1
|
Shi XL, Yang J, Zhang Y, Qin P, Zhou HY, Chen YZ. The photoactivated antifungal activity and possible mode of action of sodium pheophorbide a on Diaporthe mahothocarpus causing leaf spot blight in Camellia oleifera. Front Microbiol 2024; 15:1403478. [PMID: 38939192 PMCID: PMC11208333 DOI: 10.3389/fmicb.2024.1403478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Sodium pheophorbide a (SPA) is a natural plant-derived photosensitizer, with high photoactivated antifungal activity against some phytopathogenic fungi. However, its fungicidal effect on Diaporthe mahothocarpus, a novel pathogen that causes Camellia oleifera leaf spot blight, is unclear. Methods In the present study, we explored its inhibitory effects on spore germination and mycelial growth of D. mahothocarpus. Then we determined its effects on the cell membrane, mycelial morphology, redox homeostasis, and cell death through bioassay. Finally, RNA-seq was used further to elucidate its mode of action at the transcriptional level. Results We found that SPA effectively inhibited the growth of D. mahothocarpus, with half-maximal effective concentrations to inhibit mycelial growth and spore germination of 1.059 and 2.287 mg/mL, respectively. After 1.0 mg/mL SPA treatment, the conductivity and malondialdehyde content of D. mahothocarpus were significantly increased. Scanning electron microscopy and transmission electron microscopy indicated that SPA significantly affected the morphology and ultrastructure of D. mahothocarpus hyphae, revealing that SPA can destroy the mycelial morphology and cell structure, especially the cell membrane of D. mahothocarpus. Furthermore, transcriptome analysis revealed that SPA significantly suppressed the expression of genes involved in morphology, cell membrane permeability, and oxidative stress. Then, we also found that SPA significantly promoted the accumulation of reactive oxygen species (ROS) in of D. mahothocarpus, while it decreased the content of reduced glutathione, inhibited the enzyme activities of superoxide dismutase and catalase, and exacerbated DNA damage. Annexin V-FITC/PI staining also confirmed that 1.0 mg/mL SPA could significantly induce apoptosis and necrosis. Discussion Generally, SPA can induce ROS-mediated oxidative stress and cell death, thus destroying the cell membrane and hyphal morphology, and ultimately inhibiting mycelial growth, which indicates that SPA has multiple modes of action, providing a scientific basis for the use of SPA as an alternative plant-derived photoactivated fungicide against C. oleifera leaf spot blight.
Collapse
Affiliation(s)
- Xu-Long Shi
- College of Forestry, Guizhou University, Guiyang, China
| | - Jing Yang
- College of Forestry, Guizhou University, Guiyang, China
| | - Yu Zhang
- College of Forestry, Guizhou University, Guiyang, China
| | - Piao Qin
- College of Forestry, Guizhou University, Guiyang, China
| | - He-Ying Zhou
- College of Forestry, Guizhou University, Guiyang, China
| | - Yun-Ze Chen
- School of Biological Sciences, Guizhou Education University, Guiyang, China
| |
Collapse
|
2
|
Krupalini V, Janardhana GR. Diaporthe phaseolorum causing dieback disease on Melia dubia cav. in Karnataka state (India). Arch Microbiol 2024; 206:92. [PMID: 38319486 DOI: 10.1007/s00203-023-03821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Melia dubia is an important tree species grown worldwide for its medicinal and timber values. It is widely used in timber and pulp industry and also as an organic pesticide, fertilisers, agro-forestry and herbal formulations. During 2019-2022, a dieback disease in plantations of M. dubia was recorded in Mysore, Mandya, Chamarajanagar, Hassan and Tumkur districts of Karnataka state (India) with disease incidence of 26.25%. The associated pathogen was isolated on PDA medium and its morpho-cultural characteristics were studied. The genomic DNA of the pathogen was isolated, and rDNA was amplified and sequenced using universal primers. Based on the microscopic, morpho-cultural, sequence data and phylogenetic analysis, the pathogen was identified as Diaporthe phaseolorum (Cooke & Ellis) Sacc. Koch's postulates were performed both in vitro and in vivo and the typical symptoms of dieback disease were recorded on post-inoculated saplings. The dieback disease is responsible for the poor growth of Melia species in the region, and hence, there is an urgent need to manage the disease in plantations using integrated management practices. This is the first report of the occurrence of D. phaseolorum on M. dubia plantations in India.
