1
|
Sharahi M, Bahrami SH, Karimi A. A comprehensive review on guar gum and its modified biopolymers: Their potential applications in tissue engineering. Carbohydr Polym 2025; 347:122739. [PMID: 39486968 DOI: 10.1016/j.carbpol.2024.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 11/04/2024]
Abstract
Guar gum (GG), as a non-exudate gum, is extracted from the seed's embryos of Cyamopsis tetragonoloba (a member of Leguminosae family). Recently, this biopolymer has received extensive attention due to its low cost, notable properties, non-toxic biodegradation, ease of availability, and biocompatibility. However, disadvantages such as uncontrolled hydration rate and susceptibility to microbial attack have led many researchers to further modification of guar gum. Further modifications of guar gum heteropolysaccharide have been performed to improve properties and explore and expand its potential. The favorable biostability, improved solubility, and swelling, increased pH sensitivity, and good antibacterial and antioxidant properties indicate the significant advantages of the modified gum structures with different functional groups. In this review, the rapid growth in research on GG derivatives-based materials has been discovered. Besides, the production methods of GG and its derivatives have been discussed in tissue engineering and regenerative medical. Consequently, this review highlights the advances in the production of guar-based products to outline a promising future for this biopolymer by changing its properties and expanding its applications in potential targets.
Collapse
Affiliation(s)
- Melika Sharahi
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - S Hajir Bahrami
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Afzal Karimi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Putro JN, Soetaredjo FE, Lunardi VB, Irawaty W, Yuliana M, Santoso SP, Puspitasari N, Wenten IG, Ismadji S. Polysaccharides gums in drug delivery systems: A review. Int J Biol Macromol 2023; 253:127020. [PMID: 37741484 DOI: 10.1016/j.ijbiomac.2023.127020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
For the drug delivery system, drug carriers' selection is critical to the drug's success in reaching the desired target. Drug carriers from natural biopolymers are preferred over synthetic materials due to their biocompatibility. The use of polysaccharide gums in the drug delivery system has received considerable attention in recent years. Polysaccharide gums are renewable resources and abundantly found in nature. They could be isolated from marine algae, microorganisms, and higher plants. In terms of carbohydrates, the gums are water-soluble, non-starch polysaccharides with high commercial value. Polysaccharide gums are widely used for controlled-release products, capsules, medicinal binders, wound healing agents, capsules, and tablet excipients. One of the essential applications of polysaccharide gum is drug delivery systems. The various kinds of polysaccharide gums obtained from different plants, marine algae, and microorganisms for the drug delivery system application are discussed comprehensively in this review paper.
Collapse
Affiliation(s)
- Jindrayani Nyoo Putro
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Felycia Edi Soetaredjo
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Valentino Bervia Lunardi
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
| | - Wenny Irawaty
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Maria Yuliana
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Natania Puspitasari
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - I Gede Wenten
- Department of Chemical Engineering, Institute of Technology Bandung (ITB), Jl. Ganesha 10, Bandung 40132, Indonesia
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia.
| |
Collapse
|
3
|
Hilal A, Florowska A, Wroniak M. Binary Hydrogels: Induction Methods and Recent Application Progress as Food Matrices for Bioactive Compounds Delivery-A Bibliometric Review. Gels 2023; 9:68. [PMID: 36661834 PMCID: PMC9857866 DOI: 10.3390/gels9010068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Food hydrogels are biopolymeric materials made from food-grade biopolymers with gelling properties (proteins and polysaccharides) and a 3D network capable of incorporating large amounts of water. They have sparked considerable interest because of their potential and broad application range in the biomedical and pharmaceutical sectors. However, hydrogel research in the field of food science is still limited. This knowledge gap provides numerous opportunities for implementing their unique properties, such as high water-holding capacity, moderated texture, compatibility with other substances, cell biocompatibility, biodegradability, and high resemblance to living tissues, for the development of novel, functional food matrices. For that reason, this article includes a bibliometric analysis characterizing research trends in food protein-polysaccharide hydrogels (over the last ten years). Additionally, it characterizes the most recent developments in hydrogel induction methods and the most recent application progress of hydrogels as food matrices as carriers for the targeted delivery of bioactive compounds. Finally, this article provides a future perspective on the need to evaluate the feasibility of using plant-based proteins and polysaccharides to develop food matrices that protect nutrients, including bioactive substances, throughout processing, storage, and digestion until they reach the specific targeted area of the digestive system.
