1
|
Jovanska L, Lin IC, Yao JS, Chen CL, Liu HC, Li WC, Chuang YC, Chuang CN, Yu ACH, Lin HN, Pong WL, Yu CI, Su CY, Chen YP, Chen RS, Hsueh YP, Yuan HS, Timofejeva L, Wang TF. DNA cytosine methyltransferases differentially regulate genome-wide hypermutation and interhomolog recombination in Trichoderma reesei meiosis. Nucleic Acids Res 2024; 52:9551-9573. [PMID: 39021337 PMCID: PMC11381340 DOI: 10.1093/nar/gkae611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Trichoderma reesei is an economically important enzyme producer with several unique meiotic features. spo11, the initiator of meiotic double-strand breaks (DSBs) in most sexual eukaryotes, is dispensable for T. reesei meiosis. T. reesei lacks the meiosis-specific recombinase Dmc1. Rad51 and Sae2, the activator of the Mre11 endonuclease complex, promote DSB repair and chromosome synapsis in wild-type and spo11Δ meiosis. DNA methyltransferases (DNMTs) perform multiple tasks in meiosis. Three DNMT genes (rid1, dim2 and dimX) differentially regulate genome-wide cytosine methylation and C:G-to-T:A hypermutations in different chromosomal regions. We have identified two types of DSBs: type I DSBs require spo11 or rid1 for initiation, whereas type II DSBs do not rely on spo11 and rid1 for initiation. rid1 (but not dim2) is essential for Rad51-mediated DSB repair and normal meiosis. rid1 and rad51 exhibit a locus heterogeneity (LH) relationship, in which LH-associated proteins often regulate interconnectivity in protein interaction networks. This LH relationship can be suppressed by deleting dim2 in a haploid rid1Δ (but not rad51Δ) parental strain, indicating that dim2 and rid1 share a redundant function that acts earlier than rad51 during early meiosis. In conclusion, our studies provide the first evidence of the involvement of DNMTs during meiotic initiation and recombination.
Collapse
Affiliation(s)
| | - I-Chen Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Jhong-Syuan Yao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Ling Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hou-Cheng Liu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wan-Chen Li
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Chien Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Ning Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | - Hsin-Nan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Li Pong
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chang-I Yu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ching-Yuan Su
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ping Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ruey-Shyang Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ljudmilla Timofejeva
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Centre of Estonian Rural Research and Knowledge, J. Aamisepa 1, Jõgeva 48309, Estonia
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
2
|
Jones G, Kleckner N, Zickler D. Meiosis through three centuries. Chromosoma 2024; 133:93-115. [PMID: 38730132 PMCID: PMC11180163 DOI: 10.1007/s00412-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Meiosis is the specialized cellular program that underlies gamete formation for sexual reproduction. It is therefore not only interesting but also a fundamentally important subject for investigation. An especially attractive feature of this program is that many of the processes of special interest involve organized chromosomes, thus providing the possibility to see chromosomes "in action". Analysis of meiosis has also proven to be useful in discovering and understanding processes that are universal to all chromosomal programs. Here we provide an overview of the different historical moments when the gap between observation and understanding of mechanisms and/or roles for the new discovered molecules was bridged. This review reflects also the synergy of thinking and discussion among our three laboratories during the past several decades.
Collapse
Affiliation(s)
- Gareth Jones
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de La Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91198, Gif-Sur-Yvette, France
| |
Collapse
|
3
|
Westerberg I, Ament-Velásquez SL, Vogan AA, Johannesson H. Evolutionary dynamics of the LTR-retrotransposon crapaud in the Podospora anserina species complex and the interaction with repeat-induced point mutations. Mob DNA 2024; 15:1. [PMID: 38218923 PMCID: PMC10787394 DOI: 10.1186/s13100-023-00311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND The genome of the filamentous ascomycete Podospora anserina shows a relatively high abundance of retrotransposons compared to other interspersed repeats. The LTR-retrotransposon family crapaud is particularly abundant in the genome, and consists of multiple diverged sequence variations specifically localized in the 5' half of both long terminal repeats (LTRs). P. anserina is part of a recently diverged species-complex, which makes the system ideal to classify the crapaud family based on the observed LTR variation and to study the evolutionary dynamics, such as the diversification and bursts of the elements over recent evolutionary time. RESULTS We developed a sequence similarity network approach to classify the crapaud repeats of seven genomes representing the P. anserina species complex into 14 subfamilies. This method does not utilize a consensus sequence, but instead it connects any copies that share enough sequence similarity over a set sequence coverage. Based on phylogenetic analyses, we found that the crapaud repeats likely diversified in the ancestor of the complex and have had activity at different time points for different subfamilies. Furthermore, while we hypothesized that the evolution into multiple subfamilies could have been a direct effect of escaping the genome defense system of repeat induced point mutations, we found this not to be the case. CONCLUSIONS Our study contributes to the development of methods to classify transposable elements in fungi, and also highlights the intricate patterns of retrotransposon evolution over short timescales and under high mutational load caused by nucleotide-altering genome defense.
