1
|
Abstract
This article provides an overview of sexual reproduction in the ascomycetes, a phylum of fungi that is named after the specialized sacs or "asci" that hold the sexual spores. They have therefore also been referred to as the Sac Fungi due to these characteristic structures that typically contain four to eight ascospores. Ascomycetes are morphologically diverse and include single-celled yeasts, filamentous fungi, and more complex cup fungi. The sexual cycles of many species, including those of the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe and the filamentous saprobes Neurospora crassa, Aspergillus nidulans, and Podospora anserina, have been examined in depth. In addition, sexual or parasexual cycles have been uncovered in important human pathogens such as Candida albicans and Aspergillus fumigatus, as well as in plant pathogens such as Fusarium graminearum and Cochliobolus heterostrophus. We summarize what is known about sexual fecundity in ascomycetes, examine how structural changes at the mating-type locus dictate sexual behavior, and discuss recent studies that reveal that pheromone signaling pathways can be repurposed to serve cellular roles unrelated to sex.
Collapse
|
2
|
da Rosa-Garzon NG, Laure HJ, Souza-Motta CMD, Rosa JC, Cabral H. Medium pH in submerged cultivation modulates differences in the intracellular protein profile of Fusarium oxysporum. Prep Biochem Biotechnol 2017; 47:664-672. [DOI: 10.1080/10826068.2017.1303610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Nathália Gonsales da Rosa-Garzon
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Hélen Julie Laure
- School of Medicine of Ribeirão Preto, Department of Molecular and Cellular Biology and Pathogenic Bioagents, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - José César Rosa
- School of Medicine of Ribeirão Preto, Department of Molecular and Cellular Biology and Pathogenic Bioagents, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Hamilton Cabral
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
3
|
Kim HK, Jo SM, Kim GY, Kim DW, Kim YK, Yun SH. A Large-Scale Functional Analysis of Putative Target Genes of Mating-Type Loci Provides Insight into the Regulation of Sexual Development of the Cereal Pathogen Fusarium graminearum. PLoS Genet 2015; 11:e1005486. [PMID: 26334536 PMCID: PMC4559316 DOI: 10.1371/journal.pgen.1005486] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 08/06/2015] [Indexed: 01/12/2023] Open
Abstract
Fusarium graminearum, the causal agent of Fusarium head blight in cereal crops, produces sexual progeny (ascospore) as an important overwintering and dissemination strategy for completing the disease cycle. This homothallic ascomycetous species does not require a partner for sexual mating; instead, it carries two opposite mating-type (MAT) loci in a single nucleus to control sexual development. To gain a comprehensive understanding of the regulation of sexual development in F. graminearum, we used in-depth and high-throughput analyses to examine the target genes controlled transcriptionally by two-linked MAT loci (MAT1-1, MAT1-2). We hybridized a genome-wide microarray with total RNAs from F. graminearum mutants that lacked each MAT locus individually or together, and overexpressed MAT1-2-1, as well as their wild-type progenitor, at an early stage of sexual development. A comparison of the gene expression levels revealed a total of 1,245 differentially expressed genes (DEGs) among all of the mutants examined. Among these, genes involved in metabolism, cell wall organization, cellular response to stimuli, cell adhesion, fertilization, development, chromatin silencing, and signal transduction, were significantly enriched. Protein binding microarray analysis revealed the presence of putative core DNA binding sequences (ATTAAT or ATTGTT) for the HMG (high mobility group)-box motif in the MAT1-2-1 protein. Targeted deletion of 106 DEGs revealed 25 genes that were specifically required for sexual development, most of which were regulated transcriptionally by both the MAT1-1 and MAT1-2 loci. Taken together with the expression patterns of key target genes, we propose a regulatory pathway for MAT-mediated sexual development, in which both MAT loci may be activated by several environmental cues via chromatin remodeling and/or signaling pathways, and then control the expression of at least 1,245 target genes during sexual development via regulatory cascades and/or networks involving several downstream transcription factors and a putative RNA interference pathway.
