1
|
Das S, Behera A, Habibullah S, Pattnaik G, Mohanty B. Moxifloxacin-loaded PVA-chitosan composite films as potential ocular drug delivery systems: A comprehensive characterization and efficacy assessment. Int J Biol Macromol 2025; 296:139726. [PMID: 39800015 DOI: 10.1016/j.ijbiomac.2025.139726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
To overcome the barriers often met by traditional ophthalmic formulations, polymeric films can be utilized as an alternative to enhance drug retention duration while managing medication release. In the current investigation, polymeric films made of poly (vinyl) alcohol (PVA) and chitosan (CS) loaded with Moxifloxacin Hydrochloride (M-HCl) and plasticized with Glutaraldehyde were formulated as potential ophthalmic delivery for the treatment of conjunctivitis. The thickness, surface pH, opacity, folding endurance, and % hemolysis were measured, followed by the transparency, microscopy, electrical conductivity, mechanical strength, swelling index, and invitro drug release studies. FTIR spectroscopy further accessed the interactions between the polymers and drug molecules. The thermal behaviour and diffraction pattern of the films were evaluated using DSC and XRD studies. Lastly, the antimicrobial effectiveness of the M-HCl-loaded films was studied against P. aeruginosa and S. aureus. The rabbit eye irritation study conducted in vivo confirmed that the film was comfortable for use in ocular applications. Upon integrating the findings, it was determined that the optimal film formulation was PC3 (PVA: CS = 7:3), exhibiting superior transparency, heightened intermolecular hydrogen bonding, elevated mechanical strength, increased crystallinity, larger crystal size, optimal swelling index, a high percentage of controlled drug release (%CPDR), and the highest antimicrobial activity.
Collapse
Affiliation(s)
- Swagatika Das
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| | - Amulyaratna Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India.
| | - Sk Habibullah
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O'Anusandhan (deemed to be) University, BBSR, Odisha 751003, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| | - Biswaranjan Mohanty
- Department of Pharmaceutics, School of Pharmacy, DRIEMS University, Tangi, Cuttack, Odisha, India.
| |
Collapse
|
2
|
Singh P, Yadav V, Sahu D, Kumar K, Kim D, Yang D, Jayaraman S, Jarzębski M, Wieruszewski M, Pal K. Exploring Chitosan Lactate as a Multifunctional Additive: Enhancing Quality and Extending Shelf Life of Whole Wheat Bread. Foods 2024; 13:1590. [PMID: 38790890 PMCID: PMC11121318 DOI: 10.3390/foods13101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The shelf life of whole wheat bread (WWB) significantly impacts its freshness and overall quality. This research investigated the impact of chitosan lactate (CL) on various characteristics influencing the shelf life of WWB, including its physical, chemical, textural, antimicrobial, and sensory attributes. These characteristics were evaluated by conducting various experiments such as physical inspection, moisture, impedance, swelling, color, texture, FTIR, microbiological, and sensory analysis. CL with different concentrations was incorporated into WWB formulations: P0.0 (0.0% w/w CL, control), P0.5 (0.5% w/w CL), P1.0 (1.0% w/w CL), P2.0 (2.0% w/w CL), and P3.0 (3.0% w/w CL). The inclusion of CL promoted the Maillard reaction (MR) compared to P0.0. The promotion of MR resulted in the formation of a shinier crust, which increased as the CL content was increased. P0.5 comprised large-sized pores and exhibited increased loaf height. CL-containing WWB formulations showed an increased moisture content and decreased impedance values compared to the control. FTIR analysis of P0.5 demonstrated the enhanced interaction and bonding of water molecules. P0.5 demonstrated optimal textural, colorimetric, and antimicrobial properties compared to other formulations. The sensory attributes of WWBs remain unchanged despite CL addition. In conclusion, P0.5 exhibited optimal characteristics associated with better quality and prolonged shelf life.
Collapse
Affiliation(s)
- Pratik Singh
- Department of Life Sciences, Parul Institute of Applied Science, Parul University, Vadodara 391760, Gujarat, India; (P.S.); (K.K.)
| | - Vikas Yadav
- Department of Life Sciences, Parul Institute of Applied Science, Parul University, Vadodara 391760, Gujarat, India; (P.S.); (K.K.)
| | - Deblu Sahu
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Krishan Kumar
- Department of Life Sciences, Parul Institute of Applied Science, Parul University, Vadodara 391760, Gujarat, India; (P.S.); (K.K.)
| | - Doman Kim
- Department of International Agricultural Technology & Institute of Green Bioscience and Technology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Deng Yang
- College of Food Science and Engineering, Qingdao Agriculture University, No. 700 Chancheng Road, Qingdao 266109, China
| | - Sivaraman Jayaraman
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Marek Wieruszewski
- Department of Mechanical Wood Technology, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, 60-627 Poznan, Poland
| | - Kunal Pal
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| |
Collapse
|
3
|
Regu VPR, Behera D, Sunkara SP, Gohel V, Tripathy S, Swain RP, Subudhi BB. Ocular Delivery of Metformin for Sustained Release and in Vivo Efficacy. J Pharm Sci 2023; 112:2494-2505. [PMID: 37031863 DOI: 10.1016/j.xphs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Metformin is known to lower inflammation, independent of its anti-diabetic action. Thus, topical metformin can be a therapeutic strategy for managing ocular inflammation associated with diabetes. To achieve this and address the issues of ocular retention and controlled release an in situ gel of metformin was developed. The formulations were prepared using sodium hyaluronate, hypromellose, and gellan gum. The composition was optimized by monitoring gelling time/capacity, viscosity, and mucoadhesion. MF5 was selected as the optimized formulation. It showed both chemical and physiological compatibility. It was found to be sterile and stable. MF5 exhibited sustained release of metformin for 8h that fitted best with zero-order kinetics. Further, the release mode was found to be close to the Korsmeyer-Peppas model. Supported by an ex vivo permeation study, it showed potential for prolonged action. It showed a significant reduction in ocular inflammation that was comparable to that of the standard drug. MF5 shows translational potential as a safe alternative to steroids for managing ocular inflammation.