Collapse
Affiliation(s)
- Ivar Westerberg
- Department of Ecology, environmental and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - S Lorena Ament-Velásquez
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, 106 91, Sweden
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Norbyvägen 18D, Uppsala, 752 36, Sweden.
| | - Hanna Johannesson
- Department of Ecology, environmental and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden.
- The Royal Swedish Academy of Sciences, Stockholm, 114 18, Sweden.
| |
Collapse
|
4
|
Oggenfuss U, Croll D. Recent transposable element bursts are associated with the proximity to genes in a fungal plant pathogen. PLoS Pathog 2023; 19:e1011130. [PMID: 36787337 PMCID: PMC9970103 DOI: 10.1371/journal.ppat.1011130] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/27/2023] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
The activity of transposable elements (TEs) contributes significantly to pathogen genome evolution. TEs often destabilize genome integrity but may also confer adaptive variation in pathogenicity or resistance traits. De-repression of epigenetically silenced TEs often initiates bursts of transposition activity that may be counteracted by purifying selection and genome defenses. However, how these forces interact to determine the expansion routes of TEs within a pathogen species remains largely unknown. Here, we analyzed a set of 19 telomere-to-telomere genomes of the fungal wheat pathogen Zymoseptoria tritici. Phylogenetic reconstruction and ancestral state estimates of individual TE families revealed that TEs have undergone distinct activation and repression periods resulting in highly uneven copy numbers between genomes of the same species. Most TEs are clustered in gene poor niches, indicating strong purifying selection against insertions near coding sequences, or as a consequence of insertion site preferences. TE families with high copy numbers have low sequence divergence and strong signatures of defense mechanisms (i.e., RIP). In contrast, small non-autonomous TEs (i.e., MITEs) are less impacted by defense mechanisms and are often located in close proximity to genes. Individual TE families have experienced multiple distinct burst events that generated many nearly identical copies. We found that a Copia element burst was initiated from recent copies inserted substantially closer to genes compared to older copies. Overall, TE bursts tended to initiate from copies in GC-rich niches that escaped inactivation by genomic defenses. Our work shows how specific genomic environments features provide triggers for TE proliferation in pathogen genomes.
Collapse
Affiliation(s)
- Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- * E-mail:
| |
Collapse
|
5
|
Chauhan N, Karanastasis A, Ullal CK, Wang X. Homologous pairing in short double-stranded DNA-grafted colloidal microspheres. Biophys J 2022; 121:4819-4829. [PMID: 36196058 PMCID: PMC9811663 DOI: 10.1016/j.bpj.2022.09.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/04/2022] [Accepted: 09/28/2022] [Indexed: 01/07/2023] Open
Abstract
Homologous pairing (HP), i.e., the pairing of similar or identical double-stranded DNA, is an insufficiently understood fundamental biological process. HP is now understood to also occur without protein mediation, but crucial mechanistic details remain poorly established. Unfortunately, systematic studies of sequence dependence are not practical due to the enormous number of nucleotide permutations and multiple possible conformations involved in existing biophysical strategies even when using as few as 150 basepairs. Here, we show that HP can occur in DNA as short as 18 basepairs in a colloidal microparticle-based system. Exemplary systematic studies include resolving opposing reports of the impact of % AT composition, validating the impact of nucleotide order and triplet framework and revealing isotropic bendability to be crucial for HP. These studies are enabled by statistical analysis of crystal size and fraction within coexisting fluid-crystal phases of double-stranded DNA-grafted colloidal microspheres, where crystallization is predicated by HP.