Collapse
Affiliation(s)
- V Krupalini
- Molecular Phytodiagnostic Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore, India, 570 006
| | - G R Janardhana
- Molecular Phytodiagnostic Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore, India, 570 006.
| |
Collapse
|
3
|
Dutta S, Houdinet G, NandaKafle G, Kafle A, Hawkes CV, Garcia K. Agrobacterium tumefaciens-mediated transformation of Nigrospora sp. isolated from switchgrass leaves and antagonistic toward plant pathogens. J Microbiol Methods 2023; 215:106849. [PMID: 37907117 DOI: 10.1016/j.mimet.2023.106849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Nigrospora is a diverse genus of fungi colonizing plants through endophytic, pathogenic, or saprobic interactions. Endophytic isolates can improve growth and development of host plants, as well as their resistance to microbial pathogens, but exactly how they do so remains poorly understood. Developing a reliable transformation method is crucial to investigate these mechanisms, in particular to identify pivotal genes for specific functions that correlate with specific traits. In this study, we identified eight isolates of Nigrospora sp. internally colonizing the leaves of switchgrass plants cultivated in North Carolina. Using an Agrobacterium tumefaciens-mediated transformation approach with control and GFP-expressing vectors, we report the first successful transformation of two Nigrospora isolates. Finally, we demonstrate that wild-type and transgenic isolates both negatively impact the growth of two plant pathogens in co-culture conditions, Bipolaris maydis and Parastagonospora nodorum, responsible for the Southern Leaf Blight and Septoria Nodorum Blotch diseases, respectively. The GFP-transformed strains developed here can therefore serve as accurate reporters of spatial interactions in future studies of Nigrospora and pathogens in the plant. Finally, the transformation method we describe lays the foundation for further genetic research on the Nigrospora genus to expand our mechanistic understanding of plant-endophyte interactions.
Collapse
Affiliation(s)
- Summi Dutta
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Gabriella Houdinet
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, USA
| | - Gitanjali NandaKafle
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Arjun Kafle
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Christine V Hawkes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, USA
| | - Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
4
|
Montoya MRA, Massa GA, Colabelli MN, Ridao ADC. Efficient Agrobacterium tumefaciens-mediated transformation system of Diaporthe caulivora. J Microbiol Methods 2021; 184:106197. [PMID: 33713724 DOI: 10.1016/j.mimet.2021.106197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022]
Abstract
This is the first report describing the genetic transformation of Diaporthe caulivora, the soybean stem canker fungus. A simple and 100% efficient protocol of Agrobacterium tumefaciens-mediated transformation used mycelium as starting material and the hygromycin B resistance and green fluorescent protein (GFP) as a selection and reporter agents, respectively. All transgenic isolates were mitotically stable in two independent experiments and polymerase chain reaction with hygromycin B resistance primers confirmed successful T-DNA integration into the fungal genome. Plant-fungus interaction studies, including pathogenicity, latency, and endophytism, as well as further studies of random and targeted mutagenesis will be possible with GFP-expressing isolates of D. caulivora and other species in the Diaporthe / Phomopsis complex.
Collapse
Affiliation(s)
- Marina R A Montoya
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA - CONICET, Ruta 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina..
