1
|
Xu Y, Li Y, Zhang X, Xiao Z, Jiao J, Zhang H, Li H, Hu F, Xu L. Auxin signaling related to H +-ATPase synthesis and antioxidant enzyme activities regulates fluoranthene uptake by ryegrass roots. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117840. [PMID: 39919594 DOI: 10.1016/j.ecoenv.2025.117840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/07/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
Previous research has shown that fluoranthene (Flu) exhibits dual uptake behavior in ryegrass. At low concentrations (1-10 mg/L), Flu uptake is higher, whereas at higher concentrations (20-40 mg/L), uptake appears to decrease. Furthermore, indole-3-acetic acid (IAA) content and antioxidant enzyme activity play distinct roles in this process. However, the molecular mechanisms underlying these behaviors remain unclear. To address this, we exposed ryegrass to different Flu concentrations (0, 5, and 20 mg/L) and conducted a combined transcriptomic and physiological analysis of the root system to elucidate the specific mechanisms of Flu uptake. Our results revealed that under 5 mg/L Flu treatment, ryegrass has a higher bioconcentration factor (BCF). The genes involved in IAA synthesis (TAA1, ALDH, and AAO1/2) were upregulated, which led to an increase in IAA content. Elevated IAA levels, in turn, promoted the expression of genes encoding H+-ATPase (ATP5A1, ATP5B, ATP5H, and ATP6E) and the ABC transporter protein (ABCB1), resulting in enhanced H+-ATPase activity, and facilitated the active transport of Flu. In contrast, the 20 mg/L Flu treatment resulted in a lower BCF. The downregulation of IAA synthesis genes (amiE and YUCCA) decreased IAA content. The downregulation of the H+-ATPase gene (ATP6C) and the ABC transporter protein gene (ABCG2), resulting in decreased H+-ATPase activity and inhibited Flu transport. Moreover, the promoted expression of redox-related genes (POD1, SOD1 and SOD2) further reduced Flu uptake. Elucidating the molecular mechanisms underlying Flu uptake in ryegrass may provide a theoretical foundation for developing strategies to regulate Flu accumulation in plants.
Collapse
Affiliation(s)
- Yuanzhou Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yunyun Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinyue Zhang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhuoliang Xiao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Jiao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, PR China
| | - Huijuan Zhang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, PR China
| | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, PR China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, PR China
| | - Li Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, PR China; Sanya Institute of Nanjing Agricultural University, Sanya, China.
| |
Collapse
|
2
|
Zhang X, Ding Z, Lou H, Han R, Ma C, Yang S. A Systematic Review and Developmental Perspective on Origin of CMS Genes in Crops. Int J Mol Sci 2024; 25:8372. [PMID: 39125940 PMCID: PMC11312923 DOI: 10.3390/ijms25158372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Cytoplasmic male sterility (CMS) arises from the incompatibility between the nucleus and cytoplasm as typical representatives of the chimeric structures in the mitochondrial genome (mitogenome), which has been extensively applied for hybrid seed production in various crops. The frequent occurrence of chimeric mitochondrial genes leading to CMS is consistent with the mitochondrial DNA (mtDNA) evolution. The sequence conservation resulting from faithfully maternal inheritance and the chimeric structure caused by frequent sequence recombination have been defined as two major features of the mitogenome. However, when and how these chimeric mitochondrial genes appear in the context of the highly conserved reproduction of mitochondria is an enigma. This review, therefore, presents the critical view of the research on CMS in plants to elucidate the mechanisms of this phenomenon. Generally, distant hybridization is the main mechanism to generate an original CMS source in natural populations and in breeding. Mitochondria and mitogenomes show pleomorphic and dynamic changes at key stages of the life cycle. The promitochondria in dry seeds develop into fully functioning mitochondria during seed imbibition, followed by massive mitochondria or mitogenome fusion and fission in the germination stage along with changes in the mtDNA structure and quantity. The mitogenome stability is controlled by nuclear loci, such as the nuclear gene Msh1. Its suppression leads to the rearrangement of mtDNA and the production of heritable CMS genes. An abundant recombination of mtDNA is also often found in distant hybrids and somatic/cybrid hybrids. Since mtDNA recombination is ubiquitous in distant hybridization, we put forward a hypothesis that the original CMS genes originated from mtDNA recombination during the germination of the hybrid seeds produced from distant hybridizations to solve the nucleo-cytoplasmic incompatibility resulting from the allogenic nuclear genome during seed germination.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Zhengpin Ding
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Hongbo Lou
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Rui Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
3
|
Ma Y, Wei M, Zhang T, Wang Y, Duan P, Wang L, Kong W, Zhang G, Wei B. Functional analysis of the CaPIPLC5 gene in the regulation of the fertility restoration in pepper. PHYSIOLOGIA PLANTARUM 2024; 176:e14429. [PMID: 39039026 DOI: 10.1111/ppl.14429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 07/24/2024]
Abstract
Cytoplasmic male sterility (CMS) is a very important factor to produce hybrid seeds, and the restoration of fertility involves the expression of many fertility-related genes. Our previous study showed that the expression of CaPIPLC5 was significantly up-regulated in pepper restorer accessions and minimally expressed in sterile accessions, speculating that CaPIPLC5 is related to the restoration of fertility. In this study, we further validated the function of CaPIPLC5 in the restoration of fertility. The results showed that CaPIPLC5 was specifically expressed in the anthers of the restorer accessions with the subcellular localization in the cytoplasm. Furthermore, the expression of CaPIPLC5 was significantly higher in restorer lines and restorer combinations than that in CMS lines and their maintainer lines. Silencing CaPIPLC5 led to the number of pollen decreased, pollen grains wrinkled, and the ratio of pollen germination reduced. In addition, the joint analysis of Yeast One-Hybrid (Y1H) and Dual-Luciferase (dual-LUC) assays suggested that transcription factors such as CaARF5, CabZIP24 and CaMYB-like1, interacted with the promoter regions of CaPIPLC5, which regulated the expression of CaPIPLC5. The present results provide new insights into the study of CaPIPLC5 involved in the restoration of fertility in pepper.
Collapse
Affiliation(s)
- Yan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ming Wei
- Vegetable Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Tao Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yuhang Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Panpan Duan
- Vegetable Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Lina Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Weifu Kong
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Gautam R, Shukla P, Kirti PB. Male sterility in plants: an overview of advancements from natural CMS to genetically manipulated systems for hybrid seed production. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:195. [PMID: 37606708 DOI: 10.1007/s00122-023-04444-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
KEY MESSAGE The male sterility system in plants has traditionally been utilized for hybrid seed production. In last three decades, genetic manipulation for male sterility has revolutionized this area of research related to hybrid seed production technology. Here, we have surveyed some of the natural cytoplasmic male sterility (CMS) systems that existed/ were developed in different crop plants for developing male sterility-fertility restoration systems used in hybrid seed production and highlighted some of the recent biotechnological advancements in the development of genetically engineered systems that occurred in this area. We have indicated the possible future directions toward the development of engineered male sterility systems. Cytoplasmic male sterility (CMS) is an important trait that is naturally prevalent in many plant species, which has been used in the development of hybrid varieties. This is associated with the use of appropriate genes for fertility restoration provided by the restorer line that restores fertility on the corresponding CMS line. The development of hybrids based on a CMS system has been demonstrated in several different crops. However, there are examples of species, which do not have usable cytoplasmic male sterility and fertility restoration systems (Cytoplasmic Genetic Male Sterility Systems-CGMS) for hybrid variety development. In such plants, it is necessary to develop usable male sterile lines through genetic engineering with the use of heterologous expression of suitable genes that control the development of male gametophyte and fertile male gamete formation. They can also be developed through gene editing using the recently developed CRISPR-Cas technology to knock out suitable genes that are responsible for the development of male gametes. The present review aims at providing an insight into the development of various technologies for successful production of hybrid varieties and is intended to provide only essential information on male sterility systems starting from naturally occurring ones to the genetically engineered systems obtained through different means.
Collapse
Affiliation(s)
- Ranjana Gautam
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India
| | - Pawan Shukla
- Seri-Biotech Research Laboratory, Central Silk Board, Carmelram Post, Kodathi, Bangalore, 560035, India.
| | - P B Kirti
- Agri Biotech Foundation, PJTS Agricultural University Campus, Rajendranagar, Hyderabad, Telangana, 500030, India
| |
Collapse
|
5
|
Chen J, Zang Y, Liang S, Xue S, Shang S, Zhu M, Wang Y, Tang X. Comparative analysis of mitochondrial genomes reveals marine adaptation in seagrasses. BMC Genomics 2022; 23:800. [PMID: 36463111 PMCID: PMC9719629 DOI: 10.1186/s12864-022-09046-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Seagrasses are higher marine flowering plants that evolved from terrestrial plants, but returned to the sea during the early evolution of monocotyledons through several separate lineages. Thus, they become a good model for studying the adaptation of plants to the marine environment. Sequencing of the mitochondrial (mt) genome of seagrasses is essential for understanding their evolutionary characteristics. RESULTS In this study, we sequenced the mt genome of two endangered seagrasses (Zostera japonica and Phyllospadix iwatensis). These data and data on previously sequenced mt genomes from monocotyledons provide new evolutionary evidence of genome size reduction, gene loss, and adaptive evolution in seagrasses. The mt genomes of Z. japonica and P. iwatensis are circular. The sizes of the three seagrasses (including Zostera marine) that have been sequenced to date are smaller than that of other monocotyledons. Additionally, we found a large number of repeat sequences in seagrasses. The most abundant long repeat sequences were 31-40 bp repeats. Our study also found that seagrass species lost extensive ribosomal protein genes during evolution. The rps7 gene and the rpl16 gene of P. iwatensis are exceptions to this trend. The phylogenetic analysis based on the mt genome strongly supports the previous results. Furthermore, we identified five positive selection genes (atp8, nad3, nad6, ccmFn, and matR) in seagrasses that may be associated with their adaptation to the marine environment. CONCLUSIONS In this study, we sequenced and annotated the mt genomes of Z. japonica and P. iwatensis and compared them with the genome of other monocotyledons. The results of this study will enhance our understanding of seagrass adaptation to the marine environment and can inform further investigations of the seagrass mt genome.