Collapse
Affiliation(s)
- Neha Chauhan
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Apostolos Karanastasis
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Chaitanya K Ullal
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Xing Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois; Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
6
|
Liu P, Cuerda-Gil D, Shahid S, Slotkin RK. The Epigenetic Control of the Transposable Element Life Cycle in Plant Genomes and Beyond. Annu Rev Genet 2022; 56:63-87. [DOI: 10.1146/annurev-genet-072920-015534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Within the life cycle of a living organism, another life cycle exists for the selfish genome inhabitants, which are called transposable elements (TEs). These mobile sequences invade, duplicate, amplify, and diversify within a genome, increasing the genome's size and generating new mutations. Cells act to defend their genome, but rather than permanently destroying TEs, they use chromatin-level repression and epigenetic inheritance to silence TE activity. This level of silencing is ephemeral and reversible, leading to a dynamic equilibrium between TE suppression and reactivation within a host genome. The coexistence of the TE and host genome can also lead to the domestication of the TE to serve in host genome evolution and function. In this review, we describe the life cycle of a TE, with emphasis on how epigenetic regulation is harnessed to control TEs for host genome stability and innovation.
Collapse
Affiliation(s)
- Peng Liu
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Diego Cuerda-Gil
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Graduate Program in the Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Saima Shahid
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - R. Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
7
|
The Effects of Flexibility on dsDNA–dsDNA Interactions. Life (Basel) 2022; 12:life12050699. [PMID: 35629366 PMCID: PMC9147707 DOI: 10.3390/life12050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
A detailed understanding of the physical mechanism of ion-mediated dsDNA interactions is important in biological functions such as DNA packaging and homologous pairing. We report the potential of mean force (PMF) or the effective solvent mediated interactions between two parallel identical dsDNAs as a function of interhelical separation in 0.15 M NaCl solution. Here, we study the influence of flexibility of dsDNAs on the effective interactions by comparing PMFs between rigid models and flexible ones. The role of flexibility of dsDNA pairs in their association is elucidated by studying the energetic properties of Na+ ions as well as the fluctuations of ions around dsDNAs. The introduction of flexibility of dsDNAs softens the vdW contact wall and induces more counterion fluctuations around dsDNAs. In addition, flexibility facilitates the Na+ ions dynamics affecting their distribution. The results quantify the extent of attraction influenced by dsDNA flexibility and further emphasize the importance of non-continuum solvation approaches.
Collapse
|
8
|
Carlier F, Nguyen TS, Mazur AK, Gladyshev E. Modulation of C-to-T mutation by recombination-independent pairing of closely positioned DNA repeats. Biophys J 2021; 120:4325-4336. [PMID: 34509507 DOI: 10.1016/j.bpj.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
Repeat-induced point mutation is a genetic process that creates cytosine-to-thymine (C-to-T) transitions in duplicated genomic sequences in fungi. Repeat-induced point mutation detects duplications (irrespective of their origin, specific sequence, coding capacity, and genomic positions) by a recombination-independent mechanism that likely matches intact DNA double helices directly, without relying on the annealing of complementary single strands. In the fungus Neurospora crassa, closely positioned repeats can induce mutation of the adjoining nonrepetitive regions. This process is related to heterochromatin assembly and requires the cytosine methyltransferase DIM-2. Using DIM-2-dependent mutation as a readout of homologous pairing, we find that GC-rich repeats produce a much stronger response than AT-rich repeats, independently of their intrinsic propensity to become mutated. We also report that direct repeats trigger much stronger DIM-2-dependent mutation than inverted repeats. These results can be rationalized in the light of a recently proposed model of homologous DNA pairing, in which DNA double helices associate by forming sequence-specific quadruplex-based contacts with a concomitant release of supercoiling. A similar process featuring pairing-induced supercoiling may initiate epigenetic silencing of repetitive DNA in other organisms, including humans.