| | - Gabriela A Massa
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA - CONICET, Ruta 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina.; Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (FCA, UNMdP), Ruta 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina
| | - Mabel N Colabelli
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (FCA, UNMdP), Ruta 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina
| | - Azucena Del Carmen Ridao
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (FCA, UNMdP), Ruta 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina
| |
Collapse
|
5
|
Villena CIF, Gomes RR, Fernandes L, Florencio CS, Bombassaro A, Grisolia ME, da Silva Trindade E, de Hoog S, Vicente VA. Agrobacterium tumefaciens-Mediated Transformation of Fonsecaea monophora and Fonsecaea erecta for Host-Environment Interaction Studies. J Fungi (Basel) 2020; 6:jof6040325. [PMID: 33265950 PMCID: PMC7711947 DOI: 10.3390/jof6040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
The fungal genus Fonsecaea contains etiological agents of human chromoblastomycosis, a (sub)tropical, (sub)cutaneous implantation disease caused by plant contact. The invasive potential differs significantly between species. Infections by Fonsecaea monophora are believed to originate from the environment and the species has been reported as one of the main causative agents of the disease, but also of cases of primary brain infection. The epidemiology of the disease has not been fully elucidated and questions related to its infection route and virulence are still to be clarified. The environmental species Fonsecaea erecta was isolated from organic material and living plants in endemic areas for chromoblastomycosis in Brazil. The present paper describes Agrobacteriumtumefaciens-mediated transformation (AMT) of the environmental species F. erecta and the pathogenic species F. monophora. We propose the use of Agrobacterium transformation for future gene function studies related to Fonsecaea virulence and pathogenicity. We evaluated the co-cultivation ratios 1:1, 10:1 and 100:1 (Agrobacterium:conidia) at 28 °C during 72 h. pAD1625 and pCAMDsRed plasmids were inserted into both species. Confirmation of transformation was realized by hph gene amplification and Southern blot determined the amount of foreign DNA integrated into the genome. In order to evaluate a potential link between environmental and clinical strains, we obtained red fluorescent transformants after pCAMDsRed insertion. We observed by confocal fluorescence microscopy that both F. monophora and F. erecta were able to colonize the palm Bactris gasipaes, penetrating the epidermis. These results contribute to understanding the ability of Fonsecaea species to adapt to different environmental and host conditions.
Collapse
Affiliation(s)
- Cristina Isabel Ferrer Villena
- Engineering Bioprocess and Biotechnology Graduate Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba 81530-000, Brazil; (C.I.F.V.); (M.E.G.)
| | - Renata Rodrigues Gomes
- Microbiology, Parasitology and Pathology Graduate Program, Department of Pathology, Federal University of Paraná, Curitiba 81530-000, Brazil; (R.R.G.); (A.B.)
| | - Larissa Fernandes
- Microbial Biology Graduate Program, Department of Cell Biology, University of Brasília, Brasilia 70910-900, Brazil; (L.F.); (C.S.F.)
| | - Camille Silva Florencio
- Microbial Biology Graduate Program, Department of Cell Biology, University of Brasília, Brasilia 70910-900, Brazil; (L.F.); (C.S.F.)
| | - Amanda Bombassaro
- Microbiology, Parasitology and Pathology Graduate Program, Department of Pathology, Federal University of Paraná, Curitiba 81530-000, Brazil; (R.R.G.); (A.B.)
- Department of Medical Microbiology, Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, 6525GA Nijmegen, The Netherlands
| | - Maria Eduarda Grisolia
- Engineering Bioprocess and Biotechnology Graduate Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba 81530-000, Brazil; (C.I.F.V.); (M.E.G.)
| | | | - Sybren de Hoog
- Microbiology, Parasitology and Pathology Graduate Program, Department of Pathology, Federal University of Paraná, Curitiba 81530-000, Brazil; (R.R.G.); (A.B.)
- Department of Medical Microbiology, Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, 6525GA Nijmegen, The Netherlands
- Correspondence: (S.d.H.); (V.A.V.); Tel.: +31-683-087-882 (S.d.H.); +55-413-361-1704 (V.A.V.)
| | - Vania Aparecida Vicente
- Engineering Bioprocess and Biotechnology Graduate Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba 81530-000, Brazil; (C.I.F.V.); (M.E.G.)
- Microbiology, Parasitology and Pathology Graduate Program, Department of Pathology, Federal University of Paraná, Curitiba 81530-000, Brazil; (R.R.G.); (A.B.)
- Correspondence: (S.d.H.); (V.A.V.); Tel.: +31-683-087-882 (S.d.H.); +55-413-361-1704 (V.A.V.)