Collapse
Affiliation(s)
- Adonis Hilal
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | | | | |
Collapse
|
4
|
Bachra Y, Grouli A, Damiri F, Zhu XX, Talbi M, Berrada M. Synthesis, Characterization, and Swelling Properties of a New Highly Absorbent Hydrogel Based on Carboxymethyl Guar Gum Reinforced with Bentonite and Silica Particles for Disposable Hygiene Products. ACS OMEGA 2022; 7:39002-39018. [PMID: 36340181 PMCID: PMC9631763 DOI: 10.1021/acsomega.2c04744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Superabsorbent polymers derived from petroleum have been widely used as the primary component of high-water-absorption disposable sanitary products. However, environmental concerns as well as unstable market prices influence the quality of disposable hygiene products. The development of superabsorbent polymers from natural, non-petroleum-derived materials has become more predominant. In the present study, two borax-cross-linked carboxymethyl guar-based superabsorbents with bentonite (CMG-Bt) and fumed silica particle reinforcement (CMG-Bt-Si) were synthesized. The materials have been fully characterized by various techniques. The swelling behavior was studied through free swelling capacity (FSC) and centrifuge retention capacity (CRC). The swelling kinetics and urea absorption capacity were further analyzed. The effects of the cross-linking ratio, mineral clay, silica particles, and pH of the liquids on the swelling properties of the superabsorbents have been studied. The incorporation of silica particles demonstrated a positive effect on water uptake reaching 78.63 and 41.09 g/g of FSC and CRC, respectively, at an optimum pH of 6.8. The optimum swelling kinetics were attributed to CMG-Bt-Si of 5 wt % silica particle content, indicating a velocity parameter (ζ) of 41 s in saline solution. Finally, the highest swelling values were obtained at 10, 10, and 5 wt % for the cross-linking ratio, bentonite content, and silica particle content, respectively; in addition, the absorption of urea by the CMG-Bt-Si material was also confirmed.
Collapse
Affiliation(s)
- Yahya Bachra
- Laboratory
of Analytical and Molecular Chemistry (LCAM), Faculty of Sciences
Ben M’Sick, Department of Chemistry, University Hassan II of Casablanca, Casablanca20000, Morocco
- Innovations
and Technologies Platform (PInTech), University
Hassan II of Casablanca, Casablanca20000, Morocco
| | - Ayoub Grouli
- Laboratory
of Analytical and Molecular Chemistry (LCAM), Faculty of Sciences
Ben M’Sick, Department of Chemistry, University Hassan II of Casablanca, Casablanca20000, Morocco
- Innovations
and Technologies Platform (PInTech), University
Hassan II of Casablanca, Casablanca20000, Morocco
| | - Fouad Damiri
- Laboratory
of Analytical and Molecular Chemistry (LCAM), Faculty of Sciences
Ben M’Sick, Department of Chemistry, University Hassan II of Casablanca, Casablanca20000, Morocco
| | - X. X. Zhu
- Department
of Chemistry, University of Montreal, C.P. 6128, Succ. Centre-ville, MontrealH3C 3J7, QC, Canada
| | - Mohammed Talbi
- Laboratory
of Analytical and Molecular Chemistry (LCAM), Faculty of Sciences
Ben M’Sick, Department of Chemistry, University Hassan II of Casablanca, Casablanca20000, Morocco
- Innovations
and Technologies Platform (PInTech), University
Hassan II of Casablanca, Casablanca20000, Morocco
| | - Mohammed Berrada
- Laboratory
of Analytical and Molecular Chemistry (LCAM), Faculty of Sciences
Ben M’Sick, Department of Chemistry, University Hassan II of Casablanca, Casablanca20000, Morocco
- Innovations
and Technologies Platform (PInTech), University
Hassan II of Casablanca, Casablanca20000, Morocco
| |
Collapse
|