Collapse
Affiliation(s)
- Florian Carlier
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France
| | - Tinh-Suong Nguyen
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France
| | - Alexey K Mazur
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France; CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France.
| | - Eugene Gladyshev
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France.
| |
Collapse
|
9
|
Chen JY, Zhang DD, Huang JQ, Li R, Wang D, Song J, Puri KD, Yang L, Kong ZQ, Tong BZ, Li JJ, Huang YS, Simko I, Klosterman SJ, Dai XF, Subbarao KV. Dynamics of Verticillium dahliae race 1 population under managed agricultural ecosystems. BMC Biol 2021; 19:131. [PMID: 34172070 PMCID: PMC8235872 DOI: 10.1186/s12915-021-01061-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Plant pathogens and their hosts undergo adaptive changes in managed agricultural ecosystems, by overcoming host resistance, but the underlying genetic adaptations are difficult to determine in natural settings. Verticillium dahliae is a fungal pathogen that causes Verticillium wilt on many economically important crops including lettuce. We assessed the dynamics of changes in the V. dahliae genome under selection in a long-term field experiment. RESULTS In this study, a field was fumigated before the Verticillium dahliae race 1 strain (VdLs.16) was introduced. A derivative 145-strain population was collected over a 6-year period from this field in which a seggregating population of lettuce derived from Vr1/vr1 parents were evaluated. We de novo sequenced the parental genome of VdLs.16 strain and resequenced the derivative strains to analyze the genetic variations that accumulate over time in the field cropped with lettuce. Population genomics analyses identified 2769 single-nucleotide polymorphisms (SNPs) and 750 insertion/deletions (In-Dels) in the 145 isolates compared with the parental genome. Sequence divergence was identified in the coding sequence regions of 378 genes and in the putative promoter regions of 604 genes. Five-hundred and nine SNPs/In-Dels were identified as fixed. The SNPs and In-Dels were significantly enriched in the transposon-rich, gene-sparse regions, and in those genes with functional roles in signaling and transcriptional regulation. CONCLUSIONS Under the managed ecosystem continuously cropped to lettuce, the local adaptation of V. dahliae evolves at a whole genome scale to accumulate SNPs/In-Dels nonrandomly in hypervariable regions that encode components of signal transduction and transcriptional regulation.
Collapse
Affiliation(s)
- Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Ran Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Krishna D Puri
- Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA, USA
| | - Lin Yang
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Zhi-Qiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Jun-Jiao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Ivan Simko
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, USA
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, USA.
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA, USA.
| |
Collapse
|
10
|
King JT, Shakya A. Phase separation of DNA: From past to present. Biophys J 2021; 120:1139-1149. [PMID: 33582138 PMCID: PMC8059212 DOI: 10.1016/j.bpj.2021.01.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
Phase separation of biological molecules, such as nucleic acids and proteins, has garnered widespread attention across many fields in recent years. For instance, liquid-liquid phase separation has been implicated not only in membraneless intracellular organization but also in many biochemical processes, including transcription, translation, and cellular signaling. Here, we present a historical background of biological phase separation and survey current work on nuclear organization and its connection to DNA phase separation from the perspective of DNA sequence, structure, and genomic context.
Collapse
Affiliation(s)
- John T King
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, Republic of Korea.
| | - Anisha Shakya
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, Republic of Korea.
| |
Collapse
|
11
|
Lai CL, Chen C, Ou SC, Prentiss M, Pettitt BM. Interactions between identical DNA double helices. Phys Rev E 2021; 101:032414. [PMID: 32289903 DOI: 10.1103/physreve.101.032414] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/02/2020] [Indexed: 01/09/2023]
Abstract
The molecular mechanism of specific interactions between double stranded DNA molecules has been investigated for many years. Problems remain in how confinement, ions, and condensing agents change the interactions. We consider how the orientational alignment of DNAs contributes to the interactions via free energy simulations. Here we report on the effective interactions between two parallel DNA double helices in 150-mM NaCl solution using all atom models. We calculate the potential of mean force (PMF) of DNA-DNA interactions as a function of two coordinates, interhelical separation of parallel double helices and relative rotation of a DNA molecule with respect to the other about the helical axis. We generate the two-dimensional PMF to better understand the effective interactions when a DNA molecule is in juxtaposition with another. The analysis of the ion and solvent distributions around the DNA and particularly in the interface region shows that certain alignments of the DNA pair enhance the interactions. At local free energy minima in distance and alignment, water molecules and Na^{+} ions form a hydrogen bonded network with the phosphates from each DNA. This network contributes an attractive energy component to the DNA-DNA interactions. Our results provide a molecular mechanism whereby local DNA-DNA interactions, depending on the helical orientation, give a potential mechanism for stabilizing pairing of much larger lengths of homologous DNA that have been seen experimentally. The study suggests an atomically detailed local picture of relevance to certain aspects of DNA condensation or aggregation.
