1
|
Kargar-Esfandabadi M, Golshan M, Roghani-Mamaqani H, Salami-Kalajahi M. Investigating the electrochemical properties of poly(vinylidene fluoride)/polyaniline blends doped with lithium-based salt. Heliyon 2024; 10:e37757. [PMID: 39328562 PMCID: PMC11425115 DOI: 10.1016/j.heliyon.2024.e37757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Conductive polymers have attracted much attention in various applications, owing to their excellent chemical, thermal, and oxidative stability. However, they have low dielectric constant, which limits their performance in electrochemical devices. To overcome this drawback, blending with other polymers helps improving their electrochemical properties. Herein, we investigate structural and electrochemical properties of poly (vinylidene fluoride) (PVDF)/polyaniline (PANI) blends doped with lithium-based salt. Results showed that the blends exhibit phase separation of PANI and PVDF, which is confirmed by the thermodynamic interaction parameter. We found that the interaction between the two polymers enhanced the ionic conductivity from 4.9 × 10-5 S cm-1 for neat PVDF to 5.3 × 10-4 S cm-1 for composition of 50:50 (PANI50), whereas the ionic conductivity was inversely proportional to the temperature. Moreover, by adding lithium salt to the blend, the thermal stability increased from 376.6 to 478.5 °C for PANI50. The ionic conductivity of the blends depends on the PVDF content, which affects the interaction between the two polymers.
Collapse
Affiliation(s)
- Mahdi Kargar-Esfandabadi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Marzieh Golshan
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| |
Collapse
|
2
|
Kazmi SJ, Rehman SU, Nadeem M, Rehman UU, Hussain S, Manzoor S. Effect of carbon allotropes and thickness variation on the EMI shielding properties of PANI/NFO@CNTs and PANI/NFO@RGO ternary composite systems. Phys Chem Chem Phys 2024; 26:10168-10182. [PMID: 38495023 DOI: 10.1039/d4cp00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The innovative design of thin, multiphase flexible composite systems with good mechanical properties, low density and improved EMI shielding properties at low filler content has become a key area of research. In this work, we report the low temperature synthesis of three-dimensional ternary composites (PANI/NFO@CNTs and PANI/NFO@RGO) by oxidative chemical polymerization of aniline in the presence of two different binary composites, viz. NFO@CNTs and NFO@RGO. Enhanced impedance matching is achieved by varying the ratio of the carbon allotropes (CNTs and RGO) to the ferrite component. The synthesis of NFO, PANI/NFO@CNTs and PANI/NFO@RGO is validated by XRD and FTIR spectroscopy. Field emission scanning electron microscopy (FE-SEM) confirmed the synthesis of core-shell structures of PANI/NFO@CNTs and PANI/NFO@RGO, where the binary composites (NFO@CNTs and NFO@RGO) serve as a core onto which a tubular PANI layer was coated. Shielding effectiveness of 22.36 dB (99.41% attenuation) is exhibited by the ternary composite PANI/NFO@CNTs (8 : 1), while for PANI/NFO@RGO (20 : 1) a total shielding effectiveness of 31 dB equivalent to 99.92% attenuation was observed at a thickness of 2 mm. The ternary composite PANI/NFO@RGO (20 : 1) 4 mm showed a maximum SET of 43 dB corresponding to 99.996% attenuation of incident EM waves. The enhanced EMI shielding properties of the synthesized ternary composite systems are accredited to good impedance matching, effective dielectric and magnetic loss mechanisms and good conductivity, which facilitate multiple reflections and scattering of incident radiation.
