through physical entrapment and hydrogen bonding. The drug loading and sustained-release model of aerogels are used to fit the drug loading and sustained-release curve, revealing the drug loading and sustained-release mechanism, and providing a theoretical basis for the efficient drug loading and sustained release.
Collapse
Affiliation(s)
- Zhongming Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.L.); (C.G.); (X.M.); (S.W.)
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
- Correspondence: (S.Z.); (F.K.); Tel.: +86-53189631988 (F.K.)
| | - Chao Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.L.); (C.G.); (X.M.); (S.W.)
| | - Xia Meng
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.L.); (C.G.); (X.M.); (S.W.)
| | - Shoujuan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.L.); (C.G.); (X.M.); (S.W.)
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.L.); (C.G.); (X.M.); (S.W.)
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
- Correspondence: (S.Z.); (F.K.); Tel.: +86-53189631988 (F.K.)
| |
Collapse
|
24
|
Drug Delivery Strategies and Biomedical Significance of Hydrogels: Translational Considerations. Pharmaceutics 2022; 14:pharmaceutics14030574. [PMID: 35335950 PMCID: PMC8950534 DOI: 10.3390/pharmaceutics14030574] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogels are a promising and attractive option as polymeric gel networks, which have immensely fascinated researchers across the globe because of their outstanding characteristics such as elevated swellability, the permeability of oxygen at a high rate, good biocompatibility, easy loading, and drug release. Hydrogels have been extensively used for several purposes in the biomedical sector using versatile polymers of synthetic and natural origin. This review focuses on functional polymeric materials for the fabrication of hydrogels, evaluation of different parameters of biocompatibility and stability, and their application as carriers for drugs delivery, tissue engineering and other therapeutic purposes. The outcome of various studies on the use of hydrogels in different segments and how they have been appropriately altered in numerous ways to attain the desired targeted delivery of therapeutic agents is summarized. Patents and clinical trials conducted on hydrogel-based products, along with scale-up translation, are also mentioned in detail. Finally, the potential of the hydrogel in the biomedical sector is discussed, along with its further possibilities for improvement for the development of sophisticated smart hydrogels with pivotal biomedical functions.
Collapse
|
25
|
Carrageenan‐based Hybrids with Biopolymers and Nano‐structured Materials for Biomimetic Applications. STARCH-STARKE 2022. [DOI: 10.1002/star.202200018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Fagan A, Bartkowski M, Giordani S. Spiropyran-Based Drug Delivery Systems. Front Chem 2021; 9:720087. [PMID: 34395385 PMCID: PMC8358077 DOI: 10.3389/fchem.2021.720087] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Nanocarriers are rapidly growing in popularity in the field of drug delivery. The ability of nanocarriers to encapsulate and distribute poorly soluble drugs while minimising their undesired effects is significantly advantageous over traditional drug delivery. Nanocarriers can also be decorated with imaging moieties and targeting agents, further incrementing their functionality. Of recent interest as potential nanocarriers are spiropyrans; a family of photochromic molecular switches. Due to their multi-responsiveness to endo- and exogenous stimuli, and their intrinsic biocompatibility, they have been utilised in various drug delivery systems (DDSs) to date. In this review, we provide an overview of the developments in spiropyran-based DDSs. The benefits and drawbacks of utilising spiropyrans in drug delivery are assessed and an outline of spiropyran-based drug delivery systems is presented.
Collapse
Affiliation(s)
| | | | - Silvia Giordani
- School of Chemical Sciences, Dublin City University (DCU), Dublin, Ireland
| |
Collapse
|
27
|
Semi-interpenetrating chitosan/ionic liquid polymer networks as electro-responsive biomaterials for potential wound dressings and iontophoretic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111798. [PMID: 33579445 DOI: 10.1016/j.msec.2020.111798] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 12/16/2022]
Abstract
In this work, electro-responsive chitosan/ionic liquid-based hydrogels were synthetized for the first time, envisaging the development of iontophoretic biomaterials for the controlled release/permeation of charged biomolecules. The main goal was to enhance and tune the physicochemical, mechanical, electro-responsive, and haemostatic properties of chitosan-based biomaterials to obtain multi-stimuli responsive (responsive to electrical current, ionic strength, and pH) and mechanically stable hydrogels. To accomplish this objective, polycationic semi-interpenetrating copolymer networks (semi-IPN) were prepared by combining chitosan (CS) and ionic liquid-based polymers and copolymers, namely poly(1-butyl-3-vinylimidazolium chloride) (poly(BVImCl)) and poly(2-hydroxymethyl methacrylate-co-1-butyl-3-vinylimidazolium chloride) (poly(HEMA-co-BVImCl)). Results show that prepared semi-IPNs presented high mechanical stability and were positively charged over a broad pH range, including basic pH. Semi-IPNs also presented faster permeation and release rates of lidocaine hydrochloride (LH), under external electrical stimulus (0.56 mA/cm2) in aqueous media at 32 °C. The kinetic release constants and the LH diffusion coefficients measured under electrical stimulus were ~1.5 and > 2.7 times higher for those measured for passive release. Finally, both semi-IPNs were non-haemolytic (haemolytic index ≤0.2%) and showed strong haemostatic activity (blood clotting index of ~12 ± 1%). Altogether, these results show that the prepared polycationic semi-IPN hydrogels presented advantageous mechanical, responsive and biological properties that enable them to be potentially employed for the design of new, safer, and advanced stimuli-responsive biomaterials for several biomedical applications such as haemostatic and wound healing dressings and iontophoretic patches.
Collapse
|
28
|
Ma R, Zhao T, Pu H, Sun M, Cui Y, Xie X. Synthesis of Interpenetrating Polymer Networks Based on Triisocyanate-Terminated and Modified Poly(urethane-imide) with Superior Mechanical Properties. ACS OMEGA 2020; 5:6911-6918. [PMID: 32258927 PMCID: PMC7114687 DOI: 10.1021/acsomega.0c00267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Interpenetrating polymer networks (IPNs) based on triisocyanate-terminated poly(urethane-imide)s (PUIs) were prepared by in situ interpenetrating reactions between modified polyurethane (PU) with different ratios of polyimide (PI). The effects of PU, which was made from hydroxyl-terminated polybutadiene modified with triisocyanate, and the amounts of PI on the mechanical properties, thermal properties, and crystalline character of the IPNs were discussed. Triisocyanate-terminated PUI showed that the highest tensile strength was 38 times that of the diisocyanate-terminated materials. Supramolecular cross-linking from an additional hydrogen-bonding network of modified PU and the degree of interpenetration with a regular imide structure of PI were introduced, which accounted for the remarkable improvement in mechanical properties of IPNs. Preferable thermal stability and glass transition temperature for the hard segment of IPNs were rewarded with increasing PI content. X-ray diffraction revealed vigorous segmental mixing between the soft and hard segments of modified PUI. Scanning electron micrographs showed the "fibrous assembly" morphology and short-range-ordered structure of modified PUI.
Collapse
|