Collapse
Affiliation(s)
- Chun-Liang Lai
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Chuanying Chen
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Shu-Ching Ou
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - B Montgomery Pettitt
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
12
|
da Silva LL, Moreno HLA, Correia HLN, Santana MF, de Queiroz MV. Colletotrichum: species complexes, lifestyle, and peculiarities of some sources of genetic variability. Appl Microbiol Biotechnol 2020; 104:1891-1904. [PMID: 31932894 DOI: 10.1007/s00253-020-10363-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 11/25/2022]
Abstract
The genus Colletotrichum comprises species with different lifestyles but is mainly known for phytopathogenic species that infect crops of agronomic relevance causing considerable losses. The fungi of the genus Colletotrichum are distributed in species complexes and within each complex some species have particularities regarding their lifestyle. The most commonly found and described lifestyles in Colletotrichum are endophytic and hemibiotrophic phytopathogenic. Several of these phytopathogenic species show wide genetic variability, which makes long-term maintenance of resistance in plants difficult. Different mechanisms may play an important role in the emergence of genetic variants but are not yet fully understood in this genus. These mechanisms include heterokaryosis, a parasexual cycle, sexual cycle, transposable element activity, and repeat-induced point mutations. This review provides an overview of the genus Colletotrichum, the species complexes described so far and the most common lifestyles in the genus, with a special emphasis on the mechanisms that may be responsible, at least in part, for the emergence of new genotypes under field conditions.
Collapse
Affiliation(s)
- Leandro Lopes da Silva
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Hanna Lorena Alvarado Moreno
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Hilberty Lucas Nunes Correia
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Mateus Ferreira Santana
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
13
|
Venice F, Ghignone S, Salvioli di Fossalunga A, Amselem J, Novero M, Xianan X, Sędzielewska Toro K, Morin E, Lipzen A, Grigoriev IV, Henrissat B, Martin FM, Bonfante P. At the nexus of three kingdoms: the genome of the mycorrhizal fungus Gigaspora margarita provides insights into plant, endobacterial and fungal interactions. Environ Microbiol 2019; 22:122-141. [PMID: 31621176 DOI: 10.1111/1462-2920.14827] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 01/04/2023]
Abstract
As members of the plant microbiota, arbuscular mycorrhizal fungi (AMF, Glomeromycotina) symbiotically colonize plant roots. AMF also possess their own microbiota, hosting some uncultivable endobacteria. Ongoing research has revealed the genetics underlying plant responses to colonization by AMF, but the fungal side of the relationship remains in the dark. Here, we sequenced the genome of Gigaspora margarita, a member of the Gigasporaceae in an early diverging group of the Glomeromycotina. In contrast to other AMF, G. margarita may host distinct endobacterial populations and possesses the largest fungal genome so far annotated (773.104 Mbp), with more than 64% transposable elements. Other unique traits of the G. margarita genome include the expansion of genes for inorganic phosphate metabolism, the presence of genes for production of secondary metabolites and a considerable number of potential horizontal gene transfer events. The sequencing of G. margarita genome reveals the importance of its immune system, shedding light on the evolutionary pathways that allowed early diverging fungi to interact with both plants and bacteria.