Collapse
Affiliation(s)
- Jun Chen
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong China
| | - Yu Zang
- grid.508334.90000 0004 1758 3791Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong China
| | - Shuo Liang
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong China
| | - Song Xue
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong China
| | - Shuai Shang
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong China
| | - Meiling Zhu
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong China
| | - Ying Wang
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong China
| | - Xuexi Tang
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong China
| |
Collapse
|
6
|
Wei L, Liu TJ, Hao G, Ge XJ, Yan HF. Comparative analyses of three complete Primula mitogenomes with insights into mitogenome size variation in Ericales. BMC Genomics 2022; 23:770. [PMID: 36424546 PMCID: PMC9686101 DOI: 10.1186/s12864-022-08983-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Although knowledge of the sizes, contents, and forms of plant mitochondrial genomes (mitogenomes) is increasing, little is known about the mechanisms underlying their structural diversity. Evolutionary information on the mitogenomes of Primula, an important ornamental taxon, is more limited than the information on their nuclear and plastid counterparts, which has hindered the comprehensive understanding of Primula mitogenomic diversity and evolution. The present study reported and compared three Primula mitogenomes and discussed the size expansion of mitogenomes in Ericales. RESULTS Mitogenome master circles were sequenced and successfully assembled for three Primula taxa and were compared with publicly available Ericales mitogenomes. The three mitogenomes contained similar gene contents and varied primarily in their structures. The Primula mitogenomes possessed relatively high nucleotide diversity among all examined plant lineages. In addition, high nucleotide diversity was found among Primula species between the Mediterranean and Himalaya-Hengduan Mountains. Most predicted RNA editing sites appeared in the second amino acid codon, increasing the hydrophobic character of the protein. An early stop in atp6 caused by RNA editing was conserved across all examined Ericales species. The interfamilial relationships within Ericales and interspecific relationships within Primula could be well resolved based on mitochondrial data. Transfer of the two longest mitochondrial plastid sequences (MTPTs) occurred before the divergence of Primula and its close relatives, and multiple independent transfers could also occur in a single MTPT sequence. Foreign sequence [MTPTs and mitochondrial nuclear DNA sequences (NUMTs)] uptake and repeats were to some extent associated with changes in Ericales mitogenome size, although none of these relationships were significant overall. CONCLUSIONS The present study revealed relatively conserved gene contents, gene clusters, RNA editing, and MTPTs but considerable structural variation in Primula mitogenomes. Relatively high nucleotide diversity was found in the Primula mitogenomes. In addition, mitogenomic genes, collinear gene clusters, and locally collinear blocks (LCBs) all showed phylogenetic signals. The evolutionary history of MTPTs in Primula was complicated, even in a single MTPT sequence. Various reasons for the size variation observed in Ericales mitogenomes were found.
Collapse
Affiliation(s)
- Lei Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tong-Jian Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Gang Hao
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
7
|
Zhang Z, An D, Yu H, Sun L, Cao Y, Zhang B, Wang L. Fine mapping of Rf2, a minor Restorer-of-fertility (Rf) gene for cytoplasmic male sterility in chili pepper G164 (Capsicum annuum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2699-2709. [PMID: 35710637 DOI: 10.1007/s00122-022-04143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Genome re-sequencing and recombination analyses identified Capana06g000193 as a strong candidate for the minor male fertility restoration locus Rf2 in chili pepper G164 harboring two dominant male fertility restoration genes. Male fertility restoration genes of chili pepper restorer line G164 (Capsicum annuum L.) were studied using molecular marker genotypes of an F2 population (7G) of G164 crossed with the cytoplasmic male sterility line 77013A. The ratio of sterile to fertile single plants in the F2 population was 1:15. This result indicates that chili pepper G164 has two dominant restoration genes, which we designated as Rf1 and Rf2. An individual plant recessive for Rf1 and heterozygous for Rf2, 7G-112 (rf1rf1Rf2rf2), was identified by molecular marker selection and genetic analysis, and a single Rf2 gene-segregating population with a 3:1 ratio of fertile to sterile plants was developed from the self-pollination of male fertile individuals of 77013A and 7G-112 hybrid progeny. Bulk segregant analysis of fertile and sterile pools from the segregating populations was used to genetically map Rf2 to a 3.1-Mb region on chromosome 6. Rf2 was further narrowed to a 179.3-kb interval through recombination analysis of molecular markers and obtained the most likely candidate gene, Capana06g000193.
Collapse
Affiliation(s)
- Zhenghai Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Dongliang An
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Hailong Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Liuqing Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Yacong Cao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Baoxi Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Lihao Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China.
| |
Collapse
|
8
|
Pei H, Xie H, Wang X, Yan X, Wang B, Feng H, Zhao Y, Gao J, Gao J. Proteomic analysis of differential anther development from sterile/fertile lines in Capsicum annuum L. PeerJ 2022; 10:e13168. [PMID: 35651745 PMCID: PMC9150696 DOI: 10.7717/peerj.13168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/04/2022] [Indexed: 01/13/2023] Open
Abstract
Background Pepper (Capsicum annuum L.) is a major cash crop throughout the world. Male sterility is an important characteristic in crop species that leads to a failure to produce functional pollen, and it has crucial roles in agricultural breeding and the utilization of heterosis. Objectives In this study, we identified many crucial factors and important components in metabolic pathways in anther and pollen development, and elucidated the molecular mechanism related to pollen abortion in pepper. Methods Pepper pollen was observed at different stages to detect the characteristics associated with male sterility and fertility. The phytohormone and oxidoreductase activities were detected in spectrophotometric and redox reaction assays, respectively. Proteins were extracted from male sterile and fertile pepper lines, and identified by TMT/iTRAQ (tandem mass tags/isobaric tags for relative and absolute quantitation) and LC-MS/MS (liquid chromatograph-mass spectrometer) analysis. Differentially abundant proteins (DAPs) were analyzed based on Gene Ontology annotations and the Kyoto Encyclopedia of Genes and Genomes database according to |fold change)| > 1.3 and P value < 0.05. DAPs were quantified in the meiosis, tetrad, and binucleate stages by parallel reaction monitoring (PRM). Results In this study, we screened and identified one male sterile pepper line with abnormal cytological characteristics in terms of pollen development. The peroxidase and catalase enzyme activities were significantly reduced and increased, respectively, in the male sterile line compared with the male fertile line. Phytohormone analysis demonstrated that the gibberellin, jasmonic acid, and auxin contents changed by different extents in the male sterile pepper line. Proteome analysis screened 1,645 DAPs in six clusters, which were mainly associated with the chloroplast and cytoplasm based on their similar expression levels. According to proteome analysis, 45 DAPs were quantitatively identified in the meiosis, tetrad, and binucleate stages by PRM, which were related to monoterpenoid biosynthesis, and starch and sucrose metabolism pathways. Conclusions We screened 1,645 DAPs by proteomic analysis and 45 DAPs were related to anther and pollen development in a male sterile pepper line. In addition, the activities of peroxidase and catalase as well as the abundances of phytohormones such as gibberellin, jasmonic acid, and auxin were related to male sterility. The results obtained in this study provide insights into the molecular mechanism responsible for male sterility and fertility in pepper.
Collapse
Affiliation(s)
- Hongxia Pei
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China,Institute of Horticulture Crops, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Hua Xie
- Institute of Horticulture Crops, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Xuemei Wang
- Institute of Horticulture Crops, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Xiujuan Yan
- Institute of Horticulture Crops, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haiping Feng
- Institute of Horticulture Crops, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yunxia Zhao
- Institute of Horticulture Crops, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Jingxia Gao
- Institute of Horticulture Crops, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Jie Gao
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
9
|
Xu F, Yang X, Zhao N, Hu Z, Mackenzie SA, Zhang M, Yang J. Exploiting sterility and fertility variation in cytoplasmic male sterile vegetable crops. HORTICULTURE RESEARCH 2022; 9:uhab039. [PMID: 35039865 PMCID: PMC8807945 DOI: 10.1093/hr/uhab039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/18/2022] [Accepted: 10/15/2021] [Indexed: 05/04/2023]
Abstract
Cytoplasmic male sterility (CMS) has long been used to economically produce hybrids that harness growth vigor through heterosis. Yet, how CMS systems operate within commercially viable seed production strategies in various economically important vegetable crops, and their underlying molecular mechanisms, are often overlooked details that could expand the utility of CMS as a cost-effective and stable system. We provide here an update on the nature of cytoplasmic-nuclear interplay for pollen sterility and fertility transitions in vegetable crops, based on the discovery of components of nuclear fertility restoration and reversion determinants. Within plant CMS systems, pollen fertility can be rescued by the introduction of nuclear fertility restorer genes (Rfs), which operate by varied mechanisms to countermand the sterility phenotype. By understanding these systems, it is now becoming feasible to achieve fertility restoration with Rfs designed for programmable CMS-associated open reading frames (ORFs). Likewise, new opportunities exist for targeted disruption of CMS-associated ORFs by mito-TALENs in crops where natural Rfs have not been readily identified, providing an alternative approach to recovering fertility of cytoplasmic male sterile lines in crops. Recent findings show that facultative gynodioecy, as a reproductive strategy, can coordinate the sterility and fertility transition in response to environmental cues and/or metabolic signals that reflect ecological conditions of reproductive isolation. This information is important to devising future systems that are more inherently stable.
Collapse
Affiliation(s)
- Fengyuan Xu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiaodong Yang
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Na Zhao
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sally A Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou,
Zhejiang, 310058, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou,
Zhejiang, 310058, China
| |
Collapse
|
10
|
Han Y, Gao Y, Zhou H, Zhai X, Ding Q, Ma L. Mitochondrial genes are involved in the fertility transformation of the thermosensitive male-sterile line YS3038 in wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:61. [PMID: 37309316 PMCID: PMC10236089 DOI: 10.1007/s11032-021-01252-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 09/05/2021] [Indexed: 06/14/2023]
Abstract
Heterosis can improve the stress resistance, quality, and yield of crops, and the male sterility of wheat can be utilized to accelerate the breeding process of hybrid. To determine whether mitochondrial genes are involved in the fertility of K-type cytoplasmic male-sterile (CMS) line and the YS-type thermosensitive male-sterile (TMS) line in wheat, we sequenced and assembled the mitochondrial genomes of K519A, 519B, and YS3038 by next-generation sequencing (NGS). The non-synonymous mutations were analyzed, and the first-generation sequencing was conducted to verify the non-synonymous mutation sites. Furthermore, the expression patterns of genes with non-synonymous mutations were analyzed. Finally, the candidate genes were silenced by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) to test the functions of the candidate genes. The results revealed that the mitochondrial genomes of K519A, 519B, and YS3038 were 420,543, 433,560, and 452,567 bp in length, respectively. Besides, 33, 31, and 37 protein-coding genes were identified in K519A, 519B, and YS3038, respectively. There were 14 protein-coding genes and 83 open reading frame (ORF) sequences that differed between K519A and 519B and 10 protein-coding genes and 122 ORF sequences that differed between K519A and YS3038. At the binucleate stage, seven genes (nad6, ORF256, ORF216, ORF138, atp6, nad3, and cox1) were downregulated in K519A compared with 519B, and 10 genes (nad6, atp6, cox3, atp8, nad3, cox1, rps3, ORF216, ORF138, and ORF224) were downregulated in YS3038 compared with K519A. Besides, six genes (nad6, ORF138, cox3, cox1, rps3, and ORF224) were downregulated under fertile conditions relative to sterile conditions in YS3038. Gene silencing analysis showed that the silencing of cox1 significantly reduced the seed setting rate of YS3038, indicating that the cox1 gene may be involved in the fertility transformation of YS3038. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01252-x.