| |
Collapse
|
6
|
Hettiarachchige IK, Ludlow EJ, Ekanayake PN, Brohier ND, Sahab S, Sawbridge TI, Spangenberg GC, Guthridge KM. Generation of Epichloë Strains Expressing Fluorescent Proteins Suitable for Studying Host-Endophyte Interactions and Characterisation of a T-DNA Integration Event. Microorganisms 2019; 8:E54. [PMID: 31892173 PMCID: PMC7023320 DOI: 10.3390/microorganisms8010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 11/17/2022] Open
Abstract
Methods for the identification and localisation of endophytic fungi are required to study the establishment, development, and progression of host-symbiont interactions, as visible reactions or disease symptoms are generally absent from host plants. Fluorescent proteins have proved valuable as reporter gene products, allowing non-invasive detection in living cells. This study reports the introduction of genes for two fluorescent proteins, green fluorescent protein (GFP) and red fluorescent protein, DsRed, into the genomes of two distinct perennial ryegrass (Lolium perenne L.)-associated Epichloë endophyte strains using A. tumefaciens-mediated transformation. Comprehensive characterisation of reporter gene-containing endophyte strains was performed using molecular genetic, phenotypic, and bioinformatic tools. A combination of long read and short read sequencing of a selected transformant identified a single complex T-DNA insert of 35,530 bp containing multiple T-DNAs linked together. This approach allowed for comprehensive characterisation of T-DNA integration to single-base resolution, while revealing the unanticipated nature of T-DNA integration in the transformant analysed. These reporter gene endophyte strains were able to establish and maintain stable symbiotum with the host. In addition, the same endophyte strain labelled with two different fluorescent proteins were able to cohabit the same plant. This knowledge can be used to provide the basis to develop strategies to gain new insights into the host-endophyte interaction through independent and simultaneous monitoring in planta throughout its life cycle in greater detail.
Collapse
Affiliation(s)
- Inoka K. Hettiarachchige
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Emma J. Ludlow
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Piyumi N. Ekanayake
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Natasha D. Brohier
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Sareena Sahab
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Timothy I. Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Kathryn M. Guthridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| |
Collapse
|
7
|
Sundaresan N, Jagan EG, Kathamuthu G, Pandi M. Internal transcribed spacer 2 (ITS2) molecular morphometric analysis based species delimitation of foliar endophytic fungi from Aglaia elaeagnoidea, Flacourtia inermis and Premna serratifolia. PLoS One 2019; 14:e0215024. [PMID: 30964914 PMCID: PMC6456209 DOI: 10.1371/journal.pone.0215024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/25/2019] [Indexed: 11/19/2022] Open
Abstract
Molecular morphometrics is an emerging third dimensional aspect of fungal species delimitation. They have been demonstrated to be more informative than conventional barcoding methods. Hence in this study, foliar endophytic fungal (FEF) assemblages in three Magnoliopsida plants were delimited using nuclear ribosomal internal transcribed spacer 2 (ITS2) sequence-secondary structural features based phylogenetic analysis, also known as molecular morphometrics. A total of 392 FEF isolates were obtained from the Aglaia elaeagnoidea, Flacourtia inermis, and Premna serratifolia leaves and grouped into 98 morphotypes. Among these host plants, P. serratifolia showed the maximum percentage of colonization frequency. Representatives of each morphotype was sequenced and subjected to further molecular characterization. The results revealed that morphotypes were belonged to the phylum of Ascomycota, distributed over two classes (Sordariomycetes (68.59%) and Dothideomycetes (31.41%)), 6 orders and 19 genera. Based on compensatory base changes (CBC) analysis and absolute identity of ITS2 structure, 21, 20 and 23 species were recognized from A. elaeagnoidea, F. inermis, and P. serratifolia respectively. Diversity indices were higher in A. elaeagnoidea, despite it accounted for a modest 16.8% of total isolates recorded in this study. The genus Colletotrichum was predominant in A. elaeagnoidea (39%) and P. serratifolia (48%). Similarly, Diaporthe (43%) was dominant in F. inermis. Several host-specific species were also observed. This study concludes that these plants host diverse species of Ascomycota. To the best of our knowledge, this is the first detailed report on FEF diversity from these plants. Also, the inclusion of ITS2 secondary structure information along with the sequence provides a further dimension to resolve the inherent problems in identification of fungal species.