Collapse
Affiliation(s)
- Francesco Venice
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection-CNR, Turin Unit, Turin, Italy
| | | | | | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Xie Xianan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Innovation and Utilization of Forest Plant Germplasm in Guangdong Province, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Kinga Sędzielewska Toro
- Genetics, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Emmanuelle Morin
- Institut National de la Recherche Agronomique (INRA), Laboratory of Excellence Advanced Research on the Biology of Tree and Forest Ecosystems (ARBRE), UMR, 1136, Champenoux, France
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France.,Institut National de la Recherche Agronomique, USC1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, F-13288, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Francis M Martin
- Institut National de la Recherche Agronomique (INRA), Laboratory of Excellence Advanced Research on the Biology of Tree and Forest Ecosystems (ARBRE), UMR, 1136, Champenoux, France
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Forsdyke DR. When acting as a reproductive barrier for sympatric speciation, hybrid sterility can only be primary. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractAnimal gametes unite to form a zygote that develops into an adult with gonads that, in turn, produce gametes. Interruption of this germinal cycle by prezygotic or postzygotic reproductive barriers can result in two cycles, each with the potential to evolve into a new species. When the speciation process is complete, members of each species are fully reproductively isolated from those of the other. During speciation a primary barrier may be supported and eventually superceded by a later-appearing secondary barrier. For those holding certain cases of prezygotic isolation to be primary (e.g. elephant cannot copulate with mouse), the onus is to show that they had not been preceded over evolutionary time by periods of postzygotic hybrid inviability (genically determined) or sterility (genically or chromosomally determined). Likewise, the onus is upon those holding cases of hybrid inviability to be primary (e.g. Dobzhansky–Muller epistatic incompatibilities) to show that they had not been preceded by periods, however brief, of hybrid sterility. The latter, when acting as a sympatric barrier causing reproductive isolation, can only be primary. In many cases, hybrid sterility may result from incompatibilities between parental chromosomes that attempt to pair during meiosis in the gonad of their offspring (Winge-Crowther-Bateson incompatibilities). While such incompatibilities have long been observed on a microscopic scale, there is growing evidence for a role of dispersed finer DNA sequence differences (i.e. in base k-mers).
Collapse
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L3N6, Canada
| |
Collapse
|
15
|
Transposon-Mediated Horizontal Transfer of the Host-Specific Virulence Protein ToxA between Three Fungal Wheat Pathogens. mBio 2019; 10:mBio.01515-19. [PMID: 31506307 PMCID: PMC6737239 DOI: 10.1128/mbio.01515-19] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This work dissects the tripartite horizontal transfer of ToxA, a gene that has a direct negative impact on global wheat yields. Defining the extent of horizontally transferred DNA is important because it can provide clues to the mechanisms that facilitate HGT. Our analysis of ToxA and its surrounding 14 kb suggests that this gene was horizontally transferred in two independent events, with one event likely facilitated by a type II DNA transposon. These horizontal transfer events are now in various processes of decay in each species due to the repeated insertion of new transposons and subsequent rounds of targeted mutation by a fungal genome defense mechanism known as repeat induced point mutation. This work highlights the role that HGT plays in the evolution of host adaptation in eukaryotic pathogens. It also increases the growing body of evidence indicating that transposons facilitate adaptive HGT events between fungi present in similar environments and hosts. Most known examples of horizontal gene transfer (HGT) between eukaryotes are ancient. These events are identified primarily using phylogenetic methods on coding regions alone. Only rarely are there examples of HGT where noncoding DNA is also reported. The gene encoding the wheat virulence protein ToxA and the surrounding 14 kb is one of these rare examples. ToxA has been horizontally transferred between three fungal wheat pathogens (Parastagonospora nodorum, Pyrenophora tritici-repentis, and Bipolaris sorokiniana) as part of a conserved ∼14 kb element which contains coding and noncoding regions. Here we used long-read sequencing to define the extent of HGT between these three fungal species. Construction of near-chromosomal-level assemblies enabled identification of terminal inverted repeats on either end of the 14 kb region, typical of a type II DNA transposon. This is the first description of ToxA with complete transposon features, which we call ToxhAT. In all three species, ToxhAT resides in a large (140-to-250 kb) transposon-rich genomic island which is absent in isolates that do not carry the gene (annotated here as toxa−). We demonstrate that the horizontal transfer of ToxhAT between P. tritici-repentis and P. nodorum occurred as part of a large (∼80 kb) HGT which is now undergoing extensive decay. In B. sorokiniana, in contrast, ToxhAT and its resident genomic island are mobile within the genome. Together, these data provide insight into the noncoding regions that facilitate HGT between eukaryotes and into the genomic processes which mask the extent of HGT between these species.