Collapse
Affiliation(s)
- Yucui Han
- College of Agronomy, Northwest A&F University, Xianyang, 712100 Yangling, Shaanxi China
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004 Hebei China
| | - Yujie Gao
- College of Agronomy, Northwest A&F University, Xianyang, 712100 Yangling, Shaanxi China
| | - Hao Zhou
- College of Agronomy, Northwest A&F University, Xianyang, 712100 Yangling, Shaanxi China
| | - Xiaoguang Zhai
- College of Agronomy, Northwest A&F University, Xianyang, 712100 Yangling, Shaanxi China
| | - Qin Ding
- College of Horticulture, Northwest A&F University, Xianyang, 712100 Yangling, Shaanxi China
| | - Lingjian Ma
- College of Agronomy, Northwest A&F University, Xianyang, 712100 Yangling, Shaanxi China
| |
Collapse
|
11
|
Wen JF, Zhao K, Lv JH, Huo JL, Wang ZR, Wan HJ, Zhu HS, Zhang ZQ, Shao GF, Wang J, Zhang S, Yang TY, Zhang JR, Zou XX, Deng MH. Orf165 is associated with cytoplasmic male sterility in pepper. Genet Mol Biol 2021; 44:e20210030. [PMID: 34555144 PMCID: PMC8459829 DOI: 10.1590/1678-4685-gmb-2021-0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 07/04/2021] [Indexed: 11/22/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is a maternally inherited trait that derives from the inability to produce functional pollen in higher plants. CMS results from recombination of the mitochondrial genome. However, understanding of the molecular mechanism of CMS in pepper is limited. In this study, comparative transcriptomic analyses were performed using a near-isogenic CMS line 14A (CMS-14A) and a maintainer line 14B (ML-14B) as experimental materials. A total of 17,349 differentially expressed genes were detected between CMS-14A and ML-14B at the PMC meiosis stage. Among them, six unigenes associated with CMS and 108 unigenes involved in energy metabolism were identified. The gene orf165 was found in CMS-14A. When orf165 was introduced into ML-14B, almost 30% of transgenic plants were CMS. In addition, orf165 expression in transgenic CMS plants resulted in abnormal function of some genes involved in energy metabolism. When orf165 in transgenic CMS plant was silenced, the resulted orf165-silenced plant was male fertile and the expression patterns of some genes associated with energy metabolism were similar to ML-14B. Thus, we confirmed that orf165 influenced CMS in pepper.
Collapse
Affiliation(s)
- Jin-Fen Wen
- Faculty of Architecture and City Planning, Kunming University of Science and Technology, Kunming, China.,College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Kai Zhao
- College of Horticulture, Yunnan Agricultural University, Kunming, China
| | - Jun-Heng Lv
- Hunan Academy of Agricultural Science, Changsha, China
| | - Jin-Long Huo
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zi-Ran Wang
- College of Horticulture, Yunnan Agricultural University, Kunming, China
| | - Hong-Jian Wan
- Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Hai-Shan Zhu
- College of Horticulture, Yunnan Agricultural University, Kunming, China
| | | | - Gui-Fang Shao
- College of Horticulture, Yunnan Agricultural University, Kunming, China
| | - Jiao Wang
- College of Horticulture, Yunnan Agricultural University, Kunming, China
| | - Shui Zhang
- College of Horticulture, Yunnan Agricultural University, Kunming, China
| | - Ting-Yu Yang
- College of Horticulture, Yunnan Agricultural University, Kunming, China
| | - Jing-Rou Zhang
- College of Horticulture, Yunnan Agricultural University, Kunming, China
| | - Xue-Xiao Zou
- Hunan Academy of Agricultural Science, Changsha, China
| | - Ming-Hua Deng
- College of Horticulture, Yunnan Agricultural University, Kunming, China.,College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
12
|
Structural and functional properties of plant mitochondrial F-ATP synthase. Mitochondrion 2020; 53:178-193. [DOI: 10.1016/j.mito.2020.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
|
13
|
Zhang Z, Zhu Y, Cao Y, Yu H, Bai R, Zhao H, Zhang B, Wang L. Fine mapping of the male fertility restoration gene CaRf032 in Capsicum annuum L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1177-1187. [PMID: 31925462 DOI: 10.1007/s00122-020-03540-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/07/2020] [Indexed: 05/24/2023]
Abstract
A novel strong candidate gene CA00g82510 for the male fertility restoration locus CaRf032 in Capsicum annuum was identified by genome re-sequencing and recombination analysis. A single dominant locus (CaRf032) for fertility restoration of cytoplasmic male sterility was identified in the strong restorer inbred line IVF2014032 of chili pepper (Capsicum annuum L.). CaRf032 was localized within an 8.81-Mb candidate intervals on chromosome 6 using bulked segregant analysis based on high-throughput sequencing data. Subsequently, the candidate interval was genetically mapped and defined to a 249.41-kb region using an F2 population of 441 individuals generated by crossing the male-sterile line 77013A and the restorer line IVF2014032. To fine map CaRf032, eight newly developed KASP markers were used to genotype 23 recombinants screened from a larger F2 population of 2877 individuals. The CaRf032 locus was localized to a 148.05-kb region between the KASP markers S1402 and S1354, which was predicted to contain 22 open reading frames (ORFs). One ORF with an incomplete sequence was predicted to contain a PPR motif, and its physical position overlapped with the Rf candidate gene CaPPR6_46. The PPR ORF sequence before the gap showed 100% identity with the CA00g82510 locus of the CM334 reference genome. CA00g82510 encodes a protein of 583 amino acids, containing 14 PPR motifs, and shows significantly differential expression between the flower buds of the maintainer line 77013 and the restorer line IVF2014032. These results indicated that CA00g82510 is a strong candidate gene for CaRf032. Five KASP markers, which detected single-nucleotide polymorphisms in CA00g82510 of 77013 and IVF2014032, co-segregated with CaRf032 and showed 64.4% successful genotyping of 38 maintainer and 63 restorer lines.
Collapse
Affiliation(s)
- Zhenghai Zhang
- Key Laboratory of Vegetable Genetics and Physiology of Ministry of the Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Yanshu Zhu
- Key Laboratory of Vegetable Genetics and Physiology of Ministry of the Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Yacong Cao
- Key Laboratory of Vegetable Genetics and Physiology of Ministry of the Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Hailong Yu
- Key Laboratory of Vegetable Genetics and Physiology of Ministry of the Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Ruiqin Bai
- Key Laboratory of Vegetable Genetics and Physiology of Ministry of the Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Hong Zhao
- Key Laboratory of Vegetable Genetics and Physiology of Ministry of the Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Baoxi Zhang
- Key Laboratory of Vegetable Genetics and Physiology of Ministry of the Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Lihao Wang
- Key Laboratory of Vegetable Genetics and Physiology of Ministry of the Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China.
| |
Collapse
|
14
|
Cheng J, Chen Y, Hu Y, Zhou Z, Hu F, Dong J, Chen W, Cui J, Wu Z, Hu K. Fine mapping of restorer-of-fertility gene based on high-density genetic mapping and collinearity analysis in pepper (Capsicum annuum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:889-902. [PMID: 31863157 DOI: 10.1007/s00122-019-03513-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/13/2019] [Indexed: 05/24/2023]
Abstract
The pepper restorer-of-fertility (CaRf) gene was fine mapped based on conjoint analysis of recombinants and collinearity between the two pepper reference genomes. Capana06g003028, encoding an Rf-like PPR protein, was proposed as the strongest candidate for pepper CaRf based on sequence comparison and expression analysis. The cytoplasmic male sterility (CMS)/restorer-of-fertility (Rf) system not only provides an excellent model to dissect genetic interactions between the mitochondria and nucleus but also plays a vital role in high-efficiency hybrid seed production in crops including pepper (Capsicum spp.). Although two important CMS candidate genes, orf507 and Ψatp6-2, have previously been suggested, the pepper Rf gene (CaRf) has not yet been isolated. In this study, a high-density genetic map comprising 7566 SNP markers in 1944 bins was first constructed with the array genotyping results from 317 F2 individuals. Based on this map, the CaRf gene was preliminarily mapped to a region of 1.15 Mb in length at the end of chromosome P6. Then, by means of a conjoint analysis of recombinants and collinearity between the two pepper reference genomes, an important candidate interval with 270.10 kb in length was delimited for CaRf. Finally, Capana06g003028, which encodes an Rf-like PPR protein, was proposed as the strongest candidate for CaRf based on sequence analysis and expression characteristics in sterile and fertile plants. The high-density genetic map and fine mapping results provided here lay a foundation for the application of molecular breeding, as well as cloning and functional analysis of CaRf, in pepper.