Collapse
Affiliation(s)
- Vara Prasada Rao Regu
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Dhananjay Behera
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Sai Prathyusha Sunkara
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Vinit Gohel
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India; ProCyto Labs Pvt Ltd., KIIT-TBI, Bhubaneswar, Odisha 751024, India
| | - Shyamalendu Tripathy
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Ranjit Prasad Swain
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Bharat Bhusan Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India.
| |
Collapse
|
4
|
Khubiev OM, Egorov AR, Kirichuk AA, Khrustalev VN, Tskhovrebov AG, Kritchenkov AS. Chitosan-Based Antibacterial Films for Biomedical and Food Applications. Int J Mol Sci 2023; 24:10738. [PMID: 37445916 DOI: 10.3390/ijms241310738] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Antibacterial chitosan films, versatile and eco-friendly materials, have garnered significant attention in both the food industry and medicine due to their unique properties, including biodegradability, biocompatibility, and antimicrobial activity. This review delves into the various types of chitosan films and their distinct applications. The categories of films discussed span from pure chitosan films to those enhanced with additives such as metal nanoparticles, metal oxide nanoparticles, graphene, fullerene and its derivatives, and plant extracts. Each type of film is examined in terms of its synthesis methods and unique properties, establishing a clear understanding of its potential utility. In the food industry, these films have shown promise in extending shelf life and maintaining food quality. In the medical field, they have been utilized for wound dressings, drug delivery systems, and as antibacterial coatings for medical devices. The review further suggests that the incorporation of different additives can significantly enhance the antibacterial properties of chitosan films. While the potential of antibacterial chitosan films is vast, the review underscores the need for future research focused on optimizing synthesis methods, understanding structure-property relationships, and rigorous evaluation of safety, biocompatibility, and long-term stability in real-world applications.
Collapse
Affiliation(s)
- Omar M Khubiev
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anton R Egorov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anatoly A Kirichuk
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Victor N Khrustalev
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, 119991 Moscow, Russia
| | - Alexander G Tskhovrebov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Andreii S Kritchenkov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus
| |
Collapse
|
5
|
Shaikh HM, Anis A, Poulose AM, Madhar NA, Al-Zahrani SM. Date-Palm-Derived Cellulose Nanocrystals as Reinforcing Agents for Poly(vinyl alcohol)/Guar-Gum-Based Phase-Separated Composite Films. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1104. [PMID: 35407222 PMCID: PMC9000832 DOI: 10.3390/nano12071104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
The current study delineates the use of date-palm-derived cellulose nanocrystals (dp-CNCs) as reinforcing agents. dp-CNCs were incorporated in varying amounts to poly(vinyl alcohol)/guar-gum-based phase-separated composite films. The films were prepared by using the solution casting method, which employed glutaraldehyde as the crosslinking agent. Subsequently, the films were characterized by bright field and polarizing microscopy, UV-Vis spectroscopy, FTIR spectroscopy, and mechanical study. The microscopic techniques suggested that phase-separated films were formed, whose microstructure could be tailored by incorporating dp-CNCs. At higher levels of dp-CNC content, microcracks could be observed in the films. The transparency of the phase-separated films was not significantly altered when the dp-CNC content was on the lower side. FTIR spectroscopy suggested the presence of hydrogen bonding within the phase-separated films. dp-CNCs showed reinforcing effects at the lowest amount, whereas the mechanical properties of the films were compromised at higher dp-CNC content. Moxifloxacin was included in the films to determine the capability of the films as a drug delivery vehicle. It was found that the release of the drug could be tailored by altering the dp-CNC content within the phase-separated films. In gist, the developed dp-CNC-loaded poly(vinyl alcohol)/guar-gum-based phase-separated composite films could be explored as a drug delivery vehicle.
Collapse
Affiliation(s)
- Hamid M. Shaikh
- SABIC Polymer Research Centre, Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; (A.A.); (A.M.P.); (S.M.A.-Z.)
| | - Arfat Anis
- SABIC Polymer Research Centre, Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; (A.A.); (A.M.P.); (S.M.A.-Z.)
| | - Anesh Manjaly Poulose
- SABIC Polymer Research Centre, Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; (A.A.); (A.M.P.); (S.M.A.-Z.)
| | - Niyaz Ahamad Madhar
- Department of Physics and Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Saeed M. Al-Zahrani
- SABIC Polymer Research Centre, Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; (A.A.); (A.M.P.); (S.M.A.-Z.)
| |
Collapse
|