Collapse
|
16
|
Forsdyke DR. Success of alignment-free oligonucleotide (k-mer) analysis confirms relative importance of genomes not genes in speciation and phylogeny. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractThe utility of DNA sequence substrings (k-mers) in alignment-free phylogenetic classification, including that of bacteria and viruses, is increasingly recognized. However, its biological basis eludes many 21st century practitioners. A path from the 19th century recognition of the informational basis of heredity to the modern era can be discerned. Crick’s DNA ‘unpairing postulate’ predicted that recombinational pairing of homologous DNAs during meiosis would be mediated by short k-mers in the loops of stem-loop structures extruded from classical duplex helices. The complementary ‘kissing’ duplex loops – like tRNA anticodon–codon k-mer duplexes – would seed a more extensive pairing that would then extend until limited by lack of homology or other factors. Indeed, this became the principle behind alignment-based methods that assessed similarity by degree of DNA–DNA reassociation in vitro. These are now seen as less sensitive than alignment-free methods that are closely consistent, both theoretically and mechanistically, with chromosomal anti-recombination models for the initiation of divergence into new species. The analytical power of k-mer differences supports the theses that evolutionary advance sometimes serves the needs of nucleic acids (genomes) rather than proteins (genes), and that such differences can play a role in early speciation events.
Collapse
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
17
|
The repertoire of effector candidates in Colletotrichum lindemuthianum reveals important information about Colletotrichum genus lifestyle. Appl Microbiol Biotechnol 2019; 103:2295-2309. [DOI: 10.1007/s00253-019-09639-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 01/04/2023]
|
18
|
Van de Wouw AP, Elliott CE, Popa KM, Idnurm A. Analysis of Repeat Induced Point (RIP) Mutations in Leptosphaeria maculans Indicates Variability in the RIP Process Between Fungal Species. Genetics 2019; 211:89-104. [PMID: 30389803 PMCID: PMC6325690 DOI: 10.1534/genetics.118.301712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/24/2018] [Indexed: 01/01/2023] Open
Abstract
Gene duplication contributes to evolutionary potential, yet many duplications in a genome arise from the activity of "selfish" genetic elements such as transposable elements. Fungi have a number of mechanisms by which they limit the expansion of transposons, including Repeat Induced Point mutation (RIP). RIP has been best characterized in the Sordariomycete Neurospora crassa, wherein duplicated DNA regions are recognized after cell fusion, but before nuclear fusion during the sexual cycle, and then mutated. While "signatures" of RIP appear in the genome sequences of many fungi, the species most distant from N. crassa in which the process has been experimentally demonstrated to occur is the Dothideomycete Leptosphaeria maculans In the current study, we show that similar to N. crassa, nonlinked duplications can trigger RIP; however, the frequency of the generated RIP mutations is extremely low in L maculans (< 0.1%) and requires a large duplication to initiate RIP, and that multiple premeiotic mitoses are involved in the RIP process. However, a single sexual cycle leads to the generation of progeny with unique haplotypes, despite progeny pairs being generated from mitosis. We hypothesize that these different haplotypes may be the result of the deamination process occurring post karyogamy, leading to unique mutations within each of the progeny pairs. These findings indicate that the RIP process, while common to many fungi, differs between fungi and that this impacts on the fate of duplicated DNA.
Collapse
Affiliation(s)
- Angela P Van de Wouw
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Candace E Elliott
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kerryn M Popa
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
19
|
Chen D, Wu C, Hao C, Huang P, Liu H, Bian Z, Xu JR. Sexual specific functions of Tub1 beta-tubulins require stage-specific RNA processing and expression in Fusarium graminearum. Environ Microbiol 2018; 20:4009-4021. [PMID: 30307105 DOI: 10.1111/1462-2920.14441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 11/27/2022]
Abstract
The wheat head blight fungus Fusarium graminearum has two highly similar beta-tubulin genes with overlapping functions during vegetative growth but only TUB1 is important for sexual reproduction. To better understand their functional divergence during ascosporogenesis, in this study we characterized the sequence elements important for stage-specific functions of TUB1. Deletion of TUB1 blocked the late but not initial stages of perithecium formation. Perithecia formed by tub1 mutant had limited ascogenous hyphae and failed to develop asci. Silencing of TUB1 by MSUD also resulted in defects in ascospore formation. Interestingly, the 3'-UTR of TUB1 was dispensable for growth but essential for its function during sexual reproduction. RIP mutations that specifically affected Tub1 functions during sexual reproduction also were identified in two ascospore progeny. Furthermore, site-directed mutagenesis showed that whereas the non-editable mutations at three A-to-I RNA editing sites had no effects, the N347D (not T362D or I368V) edited mutation affected ascospore development. In addition, the F167Y, but not E198K or F200Y, mutation in TUB1 conferred tolerance to carbendazim and caused a minor defect in sexual reproduction. Taken together, our data indicate TUB1 plays an essential role in ascosporogenesis and sexual-specific functions of TUB1 require stage-specific RNA processing and Tub1 expression.
