1
|
Karlinskii BY, Ananikov VP. Recent advances in the development of green furan ring-containing polymeric materials based on renewable plant biomass. Chem Soc Rev 2023; 52:836-862. [PMID: 36562482 DOI: 10.1039/d2cs00773h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fossil resources are rapidly depleting, forcing researchers in various fields of chemistry and materials science to switch to the use of renewable sources and the development of corresponding technologies. In this regard, the field of sustainable materials science is experiencing an extraordinary surge of interest in recent times due to the significant advances made in the development of new polymers with desired and controllable properties. This review summarizes important scientific reports in recent times dedicated to the synthesis, construction and computational studies of novel sustainable polymeric materials containing unchanged (pseudo)aromatic furan cores in their structure. Linear polymers for thermoplastics, branched polymers for thermosets and other crosslinked materials are emerging materials to highlight. Various polymer blends and composites based on sustainable polyfurans are also considered as pathways to achieve high-value-added products.
Collapse
Affiliation(s)
- Bogdan Ya Karlinskii
- Tula State University, Lenin pr. 92, Tula, 300012, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Yang W, Xie Y, Chen J, Huang C, Xu Y, Lin Y. Metal Ion-Catalyzed Low-Temperature Curing of Urushiol-Based Polybenzoxazine. Front Chem 2022; 10:879605. [PMID: 35572108 PMCID: PMC9096162 DOI: 10.3389/fchem.2022.879605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/01/2022] [Indexed: 12/03/2022] Open
Abstract
In this work, urushiol-based polybenzoxazine is cured by the Lewis acid (FeCl3, AlCl3, and CuCl2) at low temperature instead of high thermal curing temperature. The effect of the Lewis acid on structures and properties of the polymers is revealed. The relating urushiol-based benzoxazine monomer (BZ) was synthesized by natural urushiol, formaldehyde, and n-octylamine. The monomer was reacted with the Lewis acid with a molar ratio of 6:1 (Nmonomer: NMetal) at 80°C to obtain films that can be cured at room temperature. The chemical structures of benzoxazine monomers were identified by Fourier-transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance spectroscopy (1H-NMR). The interaction between the metal ion and the polymers is revealed by X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance-FTIR (ATR-FTIR). The effect of the Lewis acid on the mechanical properties, wettability, and thermal stability was investigated. The results show that the benzoxazine cured by Cu2+ has a better performance than that cured by Al3+ and Fe3+.
Collapse
Affiliation(s)
- Wen Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Yaofeng Xie
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Jipeng Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
- *Correspondence: Yucai Lin, ; Yanlian Xu, ; Jipeng Chen,
| | - Chunmei Huang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Yanlian Xu
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou, China
- *Correspondence: Yucai Lin, ; Yanlian Xu, ; Jipeng Chen,
| | - Yucai Lin
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
- Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
- *Correspondence: Yucai Lin, ; Yanlian Xu, ; Jipeng Chen,
| |
Collapse
|
3
|
Zhao C, Sun Z, Wei J, Li Y, Xiang D, Wu Y, Que Y. A Phosphorous-Containing Bio-Based Furfurylamine Type Benzoxazine and Its Application in Bisphenol-A Type Benzoxazine Resins: Preparation, Thermal Properties and Flammability. Polymers (Basel) 2022; 14:polym14081597. [PMID: 35458347 PMCID: PMC9028360 DOI: 10.3390/polym14081597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/03/2022] Open
Abstract
Polybenzoxazine (PBa) composites based on phosphorous-containing bio-based furfurylamine type benzoxazines (D-fu) and bisphenol-A type benzoxazines (Ba) were developed for flame retardation. The structure of D-fu was analyzed by Fourier transform infrared (FTIR) spectroscopy and 1H-NMR spectroscopy. The curing temperature of Ba/D-fu mixtures was systematically studied by differential scanning calorimetry (DSC). Thermogravimetric analysis (TGA) demonstrated the excellent char formation ability of the PBa composites with the addition of phosphorous-containing D-fu. The flame retardancy of the PBa composite materials was tested by the limited oxygen index (LOI), vertical burning test (UL-94) and cone calorimeter (CONE). The LOI and UL-94 level of PBa/PD-fu-5% reached 34 and V0 rate, respectively. Notably, the incorporation of 5% D-fu into PBa led to a decrease of 21.9% at the peak of the heat-release rate and a mass-loss reduction of 8.0%. Moreover, the fire performance index increased, which demonstrated that the introduction of D-fu can diminish fire occurrence. The role of D-fu in the condensed and gas phases for the fire-resistant mechanism of the PBa matrix was supported by SEM-EDS and TGA/infrared spectrometry (TG-FTIR), respectively. Dynamic mechanical analysis (DMA) revealed that the Tg of PBa flame-retardant composites was around 230 °C. Therefore, PBa composites are promising fire-retardant polymers that can be applied as high-performance functional materials.
Collapse
Affiliation(s)
- Chunxia Zhao
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; (Z.S.); (J.W.); (D.X.); (Y.W.); (Y.Q.)
- Correspondence: (C.Z.); (Y.L.)
| | - Zhangmei Sun
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; (Z.S.); (J.W.); (D.X.); (Y.W.); (Y.Q.)
| | - Jixuan Wei
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; (Z.S.); (J.W.); (D.X.); (Y.W.); (Y.Q.)
| | - Yuntao Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; (Z.S.); (J.W.); (D.X.); (Y.W.); (Y.Q.)
- State Key Laboratory Oil and Gas Reservoir Geology and Exploitation, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
- Correspondence: (C.Z.); (Y.L.)
| | - Dong Xiang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; (Z.S.); (J.W.); (D.X.); (Y.W.); (Y.Q.)
| | - Yuanpeng Wu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; (Z.S.); (J.W.); (D.X.); (Y.W.); (Y.Q.)
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Yusheng Que
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; (Z.S.); (J.W.); (D.X.); (Y.W.); (Y.Q.)
| |
Collapse
|
4
|
Tavernier R, Granado L, Tillard M, Van Renterghem L, Métro TX, Lamaty F, Bonnaud L, Raquez JM, David G, Caillol S. Solvent-free synthesis of a formaldehyde-free benzoxazine monomer: study of its curing acceleration effect for commercial benzoxazine. Polym Chem 2022. [DOI: 10.1039/d2py00462c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new 2-substituted benzoxazine bearing a phenol was blended with commercial benzoxazine for improving curing and thermomechanical properties.
Collapse
Affiliation(s)
- Romain Tavernier
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials, Materia Nova Research Center & University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Lérys Granado
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Louis Van Renterghem
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials, Materia Nova Research Center & University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | | | | | - Leïla Bonnaud
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials, Materia Nova Research Center & University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials, Materia Nova Research Center & University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Ghislain David
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
5
|
Design, synthesis, flame retardancy and dielectric properties of novel aromatic hyperbranched benzoxazine. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|