Collapse
Affiliation(s)
- Jiaowen Cheng
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Yijian Chen
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Yafei Hu
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Ziyan Zhou
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Fang Hu
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Jichi Dong
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Weili Chen
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Junjie Cui
- Department of Horticulture, College of Food Science and Engineering, Foshan University, Foshan, 528200, Guangdong, China
| | - Zhiming Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Kailin Hu
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Liu Z, Li S, Li W, Liu Q, Zhang L, Song X. Comparative transcriptome analysis indicates that a core transcriptional network mediates isonuclear alloplasmic male sterility in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2020; 20:10. [PMID: 31910796 PMCID: PMC6947873 DOI: 10.1186/s12870-019-2196-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/10/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) plays a crucial role in the utilization of heterosis and various types of CMS often have different abortion mechanisms. Therefore, it is important to understand the molecular mechanisms related to anther abortion in wheat, which remain unclear at present. RESULTS In this study, five isonuclear alloplasmic male sterile lines (IAMSLs) and their maintainer were investigated. Cytological analysis indicated that the abortion type was identical in IAMSLs, typical and stainable abortion, and the key abortive period was in the binucleate stage. Most of the 1,281 core shared differentially expressed genes identified by transcriptome sequencing compared with the maintainer in the vital abortive stage were involved in the metabolism of sugars, oxidative phosphorylation, phenylpropane biosynthesis, and phosphatidylinositol signaling, and they were downregulated in the IAMSLs. Key candidate genes encoding chalcone--flavonone isomerase, pectinesterase, and UDP-glucose pyrophosphorylase were screened and identified. Moreover, further verification elucidated that due to the impact of downregulated genes in these pathways, the male sterile anthers were deficient in sugar and energy, with excessive accumulations of ROS, blocked sporopollenin synthesis, and abnormal tapetum degradation. CONCLUSIONS Through comparative transcriptome analysis, an intriguing core transcriptome-mediated male-sterility network was proposed and constructed for wheat and inferred that the downregulation of genes in important pathways may ultimately stunt the formation of the pollen outer wall in IAMSLs. These findings provide insights for predicting the functions of the candidate genes, and the comprehensive analysis of our results was helpful for studying the abortive interaction mechanism in CMS wheat.
Collapse
Affiliation(s)
- Zihan Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Sha Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Wei Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Qi Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Lingli Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|
16
|
Wei B, Bosland PW, Zhang Z, Wang Y, Zhang G, Wang L, Yu J. A predicted NEDD8 conjugating enzyme gene identified as a Capsicum candidate Rf gene using bulk segregant RNA sequencing. HORTICULTURE RESEARCH 2020; 7:210. [PMID: 35051251 PMCID: PMC7721708 DOI: 10.1038/s41438-020-00425-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 05/09/2023]
Abstract
Cytoplasmic male sterility (CMS) is an important tool for producing F1 hybrids, which can exhibit heterosis. The companion system, restorer-of-fertility (Rf), is poorly understood at the molecular level and would be valuable in producing restorer lines for hybrid seed production. The identity of the Rf gene in Capsicum (pepper) is currently unclear. In this study, using bulked segregant RNA sequencing (BSR-seq), a strong candidate Rf gene, Capana06g002866, which is annotated as a NEDD8 conjugating enzyme E2, was identified. Capana06g002866 has an ORF of 555 bp in length encoding 184 amino acids; it can be cloned from F1 plants from the hybridization of the CMS line 8A and restorer line R1 but is not found in CMS line 8A. With qRT-PCR validation, Capana06g002866 was found to be upregulated in restorer accessions compared to sterile accessions. The relative expression in flower buds increased with the developmental stage in F1 plants, while the expression was very low in all flower bud stages of the CMS lines. These results provide new insights into the Rf gene in pepper and will be useful for other crops utilizing the CMS system.
Collapse
Affiliation(s)
- Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, 1 Yingmeng Village, Anning District, 730070 Lanzhou, China
| | - Paul W. Bosland
- Plant and Environmental Sciences Department, New Mexico State University, P.O. Box 30003, Las Cruces, 88001 NM USA
| | - Zhenghai Zhang
- Key Laboratory of Vegetable Genetics and Physiology of Ministry of the Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, 100081 Beijing, China
| | - Yongfu Wang
- College of Horticulture, Gansu Agricultural University, 1 Yingmeng Village, Anning District, 730070 Lanzhou, China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yingmeng Village, Anning District, 730070 Lanzhou, China
| | - Lanlan Wang
- Vegetable Institute, Gansu Academy of Agricultural Sciences, 1 Nongkeyuan New Village, 730070 Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, 1 Yingmeng Village, Anning District, 730070 Lanzhou, China
| |
Collapse
|
17
|
Wei B, Wang L, Bosland PW, Zhang G, Zhang R. Comparative transcriptional analysis of Capsicum flower buds between a sterile flower pool and a restorer flower pool provides insight into the regulation of fertility restoration. BMC Genomics 2019; 20:837. [PMID: 31711411 PMCID: PMC6849218 DOI: 10.1186/s12864-019-6210-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) and its restoration of fertility (Rf) system is an important mechanism to produce F1 hybrid seeds. Understanding the interaction that controls restoration at a molecular level will benefit plant breeders. The CMS is caused by the interaction between mitochondrial and nuclear genes, with the CMS phenotype failing to produce functional anthers, pollen, or male gametes. Thus, understanding the complex processes of anther and pollen development is a prerequisite for understanding the CMS system. Currently it is accepted that the Rf gene in the nucleus restores the fertility of CMS, however the Rf gene has not been cloned. In this study, CMS line 8A and the Rf line R1, as well as a sterile pool (SP) of accessions and a restorer pool (RP) of accessions analyzed the differentially expressed genes (DEGs) between CMS and its fertility restorer using the conjunction of RNA sequencing and bulk segregation analysis. RESULTS A total of 2274 genes were up-regulated in R1 as compared to 8A, and 1490 genes were up-regulated in RP as compared to SP. There were 891 genes up-regulated in both restorer accessions, R1 and RP, as compared to both sterile accessions, 8A and SP. Through annotation and expression analysis of co-up-regulated expressed genes, eight genes related to fertility restoration were selected. These genes encode putative fructokinase, phosphatidylinositol 4-phosphate 5-kinase, pectate lyase, exopolygalacturonase, pectinesterase, cellulose synthase, fasciclin-like arabinogalactan protein and phosphoinositide phospholipase C. In addition, a phosphatidylinositol signaling system and an inositol phosphate metabolism related to the fertility restorer of CMS were ranked as the most likely pathway for affecting the restoration of fertility in pepper. CONCLUSIONS Our study revealed that eight genes were related to the restoration of fertility, which provides new insight into understanding the molecular mechanism of fertility restoration of CMS in Capsicum.
Collapse
Affiliation(s)
- Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Lanlan Wang
- Vegetable Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Paul W Bosland
- College of Agriculture, Consumer, and Environmental Sciences, New Mexico State University, Las Cruces, 88001, USA
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ru Zhang
- Vegetable Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| |
Collapse
|
18
|
Jo YD, Lee HY, Ro NY, Kim SH, Kim JB, Kang BC, Kang SY. Mitotypes Based on Structural Variation of Mitochondrial Genomes Imply Relationships With Morphological Phenotypes and Cytoplasmic Male Sterility in Peppers. FRONTIERS IN PLANT SCIENCE 2019; 10:1343. [PMID: 31708952 PMCID: PMC6822277 DOI: 10.3389/fpls.2019.01343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Plant mitochondrial genomes characteristically contain extensive structural variation that can be used to define and classify cytoplasm types. We developed markers based on structural variation in the mitochondrial genomes of fertile and cytoplasmic male sterility (CMS) pepper lines and applied them to a panel of Capsicum accessions. We designed a total of 20 sequence characterized amplified region (SCAR) markers based on DNA rearrangement junctions or cytoplasm-specific segments that did not show high similarity to any nuclear mitochondrial DNA segments. We used those markers to classify the mitotypes of 96 C. annuum accessions into 15 groups. Precise genotyping of other Capsicum species (C. frutescens, C. chinense, and C. baccatum) was hampered because of various stoichiometric levels of marker amplicons. We developed a multiplex PCR system based on four of the markers that efficiently classified the C. annuum accessions into five mitotype groups. Close relationships between specific mitotypes and morphological phenotypes implied that diversification or domestication of C. annuum germplasm might have been accompanied by structural rearrangements of mitochondrial DNA or the selection of germplasms with specific mitotypes. Meanwhile, CMS lines shared the same amplification profile of markers with another mitotype. Further analysis using mitochondrial DNA (mtDNA) markers based on single-nucleotide polymorphisms (SNPs) or insertions and deletions (InDels) and CMS-specific open reading frames (orfs) provided new information about the origin of the CMS-specific mitotype and evaluation of candidates for CMS-associated genes, respectively.
Collapse
Affiliation(s)
- Yeong Deuk Jo
- Radiation Breeding Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Hea-Young Lee
- Department of Plant Science and Vegetable Breeding Research Center, Seoul National University, Seoul, South Korea
| | - Na-Young Ro
- National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Sang Hoon Kim
- Radiation Breeding Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Jin-Baek Kim
- Radiation Breeding Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science and Vegetable Breeding Research Center, Seoul National University, Seoul, South Korea
| | - Si-Yong Kang
- Radiation Breeding Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| |
Collapse
|
19
|
Makarenko MS, Usatov AV, Tatarinova TV, Azarin KV, Logacheva MD, Gavrilova VA, Kornienko IV, Horn R. Organization Features of the Mitochondrial Genome of Sunflower ( Helianthus annuus L.) with ANN2-Type Male-Sterile Cytoplasm. PLANTS (BASEL, SWITZERLAND) 2019; 8:E439. [PMID: 31652744 PMCID: PMC6918226 DOI: 10.3390/plants8110439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/24/2022]
Abstract
This study provides insights into the flexibility of the mitochondrial genome in sunflower (Helianthus annuus L.) as well as into the causes of ANN2-type cytoplasmic male sterility (CMS). De novo assembly of the mitochondrial genome of male-sterile HA89(ANN2) sunflower line was performed using high-throughput sequencing technologies. Analysis of CMS ANN2 mitochondrial DNA sequence revealed the following reorganization events: twelve rearrangements, seven insertions, and nine deletions. Comparisons of coding sequences from the male-sterile line with the male-fertile line identified a deletion of orf777 and seven new transcriptionally active open reading frames (ORFs): orf324, orf327, orf345, orf558, orf891, orf933, orf1197. Three of these ORFs represent chimeric genes involving atp6 (orf1197), cox2 (orf558), and nad6 (orf891). In addition, orf558, orf891, orf1197, as well as orf933, encode proteins containing membrane domain(s), making them the most likely candidate genes for CMS development in ANN2. Although the investigated CMS phenotype may be caused by simultaneous action of several candidate genes, we assume that orf1197 plays a major role in developing male sterility in ANN2. Comparative analysis of mitogenome organization in sunflower lines representing different CMS sources also allowed identification of reorganization hot spots in the mitochondrial genome of sunflower.
Collapse
Affiliation(s)
- Maksim S Makarenko
- Department of Genetics, Southern Federal University, Rostov-on-Don 344006, Russia.
- The Institute for Information Transmission Problems, Moscow 127051, Russia.
| | - Alexander V Usatov
- Department of Genetics, Southern Federal University, Rostov-on-Don 344006, Russia.
| | - Tatiana V Tatarinova
- The Institute for Information Transmission Problems, Moscow 127051, Russia.