Collapse
Affiliation(s)
- Natesan Sundaresan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Enthai Ganeshan Jagan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - GokulRaj Kathamuthu
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Mohan Pandi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
8
|
Agrobacterium-Mediated Transformation of Diaporthe schini Endophytes Associated with Vitis labrusca L. and Its Antagonistic Activity Against Grapevine Phytopathogens. Indian J Microbiol 2019; 59:217-224. [PMID: 31031437 DOI: 10.1007/s12088-019-00787-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/19/2019] [Indexed: 10/27/2022] Open
Abstract
Fungus-caused diseases are among the greatest losses in grapevine culture. Biological control of pathogens by endophytes may be used to decrease fungicide application rates and environmental impacts. Previously, Diaporthe sp. B46-64 and C27-07 were highlighted as antagonists of grapevine phytopathogens. Herein, molecular multigene (ITS-TUB-TEF1) identification and phylogenetic analysis allowed the identification of these endophytes as belonging to Diaporthe schini species. Agrobacterium tumefaciens-mediated transformation was employed for obtaining 14 stable and traceable gfp- or DsRed-expressing transformants, with high transformation efficiency: 96% for the pFAT-GFP plasmid and 98% for pCAM-DsRed plasmid. Transformants were resistant to hygromycin B with gene hph confirmed by polymerase chain reaction and proved to be mitotically stable, expressing the fluorescent phenotype, with morphological differences in the colonies when compared with wild strains. In vitro antagonism tests revealed an increased antagonistic activity of some transformant strains. The current genetic transformation of D. schini mediated by A. tumefaciens proved to be an efficient technique within the randomized insertion of reporter genes for the monitoring of the strain in the environment.
Collapse
|
9
|
Wężowicz K, Rozpądek P, Turnau K. Interactions of arbuscular mycorrhizal and endophytic fungi improve seedling survival and growth in post-mining waste. MYCORRHIZA 2017; 27:499-511. [PMID: 28317065 PMCID: PMC5486607 DOI: 10.1007/s00572-017-0768-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/10/2017] [Indexed: 05/08/2023]
Abstract
The impact of fungal endophytes and the modulating role of arbuscular mycorrhizal fungi (AMF) on the vitality of Verbascum lychnitis, grown in the laboratory in a substratum from a post-mining waste dump was investigated. We report that inoculation with a single endophyte negatively affected the survival rate and biomass production of most of the plant-endophyte consortia examined. The introduction of arbuscular mycorrhiza fungi into this setup (dual inoculation) had a beneficial effect on both biomass yield and survivability. V. lychnitis co-inoculated with AMF and Cochliobolus sativus, Diaporthe sp., and Phoma exigua var. exigua yielded the highest biomass, exceeding the growth rate of both non-inoculated and AMF plants. AMF significantly improved the photosynthesis rates of the plant-endophyte consortia, which were negatively affected by inoculation with single endophytes. The abundance of PsbC, a photosystem II core protein previously shown to be upregulated in plants colonized by Epichloe typhina, exhibited a significant increase when the negative effect of the fungal endophyte was attenuated by AMF.
Collapse
Affiliation(s)
- Katarzyna Wężowicz
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Piotr Rozpądek
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland.
| | - Katarzyna Turnau
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
10
|
Santos PJCD, Savi DC, Gomes RR, Goulin EH, Da Costa Senkiv C, Tanaka FAO, Almeida ÁMR, Galli-Terasawa L, Kava V, Glienke C. Diaporthe endophytica and D. terebinthifolii from medicinal plants for biological control of Phyllosticta citricarpa. Microbiol Res 2016; 186-187:153-60. [DOI: 10.1016/j.micres.2016.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 10/22/2022]
|
11
|
Zhang J, Bayram Akcapinar G, Atanasova L, Rahimi MJ, Przylucka A, Yang D, Kubicek CP, Zhang R, Shen Q, Druzhinina IS. The neutral metallopeptidase NMP1 ofTrichoderma guizhouenseis required for mycotrophy and self-defence. Environ Microbiol 2015; 18:580-97. [DOI: 10.1111/1462-2920.12966] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Jian Zhang
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Gunseli Bayram Akcapinar
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | - Lea Atanasova
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | - Mohammad Javad Rahimi
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | | | - Dongqing Yang
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Christian P. Kubicek
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | - Ruifu Zhang
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Qirong Shen
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Irina S. Druzhinina
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| |
Collapse
|
12
|
Udayanga D, Castlebury LA, Rossman AY, Chukeatirote E, Hyde KD. The Diaporthe sojae species complex: Phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops. Fungal Biol 2015; 119:383-407. [PMID: 25937066 DOI: 10.1016/j.funbio.2014.10.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/28/2014] [Indexed: 01/25/2023]
Abstract
Phytopathogenic species of Diaporthe are associated with a number of soybean diseases including seed decay, pod and stem blight and stem canker and lead to considerable crop production losses worldwide. Accurate morphological identification of the species that cause these diseases has been difficult. In this study, we determined the phylogenetic relationships and species boundaries of Diaporthe longicolla, Diaporthe phaseolorum, Diaporthe sojae and closely related taxa. Species boundaries for this complex were determined based on combined phylogenetic analysis of five gene regions: partial sequences of calmodulin (CAL), beta-tubulin (TUB), histone-3 (HIS), translation elongation factor 1-α (EF1-α), and the nuclear ribosomal internal transcribed spacers (ITS). Phylogenetic analyses revealed that this large complex of taxa is comprised of soybean pathogens as well as species associated with herbaceous field crops and weeds. Diaporthe arctii, Diaporthe batatas, D. phaseolorum and D. sojae are epitypified. The seed decay pathogen D. longicolla was determined to be distinct from D. sojae. D. phaseolorum, originally associated with stem and leaf blight of Lima bean, was not found to be associated with soybean. A new species, Diaporthe ueckerae on Cucumis melo, is introduced with description and illustrations.