Collapse
Affiliation(s)
- Hee-Kyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Seong-Mi Jo
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Gi-Yong Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Da-Woon Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Yeon-Ki Kim
- Division of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do, Republic of Korea
| | - Sung-Hwan Yun
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| |
Collapse
|
4
|
Bidard F, Aït Benkhali J, Coppin E, Imbeaud S, Grognet P, Delacroix H, Debuchy R. Genome-wide gene expression profiling of fertilization competent mycelium in opposite mating types in the heterothallic fungus Podospora anserina. PLoS One 2011; 6:e21476. [PMID: 21738678 PMCID: PMC3125171 DOI: 10.1371/journal.pone.0021476] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/29/2011] [Indexed: 12/15/2022] Open
Abstract
Background Mating-type loci in yeasts and ascomycotan filamentous fungi (Pezizomycotina) encode master transcriptional factors that play a critical role in sexual development. Genome-wide analyses of mating-type-specification circuits and mating-type target genes are available in Saccharomyces cerevisiae and Schizosaccharomyces pombe; however, no such analyses have been performed in heterothallic (self-incompatible) Pezizomycotina. The heterothallic fungus Podospora anserina serves as a model for understanding the basic features of mating-type control. Its mat+ and mat− mating types are determined by dissimilar allelic sequences. The mat− sequence contains three genes, designated FMR1, SMR1 and SMR2, while the mat+ sequence contains one gene, FPR1. FMR1 and FPR1 are the major regulators of fertilization, and this study presents a genome-wide view of their target genes and analyzes their target gene regulation. Methodology/Principal Findings The transcriptomic profiles of the mat+ and mat− strains revealed 157 differentially transcribed genes, and transcriptomic analysis of fmr1− and fpr1− mutant strains was used to determine the regulatory actions exerted by FMR1 and FPR1 on these differentially transcribed genes. All possible combinations of transcription repression and/or activation by FMR1 and/or FPR1 were observed. Furthermore, 10 additional mating-type target genes were identified that were up- or down-regulated to the same level in mat+ and mat− strains. Of the 167 genes identified, 32 genes were selected for deletion, which resulted in the identification of two genes essential for the sexual cycle. Interspecies comparisons of mating-type target genes revealed significant numbers of orthologous pairs, although transcriptional profiles were not conserved between species. Conclusions/Significance This study represents the first comprehensive genome-wide analysis of mating-type direct and indirect target genes in a heterothallic filamentous fungus. Mating-type transcription factors have many more target genes than are found in yeasts and exert a much greater diversity of regulatory actions on target genes, most of which are not directly related to mating.
Collapse
Affiliation(s)
- Frédérique Bidard
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
| | - Jinane Aït Benkhali
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
| | - Evelyne Coppin
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
| | - Sandrine Imbeaud
- CNRS, Centre de Génétique Moléculaire FRE3144, GODMAP, Gif sur Yvette, France
| | - Pierre Grognet
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- UFR des Sciences du Vivant, Université Paris 7-Denis Diderot, Paris, France
| | - Hervé Delacroix
- CNRS, Centre de Génétique Moléculaire FRE3144, GODMAP, Gif sur Yvette, France
- Univ Paris-Sud, Orsay, France
| | - Robert Debuchy
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- * E-mail:
| |
Collapse
|
5
|
Son H, Lee J, Park AR, Lee YW. ATP citrate lyase is required for normal sexual and asexual development in Gibberella zeae. Fungal Genet Biol 2011; 48:408-17. [PMID: 21237280 DOI: 10.1016/j.fgb.2011.01.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/13/2010] [Accepted: 01/03/2011] [Indexed: 01/08/2023]
Abstract
Adenosine triphosphate (ATP) citrate lyase (ACL) is a key enzyme in the production of cytosolic acetyl-CoA, which is crucial for de novo lipid synthesis and histone acetylation in mammalian cells. In this study, we characterized the mechanistic roles of ACL in the homothallic ascomycete fungus Gibberella zeae, which causes Fusarium head blight in major cereal crops. Deletion of ACL in the fungus resulted in a complete loss of self and female fertility as well as a reduction in asexual reproduction, virulence, and trichothecene production. When the wild-type strain was spermatized with the ACL deletion mutants, they produced viable ascospores, however ascospore delimitation was not properly regulated. Although lipid synthesis was not affected by ACL deletion, histone acetylation was dramatically reduced in the ACL deletion mutants during sexual development, suggesting that the defects in sexual reproduction were caused by the reduction in histone acetylation. This study is the first report demonstrating a link between sexual development and ACL-mediated histone acetylation in fungi.
Collapse
Affiliation(s)
- Hokyoung Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | |
Collapse
|
6
|
Trail F. For blighted waves of grain: Fusarium graminearum in the postgenomics era. PLANT PHYSIOLOGY 2009; 149:103-10. [PMID: 19126701 PMCID: PMC2613717 DOI: 10.1104/pp.108.129684] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/06/2008] [Indexed: 05/22/2023]
Affiliation(s)
- Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824-1312, USA.
| |
Collapse
|
7
|
A putative pheromone signaling pathway is dispensable for self-fertility in the homothallic ascomycete Gibberella zeae. Fungal Genet Biol 2008; 45:1188-96. [DOI: 10.1016/j.fgb.2008.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/10/2008] [Accepted: 05/14/2008] [Indexed: 11/21/2022]
|