- Department of Biology, University of La Verne, La Verne, CA 91750, USA.
- Vavilov Institute of General Genetics, Moscow 119333, Russia.
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia.
| | - Kirill V Azarin
- Department of Genetics, Southern Federal University, Rostov-on-Don 344006, Russia.
| | - Maria D Logacheva
- The Institute for Information Transmission Problems, Moscow 127051, Russia.
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - Vera A Gavrilova
- The N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint Petersburg 190121, Russia.
| | - Igor V Kornienko
- Department of Genetics, Southern Federal University, Rostov-on-Don 344006, Russia.
- Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia.
| | - Renate Horn
- Institute of Biological Sciences, Plant Genetics, University of Rostock, 18059 Rostock, Germany.
| |
Collapse
|
20
|
Gavrilenko ТA, Klimenko NS, Alpatieva NV, Kostina LI, Lebedeva VA, Evdokimova ZZ, Apalikova OV, Novikova LY, Antonova OY. Cytoplasmic genetic diversity of potato varieties bred in Russia and FSU countries. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Т. A. Gavrilenko
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR); St. Petersburg State University
| | - N. S. Klimenko
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - N. V. Alpatieva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - L. I. Kostina
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - V. A. Lebedeva
- Leningrad Research Institute for Applied Agricultural Science (Belogorka)
| | - Z. Z. Evdokimova
- Leningrad Research Institute for Applied Agricultural Science (Belogorka)
| | - O. V. Apalikova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - L. Y. Novikova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | - O. Yu. Antonova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| |
Collapse
|
21
|
Garcia LE, Zubko MK, Zubko EI, Sanchez-Puerta MV. Elucidating genomic patterns and recombination events in plant cybrid mitochondria. PLANT MOLECULAR BIOLOGY 2019; 100:433-450. [PMID: 30968307 DOI: 10.1007/s11103-019-00869-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/01/2019] [Indexed: 05/17/2023]
Abstract
KEY MESSAGE Cybrid plant mitochondria undergo homologous recombination, mainly BIR, keep a single allele for each gene, and maintain exclusive sequences of each parent and a single copy of the homologous regions. The maintenance of a dynamic equilibrium between the mitochondrial and nuclear genomes requires continuous communication and a high level of compatibility between them, so that alterations in one genetic compartment need adjustments in the other. The co-evolution of nuclear and mitochondrial genomes has been poorly studied, even though the consequences and effects of this interaction are highly relevant for human health, as well as for crop improvement programs and for genetic engineering. The mitochondria of plants represent an excellent system to understand the mechanisms of genomic rearrangements, chimeric gene formation, incompatibility between nucleus and cytoplasm, and horizontal gene transfer. We carried out detailed analyses of the mtDNA of a repeated cybrid between the solanaceae Nicotiana tabacum and Hyoscyamus niger. The mtDNA of the cybrid was intermediate between the size of the parental mtDNAs and the sum of them. Noticeably, most of the homologous sequences inherited from both parents were lost. In contrast, the majority of the sequences exclusive of a single parent were maintained. The mitochondrial gene content included a majority of N. tabacum derived genes, but also chimeric, two-parent derived, and H. niger-derived genes in a tobacco nuclear background. Any of these alterations in the gene content could be the cause of CMS in the cybrid. The parental mtDNAs interacted through 28 homologous recombination events and a single case of illegitimate recombination. Three main homologous recombination mechanisms were recognized in the cybrid mitochondria. Break induced replication (BIR) pathway was the most frequent. We propose that BIR could be one of the mechanisms responsible for the loss of the majority of the repeated regions derived from H. niger.
Collapse
Affiliation(s)
- Laura E Garcia
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina.
| | - Mikhajlo K Zubko
- Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Elena I Zubko
- Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - M Virginia Sanchez-Puerta
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| |
Collapse
|
22
|
Wang Y, Zhao J, Liu X, Li W, Ouyang S, Zhu X. Identification of SNPs and copy number variations in mitochondrial genes related to the reproductive capacity of the cultured Asian yellow pond turtle (Mauremys mutica). Anim Reprod Sci 2019; 205:78-87. [DOI: 10.1016/j.anireprosci.2019.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 01/20/2023]
|
23
|
Konishi A, Furutani N, Minamiyama Y, Ohyama A. Detection of quantitative trait loci for capsanthin content in pepper ( Capsicum annuum L.) at different fruit ripening stages. BREEDING SCIENCE 2019; 69:30-39. [PMID: 31086481 PMCID: PMC6507717 DOI: 10.1270/jsbbs.18070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/04/2018] [Indexed: 05/10/2023]
Abstract
Capsanthin, the main carotenoid of red pepper fruits, is beneficial for human health. To breed pepper (Capsicum annuum L.) with high capsanthin content by marker-assisted selection, we constructed a linkage map of doubled-haploid (DH) lines derived from a cross of two pure lines of C. annuum ('S3586' × 'Kyoto-Manganji No. 2'). The map, designated as the SM-DH map, consisted of 15 linkage groups and the total map distance was 1403.8 cM. Mapping of quantitative trait loci (QTLs) for capsanthin content detected one QTL on linkage group (LG) 13 at 90 days after flowering (DAF) and one on LG 15 at 45 DAF; they were designated Cst13.1 and Cst15.1, respectively. Cst13.1 explained 17.0% of phenotypic variance and Cst15.1 explained 16.1%. We grouped DH lines according to the genotypes of markers adjacent to Cst13.1 and Cst15.1 on both sides. The DH lines with the alleles of both QTLs derived from 'S3586' showed higher capsanthin content at 45 and 90 DAF than the other lines. This is the first identification of QTLs for capsanthin content in any plant species. The data obtained here will be useful in marker-assisted selection for pepper breeding for high capsanthin content.
Collapse
Affiliation(s)
- Ayako Konishi
- Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Research Center,
74 Oji, Kitainayazuma, Seika, Soraku, Kyoto 619-0244,
Japan
- Corresponding author (e-mail: )
| | - Noriyuki Furutani
- Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Research Center,
74 Oji, Kitainayazuma, Seika, Soraku, Kyoto 619-0244,
Japan
| | - Yasuhiro Minamiyama
- Kyoto University of Education, Center for Environmental Education,
112 Echigoyashiki, Fukakusa, Fushimi, Kyoto 612-8431,
Japan
| | - Akio Ohyama
- National Agriculture and Food Research Organization (NARO), Institute of Vegetable and Floriculture Science (NIVFS),
3-1-1 Kannondai, Tsukuba, Ibaraki 305-8519,
Japan
| |
Collapse
|
24
|
Makarenko MS, Usatov AV, Tatarinova TV, Azarin KV, Logacheva MD, Gavrilova VA, Horn R. Characterization of the mitochondrial genome of the MAX1 type of cytoplasmic male-sterile sunflower. BMC PLANT BIOLOGY 2019; 19:51. [PMID: 30813888 PMCID: PMC6394147 DOI: 10.1186/s12870-019-1637-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND More than 70 cytoplasmic male sterility (CMS) types have been identified in Helianthus, but only for less than half of them, research of mitochondrial organization has been conducted. Moreover, complete mitochondrion sequences have only been published for two CMS sources - PET1 and PET2. It has been demonstrated that other sunflower CMS sources like MAX1, significantly differ from the PET1 and PET2 types. However, possible molecular causes for the CMS induction by MAX1 have not yet been proposed. In the present study, we have investigated structural changes in the mitochondrial genome of HA89 (MAX1) CMS sunflower line in comparison to the fertile mitochondrial genome. RESULTS Eight significant major reorganization events have been determined in HA89 (MAX1) mtDNA: one 110 kb inverted region, four deletions of 439 bp, 978 bp, 3183 bp and 14,296 bp, respectively, and three insertions of 1999 bp, 5272 bp and 6583 bp. The rearrangements have led to functional changes in the mitochondrial genome of HA89 (MAX1) resulting in the complete elimination of orf777 and the appearance of new ORFs - orf306, orf480, orf645 and orf1287. Aligning the mtDNA of the CMS sources PET1 and PET2 with MAX1 we found some common reorganization features in their mitochondrial genome sequences. CONCLUSION The new open reading frame orf1287, representing a chimeric atp6 gene, may play a key role in MAX1 CMS phenotype formation in sunflower, while the contribution of other mitochondrial reorganizations seems to appear negligible for the CMS development.
Collapse
Affiliation(s)
| | | | - Tatiana V. Tatarinova
- University of La Verne, La Verne, CA USA
- Institute for Information Transmission Problems, Moscow, Russia
- Institute for General Genetics, Moscow, Russia
- Siberian Federal University, Krasnoyarsk, Russia
| | | | - Maria D. Logacheva
- Institute for Information Transmission Problems, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Vera A. Gavrilova
- The N.I. Vavilov All Russian Institute of Plant Genetic Resources, Saint Petersburg, Russia
| | - Renate Horn
- University of Rostock, Institute of Biological Sciences, Plant Genetics, Rostock, Germany
| |
Collapse
|
25
|
Candidate Gene Selection for Cytoplasmic Male Sterility in Pepper ( Capsicum annuum L.) through Whole Mitochondrial Genome Sequencing. Int J Mol Sci 2019; 20:ijms20030578. [PMID: 30699994 PMCID: PMC6386957 DOI: 10.3390/ijms20030578] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
Cytoplasmic male sterility (CMS), which is controlled by mitochondrial genes, is an important trait for commercial hybrid seed production. So far, genes controlling this trait are still not clear in pepper. In this study, complete mitochondrial genomes were sequenced and assembled for the CMS line 138A and its maintainer line 138B. The genome size of 138A is 504,210 bp, which is 8618 bp shorter than that of 138B. Meanwhile, more than 214 and 215 open reading frames longer than 100 amino acids (aas) were identified in 138A and 138B, respectively. Mitochondrial genome structure of 138A was quite different from that of 138B, indicating the existence of recombination and rearrangement events. Based on the mitochondrial genome sequence and structure variations, mitochondrion of 138A and FS4401, a Korean origin CMS line, may have inherited from a common female ancestor, but their CMS traits did originate separately. Candidate gene selection was performed according to the published characteristics of the CMS genes, including the presence SNPs and InDels, located in unique regions, their chimeric structure, co-transcription, and transmembrane domain. A total of 35 ORFs were considered as potential candidate genes and 14 of these were selected, with orf300a and 0rf314a as strong candidates. A new marker, orf300a, was developed which did co-segregate with the CMS trait.