Collapse
Affiliation(s)
- Dhanushka Udayanga
- Systematic Mycology and Microbiology Laboratory, United States Department of Agriculture - Agricultural Research Service, Beltsville, MD 20705, USA; Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand; School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Lisa A Castlebury
- Systematic Mycology and Microbiology Laboratory, United States Department of Agriculture - Agricultural Research Service, Beltsville, MD 20705, USA.
| | - Amy Y Rossman
- Systematic Mycology and Microbiology Laboratory, United States Department of Agriculture - Agricultural Research Service, Beltsville, MD 20705, USA
| | - Ekachai Chukeatirote
- Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand; School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Kevin D Hyde
- Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand; School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; World Agroforestry Centre, East and Central Asia, Kunming 650201, People's Republic of China
| |
Collapse
|
13
|
Behie SW, Bidochka MJ. Nutrient transfer in plant-fungal symbioses. TRENDS IN PLANT SCIENCE 2014; 19:734-740. [PMID: 25022353 DOI: 10.1016/j.tplants.2014.06.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/26/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
Almost all plant species form symbioses with soil fungi, and nutrient transfer to plants is largely mediated through this partnership. Studies of fungal nutrient transfer to plants have largely focused on the transfer of limiting soil nutrients, such as nitrogen and phosphorous, by mycorrhizal fungi. However, certain fungal endophytes, such as Metarhizium and Beauveria, are also able to transfer nitrogen to their plant hosts. Here, we review recent studies that have identified genes and their encoded transporters involved in the movement of nitrogen, phosphorous, and nonlimiting soil nutrients between symbionts. These recent advances in our understanding could lead to applications in agricultural and horticultural settings, and to the development of model fungal systems that could further elucidate the role of fungi in these symbioses.
Collapse
Affiliation(s)
- Scott W Behie
- Department of Biological Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada
| | - Michael J Bidochka
- Department of Biological Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
14
|
Gomes R, Glienke C, Videira S, Lombard L, Groenewald J, Crous P. Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. PERSOONIA 2013; 31:1-41. [PMID: 24761033 PMCID: PMC3904044 DOI: 10.3767/003158513x666844] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/24/2013] [Indexed: 11/25/2022]
Abstract
Diaporthe (Phomopsis) species have often been reported as plant pathogens, non-pathogenic endophytes or saprobes, commonly isolated from a wide range of hosts. The primary aim of the present study was to resolve the taxonomy and phylogeny of a large collection of Diaporthe species occurring on diverse hosts, either as pathogens, saprobes, or as harmless endophytes. In the present study we investigated 243 isolates using multilocus DNA sequence data. Analyses of the rDNA internal transcribed spacer (ITS1, 5.8S, ITS2) region, and partial translation elongation factor 1-alpha (TEF1), beta-tubulin (TUB), histone H3 (HIS) and calmodulin (CAL) genes resolved 95 clades. Fifteen new species are described, namely Diaporthe arengae, D. brasiliensis, D. endophytica, D. hongkongensis, D. inconspicua, D. infecunda, D. mayteni, D. neoarctii, D. oxe, D. paranensis, D. pseudomangiferae, D. pseudophoenicicola, D. raonikayaporum, D. schini and D. terebinthifolii. A further 14 new combinations are introduced in Diaporthe, and D. anacardii is epitypified. Although species of Diaporthe have in the past chiefly been distinguished based on host association, results of this study confirm several taxa to have wide host ranges, suggesting that they move freely among hosts, frequently co-colonising diseased or dead tissue. In contrast, some plant pathogenic and endophytic taxa appear to be strictly host specific. Given this diverse ecological behaviour among members of Diaporthe, future species descriptions lacking molecular data (at least ITS and HIS or TUB) should be strongly discouraged.