Collapse
Affiliation(s)
- Syeda Javaria Kazmi
- Magnetism Laboratory, Department of Physics, COMSATS University, 45550 Islamabad, Pakistan.
| | - Saeed Ur Rehman
- Magnetism Laboratory, Department of Physics, COMSATS University, 45550 Islamabad, Pakistan.
| | - M Nadeem
- Polymer Composite Group, Physics Division, Directorate of Science, PINSTECH, P.O. Nilore, Islamabad, Pakistan
| | - Ubaid Ur Rehman
- Polymer Composite Group, Physics Division, Directorate of Science, PINSTECH, P.O. Nilore, Islamabad, Pakistan
| | - Shahzad Hussain
- Magnetism Laboratory, Department of Physics, COMSATS University, 45550 Islamabad, Pakistan.
| | - Sadia Manzoor
- Magnetism Laboratory, Department of Physics, COMSATS University, 45550 Islamabad, Pakistan.
| |
Collapse
|
3
|
Paul S, Elizabeth I, Srivastava S, Tawale JS, Chandra P, Barshilia HC, Gupta BK. Epidermal Inspired Flexible Sensor with Buckypaper/PDMS Interfaces for Multimodal and Human Motion Monitoring Applications. ACS OMEGA 2022; 7:37674-37682. [PMID: 36312412 PMCID: PMC9608422 DOI: 10.1021/acsomega.2c04563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/28/2022] [Indexed: 05/17/2023]
Abstract
The advancements in the areas of wearable devices and flexible electronic skin have led to the synthesis of scalable, ultrasensitive sensors to detect and differentiate multimodal stimuli and dynamic human movements. Herein, we reveal a novel architecture of an epidermal sensor fabricated by sandwiching the buckypaper between the layers of poly(dimethylsiloxane) (PDMS). This mechanically robust sensor can be conformally adhered on skin and has the perception capability to detect real-time transient human motions and the multimodal mechanical stimuli of stretching, bending, tapping, and twisting. The sensor has feasibility for real-time health monitoring as it can distinguish a wide range of human physiological activities like breathing, gulping, phonation, pulse monitoring, and finger and wrist bending. This multimodal wearable epidermal sensor possesses an ultrahigh gauge factor (GF) of 9178 with a large stretchability of 56%, significant durability for 5000 stretching-releasing cycles, and a fast response/recovery time of 59/88 ms. We anticipate that this novel, simple, and scalable design of a sensor with outstanding features will pave a new way to consummate the requirements of wearable electronics, flexible touch sensors, and electronic skin.
Collapse
Affiliation(s)
- Sharon
J. Paul
- Department
of Chemistry, Institute of Basic Science, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
- Photonic
Materials Metrology Sub Division, Advanced Materials and Device Metrology
Division, CSIR—National Physical
Laboratory, New Delhi 110012, India
| | - Indu Elizabeth
- Surface
Engineering Division, CSIR—National
Aerospace Laboratories, Bangalore 560017, India
- ,
| | - Shubhda Srivastava
- Photonic
Materials Metrology Sub Division, Advanced Materials and Device Metrology
Division, CSIR—National Physical
Laboratory, New Delhi 110012, India
| | - Jai S. Tawale
- Indian
Reference Materials Division, CSIR—National
Physical Laboratory, New Delhi 110012, India
| | - Prakash Chandra
- Department
of Chemistry, Institute of Basic Science, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
| | - Harish C. Barshilia
- Surface
Engineering Division, CSIR—National
Aerospace Laboratories, Bangalore 560017, India
| | - Bipin K. Gupta
- Photonic
Materials Metrology Sub Division, Advanced Materials and Device Metrology
Division, CSIR—National Physical
Laboratory, New Delhi 110012, India
| |
Collapse
|
4
|
Gubbi Shivarathri P, Rajappa S, Kalenahally Swamygowda D, Chattanahalli Devendrachari M, Makri Nimbegondi Kotresh H. Green mechanochemical route for the synthesis of carboxy-rich polyaniline/multiwalled carbon nanotubes composite as a competent adsorbent for cationic dyes. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2135541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Poornima Gubbi Shivarathri
- Department of Chemistry, Acharya Institute of Technology, Bangalore, India
- Department of Chemistry, New Horizon College of Engineering, Bangalore, India
| | - Shwetha Rajappa
- Department of Chemistry, Acharya Institute of Technology, Bangalore, India
| | | | | | | |
Collapse
|
5
|
Development of conductive poly (para-aminophenol)/zinc oxide nanocomposites for optoelectronic devices. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Anticorrosive polyaniline-coated copper oxide (PANI/CuO) nanocomposites with tunable electrical properties for broadband electromagnetic interference shielding. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|