Collapse
|
26
|
Analysis of the meiotic transcriptome reveals the genes related to the regulation of pollen abortion in cytoplasmic male-sterile pepper (Capsicum annuum L.). Gene 2017; 641:8-17. [PMID: 29031775 DOI: 10.1016/j.gene.2017.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 01/23/2023]
Abstract
CMS, which refers to the inability to generate functional pollen grains while still producing a normal gynoecium, has been widely used for pepper hybrid seed production. Pepper line 8214A is an excellent CMS line exhibiting 100% male sterility and superior economic characteristics. A TUNEL assay revealed the nuclear DNA is damaged in 8214A PMCs during meiosis. TEM images indicated that the 8214A PMCs exhibited asynchronous meiosis after prophase I, and some PMCs degraded prematurely with morphological features typical of PCD. Additionally, at the end of meiosis, the 8214A PMCs formed abnormal non-tetrahedral tetrads that degraded in situ. To identify the genes involved in the pollen abortion of line 8214A, the transcriptional profiles of the 8214A and the 8214B anthers (i.e., from the fertile maintainer line) during meiosis were analyzed using an RNA-seq approach. A total of 1355 genes were determined to be differentially expressed, including 424 and 931 up- and down- regulated genes, respectively, in the 8214A anthers during meiosis relative to the expression levels in the 8214B. The expression levels of ubiquitin ligase and cell cycle-related genes were apparently down-regulated, while the expression of methyltransferase genes was up-regulated in the 8214A anthers during meiosis, which likely contributed to the PCD of these PMCs during meiosis. Thus, our results may be useful for revealing the molecular mechanism regulating the pollen abortion of CMS pepper.
Collapse
|
27
|
Tan GF, Wang F, Zhang XY, Xiong AS. Different lengths, copies and expression levels of the mitochondrial atp6 gene in male sterile and fertile lines of carrot (Daucus carota L.). Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:446-454. [PMID: 28335670 DOI: 10.1080/24701394.2017.1303492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The male-sterile carrot is an effective material for carrot breeding. The atp6 gene is involved in carrot fertility. However, the differences in lengths, copies, and expression profiles of the atp6 gene in fertile and male-sterile lines of carrot are unclear. In this study, one copy atp6 gene was found in the mtDNAs of 'Kuroda' (fertility, 954 bp) and 'Wuye-BY' (male sterility, 819 bp) carrot lines, while two copies atp6 genes (Wuye-L and Wuye-D, 954 bp and 819 bp, respectively) were found in the mtDNA of 'Wuye' (fertility). Two putative conserved domains have been detected in the carrot atp6 protein. Evolutionary analysis showed that the atp6 protein sequences of Wuye-L and Kuroda were clustered in the same branch, while Wuye-D and Wuye-BY were clustered in the same branch. The atp6 gene was higher expressed in the flowers of 'Kuroda' and 'Wuye' (Wuye-L), while lower expressed in 'Wuye-BY' and 'Wuye' (Wuye-D).
Collapse
Affiliation(s)
- Guo-Fei Tan
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| | - Feng Wang
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| | - Xin-Yue Zhang
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| | - Ai-Sheng Xiong
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
28
|
Jo YD, Ha Y, Lee JH, Park M, Bergsma AC, Choi HI, Goritschnig S, Kloosterman B, van Dijk PJ, Choi D, Kang BC. Fine mapping of Restorer-of-fertility in pepper (Capsicum annuum L.) identified a candidate gene encoding a pentatricopeptide repeat (PPR)-containing protein. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2003-17. [PMID: 27470425 DOI: 10.1007/s00122-016-2755-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/15/2016] [Indexed: 05/24/2023]
Abstract
Using fine mapping techniques, the genomic region co-segregating with Restorer - of - fertility ( Rf ) in pepper was delimited to a region of 821 kb in length. A PPR gene in this region, CaPPR6 , was identified as a strong candidate for Rf based on expression pattern and characteristics of encoding sequence. Cytoplasmic-genic male sterility (CGMS) has been used for the efficient production of hybrid seeds in peppers (Capsicum annuum L.). Although the mitochondrial candidate genes that might be responsible for cytoplasmic male sterility (CMS) have been identified, the nuclear Restorer-of-fertility (Rf) gene has not been isolated. To identify the genomic region co-segregating with Rf in pepper, we performed fine mapping using an Rf-segregating population consisting of 1068 F2 individuals, based on BSA-AFLP and a comparative mapping approach. Through six cycles of chromosome walking, the co-segregating region harboring the Rf locus was delimited to be within 821 kb of sequence. Prediction of expressed genes in this region based on transcription analysis revealed four candidate genes. Among these, CaPPR6 encodes a pentatricopeptide repeat (PPR) protein with PPR motifs that are repeated 14 times. Characterization of the CaPPR6 protein sequence, based on alignment with other homologs, showed that CaPPR6 is a typical Rf-like (RFL) gene reported to have undergone diversifying selection during evolution. A marker developed from a sequence near CaPPR6 showed a higher prediction rate of the Rf phenotype than those of previously developed markers when applied to a panel of breeding lines of diverse origin. These results suggest that CaPPR6 is a strong candidate for the Rf gene in pepper.
Collapse
Affiliation(s)
- Yeong Deuk Jo
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, 599 Gwanak-ro, Gwank-gu, Seoul, 151-921, Korea
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea
| | - Yeaseong Ha
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, 599 Gwanak-ro, Gwank-gu, Seoul, 151-921, Korea
| | - Joung-Ho Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, 599 Gwanak-ro, Gwank-gu, Seoul, 151-921, Korea
| | - Minkyu Park
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, 599 Gwanak-ro, Gwank-gu, Seoul, 151-921, Korea
| | | | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea
| | | | | | | | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, 599 Gwanak-ro, Gwank-gu, Seoul, 151-921, Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, 599 Gwanak-ro, Gwank-gu, Seoul, 151-921, Korea.
| |
Collapse
|
29
|
Involvement of a universal amino acid synthesis impediment in cytoplasmic male sterility in pepper. Sci Rep 2016; 6:23357. [PMID: 26987793 PMCID: PMC4796900 DOI: 10.1038/srep23357] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/04/2016] [Indexed: 01/17/2023] Open
Abstract
To explore the mechanisms of pepper (Capsicum annuum L.) cytoplasmic male sterility (CMS), we studied the different maturation processes of sterile and fertile pepper anthers. A paraffin section analysis of the sterile anthers indicated an abnormality of the tapetal layer and an over-vacuolization of the cells. The quantitative proteomics results showed that the expression of histidinol dehydrogenase (HDH), dihydroxy-acid dehydratase (DAD), aspartate aminotransferase (ATAAT), cysteine synthase (CS), delta-1-pyrroline-5-carboxylate synthase (P5CS), and glutamate synthetase (GS) in the amino acid synthesis pathway decreased by more than 1.5-fold. Furthermore, the mRNA and protein expression levels of DAD, ATAAT, CS and P5CS showed a 2- to 16-fold increase in the maintainer line anthers. We also found that most of the amino acid content levels decreased to varying degrees during the anther tapetum period of the sterile line, whereas these levels increased in the maintainer line. The results of our study indicate that during pepper anther development, changes in amino acid synthesis are significant and accompany abnormal tapetum maturity, which is most likely an important cause of male sterility in pepper.
Collapse
|
30
|
Ji JJ, Huang W, Li Z, Chai WG, Yin YX, Li DW, Gong ZH. Tapetum-specific expression of a cytoplasmic orf507 gene causes semi-male sterility in transgenic peppers. FRONTIERS IN PLANT SCIENCE 2015; 6:272. [PMID: 25954296 PMCID: PMC4406146 DOI: 10.3389/fpls.2015.00272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/05/2015] [Indexed: 06/04/2023]
Abstract
Though cytoplasmic male sterility (CMS) in peppers is associated with the orf507 gene, definitive and direct evidence that it directly causes male sterility is still lacking. In this study, differences in histochemical localization of anther cytochrome c oxidase between the pepper CMS line and maintainer line were observed mainly in the tapetal cells and tapetal membrane. Inducible and specific expression of the orf507 gene in the pepper maintainer line found that transformants were morphologically similar to untransformed and transformed control plants, but had shrunken anthers that showed little dehiscence and fewer pollen grains with lower germination rate and higher naturally damaged rate. These characters were different from those of CMS line which does not produce any pollen grains. Meanwhile a pollination test using transformants as the male parent set few fruit and there were few seeds in the limited number of fruits. At the tetrad stage, ablation of the tapetal cell induced by premature programmed cell death (PCD) occurred in the transformants and the microspores were distorted and degraded at the mononuclear stage. Stable transmission of induced semi-male sterility was confirmed by a test cross. In addition, expression of orf507 in the maintainer lines seemed to inhibit expression of atp6-2 to a certain extent, and lead to the increase of the activity of cytochrome c oxidase and the ATP hydrolysis of the mitochondrial F1Fo-ATP synthase. These results introduce the premature PCD caused by orf507 gene in tapetal cells and semi-male sterility, but not complete male sterility.
Collapse
Affiliation(s)
- Jiao-Jiao Ji
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Wei Huang
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Zheng Li
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Wei-Guo Chai
- Institute of Vegetables, Hangzhou Academy of Agricultural SciencesHangzhou, China
| | - Yan-Xu Yin
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Da-Wei Li
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| |
Collapse
|
31
|
Jo YD, Choi Y, Kim DH, Kim BD, Kang BC. Extensive structural variations between mitochondrial genomes of CMS and normal peppers (Capsicum annuum L.) revealed by complete nucleotide sequencing. BMC Genomics 2014; 15:561. [PMID: 24996600 PMCID: PMC4108787 DOI: 10.1186/1471-2164-15-561] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/20/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) is an inability to produce functional pollen that is caused by mutation of the mitochondrial genome. Comparative analyses of mitochondrial genomes of lines with and without CMS in several species have revealed structural differences between genomes, including extensive rearrangements caused by recombination. However, the mitochondrial genome structure and the DNA rearrangements that may be related to CMS have not been characterized in Capsicum spp. RESULTS We obtained the complete mitochondrial genome sequences of the pepper CMS line FS4401 (507,452 bp) and the fertile line Jeju (511,530 bp). Comparative analysis between mitochondrial genomes of peppers and tobacco that are included in Solanaceae revealed extensive DNA rearrangements and poor conservation in non-coding DNA. In comparison between pepper lines, FS4401 and Jeju mitochondrial DNAs contained the same complement of protein coding genes except for one additional copy of an atp6 gene (ψatp6-2) in FS4401. In terms of genome structure, we found eighteen syntenic blocks in the two mitochondrial genomes, which have been rearranged in each genome. By contrast, sequences between syntenic blocks, which were specific to each line, accounted for 30,380 and 17,847 bp in FS4401 and Jeju, respectively. The previously-reported CMS candidate genes, orf507 and ψatp6-2, were located on the edges of the largest sequence segments that were specific to FS4401. In this region, large number of small sequence segments which were absent or found on different locations in Jeju mitochondrial genome were combined together. The incorporation of repeats and overlapping of connected sequence segments by a few nucleotides implied that extensive rearrangements by homologous recombination might be involved in evolution of this region. Further analysis using mtDNA pairs from other plant species revealed common features of DNA regions around CMS-associated genes. CONCLUSIONS Although large portion of sequence context was shared by mitochondrial genomes of CMS and male-fertile pepper lines, extensive genome rearrangements were detected. CMS candidate genes located on the edges of highly-rearranged CMS-specific DNA regions and near to repeat sequences. These characteristics were detected among CMS-associated genes in other species, implying a common mechanism might be involved in the evolution of CMS-associated genes.