Collapse
Affiliation(s)
- R.R. Gomes
- Department of Genetics, Universidade Federal do Paraná, Centro Politécnico, Box 19071, 81531-990, Curitiba, Brazil
| | - C. Glienke
- Department of Genetics, Universidade Federal do Paraná, Centro Politécnico, Box 19071, 81531-990, Curitiba, Brazil
| | - S.I.R. Videira
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - L. Lombard
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - J.Z. Groenewald
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - P.W. Crous
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
15
|
Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr Genet 2013; 59:153-66. [PMID: 23832271 DOI: 10.1007/s00294-013-0396-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 01/05/2023]
Abstract
This study aimed to perform a comparative analysis of the diversity of endophytic fungal communities isolated from the leaves and branches of Rhizophora mangle, Avicennia schaueriana and Laguncularia racemosa trees inhabiting two mangroves in the state of São Paulo, Brazil [Cananeia and Bertioga (oil spill-affected and unaffected)] in the summer and winter. Three hundred and forty-three fungi were identified by sequencing the ITS1-5.8S-ITS2 region of rDNA. Differences were observed in the frequencies of fungi isolated from the leaves and branches of these three different plant species sampled from the Bertioga oil spill-affected and the oil-unaffected mangrove sites in the summer and winter; these differences indicate a potential impact on fungal diversity in the study area due to the oil spill. The molecular identification of the fungi showed that the fungal community associated with these mangroves is composed of at least 34 different genera, the most frequent of which were Diaporthe, Colletotrichum, Fusarium, Trichoderma and Xylaria. The Shannon and the Chao1 indices [H'(95 %) = 4.00, H'(97 %) = 4.22, Chao1(95 %) = 204 and Chao1(97 %) = 603] indicated that the mangrove fungal community possesses a vast diversity and richness of endophytic fungi. The data generated in this study revealed a large reservoir of fungal genetic diversity inhabiting these Brazilian mangrove forests and highlighted substantial differences between the fungal communities associated with distinct plant tissues, plant species, impacted sites and sampling seasons.
Collapse
|
16
|
3-hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum. Curr Microbiol 2012; 65:622-32. [PMID: 22886401 DOI: 10.1007/s00284-012-0206-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
Endophytic fungi are considered a rich source of active compounds resulting from their secondary metabolism. Fungi from marine environment grow in a habitat with unique conditions that can contribute to the activation of metabolic pathways of synthesis of different unknown molecules. The production of these compounds may support the adaptation and survival of the fungi in the marine ecosystem. Mangroves are ecosystems situated between land and sea. They are frequently found in tropical and subtropical areas and enclose approximately 18.1 million hectares of the planet. The great biodiversity found in these ecosystems shows the importance of researching them, including studies regarding new compounds derived from the endophytic fungi that inhabit these ecosystems. 3-hydroxypropionic acid (3-HPA) has been isolated from the mangrove endophytic fungus Diaporthe phaseolorum, which was obtained from branches of Laguncularia racemosa. The structure of this compound was elucidated by spectroscopic methods, mainly 1D and 2D NMR. In bioassays, 3-HPA showed antimicrobial activities against both Staphylococcus aureus and Salmonella typhi. The structure of this antibiotic was modified by the chemical reaction of Fischer-Speier esterification to evaluate the biologic activity of its chemical analog. The esterified product, 3-hydroxypropanoic ethyl ester, did not exhibit antibiotic activity, suggesting that the free carboxylic acid group is important to the pharmacological activity. The antibiotic-producing strain was identified with internal transcribed spacer sequence data. To the best of our knowledge, this is the first report of antibacterial activity by 3-HPA against the growth of medically important pathogens.
Collapse
|