Collapse
Affiliation(s)
- Yeong Deuk Jo
- />Department of Plant Science, Plant Genomics and Breeding Institute, and Institute of Green BioScience and Technology, Seoul National University, Seoul, 151-921 South Korea
- />Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 580-185 South Korea
| | - Yoomi Choi
- />Department of Plant Science, Plant Genomics and Breeding Institute, and Institute of Green BioScience and Technology, Seoul National University, Seoul, 151-921 South Korea
| | - Dong-Hwan Kim
- />Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Byung-Dong Kim
- />Department of Plant Science, Plant Genomics and Breeding Institute, and Institute of Green BioScience and Technology, Seoul National University, Seoul, 151-921 South Korea
| | - Byoung-Cheorl Kang
- />Department of Plant Science, Plant Genomics and Breeding Institute, and Institute of Green BioScience and Technology, Seoul National University, Seoul, 151-921 South Korea
| |
Collapse
|
32
|
Kianian PMA, Kianian SF. Mitochondrial dynamics and the cell cycle. FRONTIERS IN PLANT SCIENCE 2014; 5:222. [PMID: 24904617 PMCID: PMC4035010 DOI: 10.3389/fpls.2014.00222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/04/2014] [Indexed: 05/25/2023]
Abstract
Nuclear-mitochondrial (NM) communication impacts many aspects of plant development including vigor, sterility, and viability. Dynamic changes in mitochondrial number, shape, size, and cellular location takes place during the cell cycle possibly impacting the process itself and leading to distribution of this organelle into daughter cells. The genes that underlie these changes are beginning to be identified in model plants such as Arabidopsis. In animals disruption of the drp1 gene, a homolog to the plant drp3A and drp3B, delays mitochondrial division. This mutation results in increased aneuploidy due to chromosome mis-segregation. It remains to be discovered if a similar outcome is observed in plants. Alloplasmic lines provide an opportunity to understand the communication between the cytoplasmic organelles and the nucleus. Examples of studies in these lines, especially from the extensive collection in wheat, point to the role of mitochondria in chromosome movement, pollen fertility and other aspects of development.
Collapse
Affiliation(s)
- Penny M. A. Kianian
- Department of Horticultural Science, University of MinnesotaSt. Paul, MN, USA
| | - Shahryar F. Kianian
- Cereal Disease Laboratory, United States Department of Agriculture – Agricultural Research ServiceSt. Paul, MN, USA
| |
Collapse
|
33
|
Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion 2014; 19 Pt B:198-205. [PMID: 24732436 DOI: 10.1016/j.mito.2014.04.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/31/2014] [Accepted: 04/04/2014] [Indexed: 11/24/2022]
Abstract
Cytoplasmic male sterility and its fertility restoration via nuclear genes offer the possibility to understand the role of mitochondria during microsporogenesis. In most cases rearrangements in the mitochondrial DNA involving known mitochondrial genes as well as unknown sequences result in the creation of new chimeric open reading frames, which encode proteins containing transmembrane domains. So far, most of the CMS systems have been characterized via restriction fragment polymorphisms followed by transcript analysis. However, whole mitochondrial genome sequence analyses comparing male sterile and fertile cytoplasm open options for deeper insights into mitochondrial genome rearrangements. We more and more start to unravel how mitochondria are involved in triggering death of the male reproductive organs. Reduced levels of ATP accompanied by increased concentrations of reactive oxygen species, which are produced more under conditions of mitochondrial dysfunction, seem to play a major role in the fate of pollen production. Nuclear genes, so called restorer-of-fertility are able to restore the male fertility. Fertility restoration can occur via pentatricopeptide repeat (PPR) proteins or via different mechanisms involving non-PPR proteins.
Collapse
|
34
|
Liu C, Ma N, Wang PY, Fu N, Shen HL. Transcriptome sequencing and de novo analysis of a cytoplasmic male sterile line and its near-isogenic restorer line in chili pepper (Capsicum annuum L.). PLoS One 2013; 8:e65209. [PMID: 23750245 PMCID: PMC3672106 DOI: 10.1371/journal.pone.0065209] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 04/23/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The use of cytoplasmic male sterility (CMS) in F1 hybrid seed production of chili pepper is increasingly popular. However, the molecular mechanisms of cytoplasmic male sterility and fertility restoration remain poorly understood due to limited transcriptomic and genomic data. Therefore, we analyzed the difference between a CMS line 121A and its near-isogenic restorer line 121C in transcriptome level using next generation sequencing technology (NGS), aiming to find out critical genes and pathways associated with the male sterility. RESULTS We generated approximately 53 million sequencing reads and assembled de novo, yielding 85,144 high quality unigenes with an average length of 643 bp. Among these unigenes, 27,191 were identified as putative homologs of annotated sequences in the public protein databases, 4,326 and 7,061 unigenes were found to be highly abundant in lines 121A and 121C, respectively. Many of the differentially expressed unigenes represent a set of potential candidate genes associated with the formation or abortion of pollen. CONCLUSIONS Our study profiled anther transcriptomes of a chili pepper CMS line and its restorer line. The results shed the lights on the occurrence and recovery of the disturbances in nuclear-mitochondrial interaction and provide clues for further investigations.
Collapse
Affiliation(s)
- Chen Liu
- China Agricultural University, Beijing, China
| | - Ning Ma
- China Agricultural University, Beijing, China
| | | | - Nan Fu
- China Agricultural University, Beijing, China
| | | |
Collapse
|
35
|
Li X, Zhang TC, Qiao Q, Ren Z, Zhao J, Yonezawa T, Hasegawa M, Crabbe MJC, Li J, Zhong Y. Complete chloroplast genome sequence of holoparasite Cistanche deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from its host Haloxylon ammodendron (Chenopodiaceae). PLoS One 2013; 8:e58747. [PMID: 23554920 PMCID: PMC3598846 DOI: 10.1371/journal.pone.0058747] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/05/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. PRINCIPAL FINDINGS/SIGNIFICANCE: Here we report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae. The cp genome of C. deserticola is greatly reduced both in size (102,657 bp) and in gene content, indicating that all genes required for photosynthesis suffer from gene loss and pseudogenization, except for psbM. The striking difference from other holoparasitic plants is that it retains almost a full set of tRNA genes, and it has lower dN/dS for most genes than another close holoparasitic plant, E. virginiana, suggesting that Cistanche deserticola has undergone fewer losses, either due to a reduced level of holoparasitism, or to a recent switch to this life history. We also found that the rpoC2 gene was present in two copies within C. deserticola. Its own copy has much shortened and turned out to be a pseudogene. Another copy, which was not located in its cp genome, was a homolog of the host plant, Haloxylon ammodendron (Chenopodiaceae), suggesting that it was acquired from its host via a horizontal gene transfer.
Collapse
Affiliation(s)
- Xi Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ti-Cao Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qin Qiao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhumei Ren
- College of Life Science and Technology, Shanxi University, Taiyuan, China
| | - Jiayuan Zhao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Takahiro Yonezawa
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Masami Hasegawa
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - M. James C Crabbe
- Faculty of Creative Arts, Technologies and Science, Institute of Biomedical, Environmental Science and Technology, University of Bedfordshire, Luton, United Kingdom
| | - Jianqiang Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (JL); (YZ)
| | - Yang Zhong
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Institute of Biodiversity Science and Geobiology, Tibet University, Lhasa, China
- * E-mail: (JL); (YZ)
| |
Collapse
|
36
|
Ji J, Huang W, Yin C, Gong Z. Mitochondrial cytochrome c oxidase and F1Fo-ATPase dysfunction in peppers (Capsicum annuum L.) with cytoplasmic male sterility and its association with orf507 and Ψatp6-2 genes. Int J Mol Sci 2013; 14:1050-68. [PMID: 23296278 PMCID: PMC3565306 DOI: 10.3390/ijms14011050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 12/13/2012] [Accepted: 12/28/2012] [Indexed: 01/01/2023] Open
Abstract
Cytoplasmic male sterility (CMS) in pepper (Capsicum annuum L.) has been associated with novel genes in the mitochondria, such as orf507 and Ψatp6-2. Plant sterility has been proved to result from the rearrangement of the mitochondrial genome. Previous studies have demonstrated that orf507 is co-transcribed with the cox II gene, and Ψatp6-2 is truncated at the 3' region of the atp6-2 that is found in the maintainer line. Until this time, little has been known about the relationship between the novel gene and the function of its corresponding enzyme in mitochondria from the CMS pepper line. Moreover, the aberrant function of the mitochondrial enzymes is seldom reported in pepper. In this study, we observed that anther abortion occurred after the tetrad stage in the CMS line (HW203A), which was accompanied by premature programmed cell death (PCD) in the tapetum. The spatiotemporal expression patterns of orf507 and Ψatp6-2 were analyzed together with the corresponding enzyme activities to investigate the interactions of the genes and mitochondrial enzymes. The two genes were both highly expressed in the anther. The orf507 was down-regulated in HW203A (CMS line), with nearly no expression in HW203B (the maintainer line). In contrast, the cytochrome c oxidase activity in HW203A showed the opposite trend, reaching its highest peak at the tetrad stage when compared with HW203B at the same stage. The Ψatp6-2 in the CMS line was also down-regulated, but it was up-regulated in the maintainer line. The corresponding F(1)F(o)-ATPase activity in the CMS line was gradually decreased along with the development of the anther, which showed the same trend for Ψatp6-2 gene expression. On the contrary, with up-regulated gene expression of atp6-2 in the maintainer line, the F(1)F(o)-ATPase activity sharply decreased after the initial development stage, but gradually increased following the tetrad stage, which was contrary to what happened in the CMS line. Taken together, all these results may provide evidence for the involvement of aberrant mitochondrial cytochrome c oxidase and F(1)F(o)-ATPase in CMS pepper anther abortion. Moreover, the novel orf507 and Ψatp6-2 genes in the mitochondria may be involved in the dysfunction of the cytochrome c oxidase and F(1)F(o)-ATPase, respectively, which are responsible for the abortion of anthers in the CMS line.
Collapse
Affiliation(s)
- Jiaojiao Ji
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (J.J.); (W.H.); (C.Y.)
| | - Wei Huang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (J.J.); (W.H.); (C.Y.)
- State Key Laboratory for Stress Biology of Arid Region Crop, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chuanchuan Yin
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (J.J.); (W.H.); (C.Y.)
| | - Zhenhui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (J.J.); (W.H.); (C.Y.)
- State Key Laboratory for Stress Biology of Arid Region Crop, Northwest A&F University, Yangling 712100, Shaanxi, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-029-8708-2102; Fax: +86-029-8708-2613
| |
Collapse
|
37
|
Tan Y, Li S, Xie H, Duan S, Wang T, Zhu Y. Genetical and molecular analysis reveals a cooperating relationship between cytoplasmic male sterility- and fertility restoration-related genes in Oryza species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:9-19. [PMID: 20714705 DOI: 10.1007/s00122-010-1418-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 07/17/2010] [Indexed: 05/08/2023]
Abstract
Although the characterization of genes associated with cytoplasmic male sterility (CMS) and fertility restoration (Rf) has been well documented, the evolutionary relationship between nuclear Rf and CMS factors in mitochondria in Oryza species is still less understood. Here, 41 accessions from 7 Oryza species with AA genome were employed for analyzing the evolutionary relationships between the CMS factors and Rf candidates on chromosome 10. The phylogenetic tree based on restriction fragment length polymorphism patterns of CMS-associated mitochondrial genes showed that these 41 Oryza accessions fell into 3 distinct groups. Another phylogenetic tree based on PCR profiles of the nuclear Rf candidates on chromosome 10 was also established, and three groups were distinctively grouped. The accessions in each subgroup/group of the two phylogenetic trees are well parallel to each other. Furthermore, the 41 investigated accessions were test-crossed with Honglian (gametophytic type) and Wild-abortive (sporophytic type) CMS, and 5 groups were classified according to their restoring ability. The accessions in the same subgroup of the two phylogenetic trees shared similar fertility restoring pattern. Therefore, we conclude that the CMS-associated mitotypes are compatible to the Rf candidate-related nucleotypes, CMS and Rf have a parallel evolutionary relation in the Oryza species.
Collapse
Affiliation(s)
- YanPing Tan
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Science, Wuhan University, Wuhan, 430072, China
| | | | | | | | | | | |
Collapse
|
38
|
Duan JQ, DU GH, Li JY, Liang XN, Liu FH. [Cloning and expression of atp6 and atp9 genes from ramie (Boehmeria nivea (L.) Gaud.) and their relationship with cytoplasmic male sterility]. YI CHUAN = HEREDITAS 2008; 30:1487-98. [PMID: 19073559 DOI: 10.3724/sp.j.1005.2008.01487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The atp6 and apt9 gene fragments associated with cytoplasmic male sterility (CMS) were cloned from the mitochondrial DNA of a ramie (Boehmeria nivea (L.) Gaud.) cytoplasmic male sterile line and its maintainer and restorer lines using PCR and degenerated primer strategy. The primers were designed according to the reserved sequences in the encoding region of mitochondrial genes atp6 and atp9 of some dicotyledons from GenBank. These fragments did not have complete encoding region but showed the homology of 94% and 85% with atp6 and atp9 genes from the referred dicotyledons in GenBank. The complete atp6 and atp9 genes including the complete open reading frames were cloned by means of amplifying the 3' and 5'end unknown sequences of these gene fragments using DNA Walking method. The atp6 gene showed no difference among ramie male sterile line, maintainer and restorer lines at mtDNA sequence, transcription and translation control and protein level. However, compared to the maintainer and restorer lines, the atp9 gene of the male sterile line was different and deletion in several bases at the 3' end of the encoding region. An abnormally high expression of atp9 gene in the male sterile line at the budding stage and full-bloom stage was analyzed by RT-PCR analysis. These results indicated that the variation in DNA sequence and/or abnormality in expression of atp9 gene in the male sterile line maybe closely related to ramie CMS.
Collapse
Affiliation(s)
- Ji-Qiang Duan
- Laboratory of Plant Improvement and Utilization, Yunnan University, Kunming 650091, China.
| | | | | | | | | |
Collapse
|
39
|
Lee J, Yoon JB, Park HG. Linkage analysis between the partial restoration (pr) and the restorer-of-fertility (Rf) loci in pepper cytoplasmic male sterility. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:383-9. [PMID: 18465115 DOI: 10.1007/s00122-008-0782-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 04/19/2008] [Indexed: 05/24/2023]
Abstract
Cytoplasmic male sterility (CMS) in chili pepper is restored by one major dominant nuclear gene, restorer-of-fertility (Rf), together with some modifier genes and is also affected by temperature. As a result, male fertility was identified as having several phenotypes. That identified and used in the present study allowed partial restoration of fertility, producing plants that simultaneously produce normal and aborted pollen grains, with most grains stuck to the anther wall, even after dehiscence, resulting in low seed set per fruit. The trait was visible only in the presence of Paterson's sterile cytoplasm and was controlled by a recessive nuclear gene, partial restoration (pr). A CAPS marker, PR-CAPS, closely linked to the trait, has been developed by Lee et al. (2008). In this study, linkage analysis was performed in 205 F(2) individuals derived from the 'Buja' Korean commercial F(1) chili pepper variety using the PR-CAPS marker and the three Rf-linked markers (OPP13-CAPS, AFRF8-CAPS, and CRF-SCAR) previously reported. Consequently, we found that these four markers were tightly linked. This result means that the pr gene might be tightly linked to the Rf locus or the third allele of Rf locus. The sequence diversity of the pr- and Rf-linked markers was also analyzed. The internal sequences of OPP13-CAPS (1,180 bp) and PR-CAPS (640 bp) markers in 91 Korean inbred lines were clearly divided into three haplotypes. According to the sequencing results, a new PR-CAPS (MseI or SphI digestion) marker was designed to distinguish the three haplotypes. This marker will be useful for marker-assisted selection to develop new maintainers and restorers in commercial hybrid pepper breeding using CMS.
Collapse
Affiliation(s)
- Jundae Lee
- Research and Development Unit, Pepper and Breeding Institute, Business Incubator, CALS, Seoul National University, Suwon, South Korea
| | | | | |
Collapse
|
40
|
Allen JO, Fauron CM, Minx P, Roark L, Oddiraju S, Lin GN, Meyer L, Sun H, Kim K, Wang C, Du F, Xu D, Gibson M, Cifrese J, Clifton SW, Newton KJ. Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 2007; 177:1173-92. [PMID: 17660568 PMCID: PMC2034622 DOI: 10.1534/genetics.107.073312] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have sequenced five distinct mitochondrial genomes in maize: two fertile cytotypes (NA and the previously reported NB) and three cytoplasmic-male-sterile cytotypes (CMS-C, CMS-S, and CMS-T). Their genome sizes range from 535,825 bp in CMS-T to 739,719 bp in CMS-C. Large duplications (0.5-120 kb) account for most of the size increases. Plastid DNA accounts for 2.3-4.6% of each mitochondrial genome. The genomes share a minimum set of 51 genes for 33 conserved proteins, three ribosomal RNAs, and 15 transfer RNAs. Numbers of duplicate genes and plastid-derived tRNAs vary among cytotypes. A high level of sequence conservation exists both within and outside of genes (1.65-7.04 substitutions/10 kb in pairwise comparisons). However, sequence losses and gains are common: integrated plastid and plasmid sequences, as well as noncoding "native" mitochondrial sequences, can be lost with no phenotypic consequence. The organization of the different maize mitochondrial genomes varies dramatically; even between the two fertile cytotypes, there are 16 rearrangements. Comparing the finished shotgun sequences of multiple mitochondrial genomes from the same species suggests which genes and open reading frames are potentially functional, including which chimeric ORFs are candidate genes for cytoplasmic male sterility. This method identified the known CMS-associated ORFs in CMS-S and CMS-T, but not in CMS-C.
Collapse
Affiliation(s)
- James O Allen
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kim DH, Kang JG, Kim BD. Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper (Capsicum annuum L.). PLANT MOLECULAR BIOLOGY 2007; 63:519-32. [PMID: 17238047 DOI: 10.1007/s11103-006-9106-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 10/30/2006] [Indexed: 05/13/2023]
Abstract
Cytoplasmic male sterility (CMS) in plants is known to be associated with novel open reading frames (ORFs) that result from recombination events in the mitochondrial genome. In this study Southern and Northern blot analyses using several mitochondrial DNA probes were conducted to detect the presence of differing band patterns between male fertile and CMS lines of chili pepper (Capsicum annuum L.). In the CMS pepper, a novel ORF, termed orf456, was found at the 3'-end of the coxll gene. Western blot analysis revealed the expression of an approximately 17-kDa product in the CMS line, and the intensity of expression of this protein was severely reduced in the restorer pepper line. To investigate the functional role of the ORF456 protein in plant mitochondria, we carried out two independent experiments to transform Arabidopsis with a mitochondrion-targeted orf456 gene construct by Agrobacterium-mediated transformation. About 45 % of the T1 transgenic population showed the male-sterile phenotype and no seed set. Pollen grains from semi-sterile T1 plants were observed to have defects on the exine layer and vacuolated pollen phenotypes. It is concluded that this newly discovered orf456 may represent a strong candidate gene--from among the many CMS-associated mitochondrial genes--for determining the male-sterile phenotype of CMS in chili pepper.
Collapse
Affiliation(s)
- Dong Hwan Kim
- Department of Plant Science, College of Agriculture and Life Sciences, and Center for Plant Molecular Genetics and Breeding Research, Seoul National University, Seoul 151-921, Korea
| | | | | |
Collapse
|