Collapse
Affiliation(s)
- Daipeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chunlan Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Panpan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
20
|
Partition of Repeat-Induced Point Mutations Reveals Structural Aspects of Homologous DNA-DNA Pairing. Biophys J 2018; 115:605-615. [PMID: 30086830 DOI: 10.1016/j.bpj.2018.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/28/2018] [Indexed: 11/21/2022] Open
Abstract
In some fungi, a premeiotic process known as repeat-induced point mutation (RIP) can accurately identify and mutate nearly all gene-sized DNA repeats present in the haploid germline nuclei. Studies in Neurospora crassa have suggested that RIP detects sequence homology directly between intact DNA double helices, without strand separation and without the participation of RecA-like proteins. Those studies used the aggregated number of RIP mutations as a simple quantitative measure of RIP activity. Additional structural information about homologous DNA-DNA pairing during RIP can be extracted by analyzing spatial distributions of RIP mutations converted into profiles of partitioned RIP propensity (PRP). Further analysis shows that PRP is strongly affected by the topological configuration and the relative positioning of the participating DNA segments. Most notably, pairs of closely positioned repeats produce very distinct PRP profiles depending on whether these repeats are present in the direct or the inverted orientation. Such an effect can be attributed to a topology-dependent redistribution of the supercoiling stress created by the predicted limited untwisting of the DNA segments during pairing. This and other results raise a possibility that such pairing-induced fluctuations in DNA supercoiling can modulate the overall structure and properties of repetitive DNA. Such effects can be particularly strong in the context of long tandem-repeat arrays that are typically present in the pericentromeric and centromeric regions of chromosomes in many species of plants, fungi, and animals, including humans.
Collapse
|
21
|
Trinucleotide repeat instability during double-strand break repair: from mechanisms to gene therapy. Curr Genet 2018; 65:17-28. [DOI: 10.1007/s00294-018-0865-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/25/2018] [Accepted: 07/01/2018] [Indexed: 12/26/2022]
|
22
|
Forsdyke DR. The chromosomal basis of species initiation: Prdm9 as an anti-speciation gene. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
23
|
Abstract
Transposable elements have colonized the genomes of nearly all organisms, including fungi. Although transposable elements may sometimes provide beneficial functions to their hosts their overall impact is considered deleterious. As a result, the activity of transposable elements needs to be counterbalanced by the host genome defenses. In fungi, the primary genome defense mechanisms include repeat-induced point mutation (RIP) and methylation induced premeiotically, meiotic silencing by unpaired DNA, sex-induced silencing, cosuppression (also known as somatic quelling), and cotranscriptional RNA surveillance. Recent studies of the filamentous fungus Neurospora crassa have shown that the process of repeat recognition for RIP apparently involves interactions between coaligned double-stranded segments of chromosomal DNA. These studies have also shown that RIP can be mediated by the conserved pathway that establishes transcriptional (heterochromatic) silencing of repetitive DNA. In light of these new findings, RIP emerges as a specialized case of the general phenomenon of heterochromatic silencing of repetitive DNA.
Collapse
|
24
|
Li WC, Chen CL, Wang TF. Repeat-induced point (RIP) mutation in the industrial workhorse fungus Trichoderma reesei. Appl Microbiol Biotechnol 2018; 102:1567-1574. [DOI: 10.1007/s00253-017-8731-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/01/2023]
|
25
|
Muszewska A, Steczkiewicz K, Stepniewska-Dziubinska M, Ginalski K. Cut-and-Paste Transposons in Fungi with Diverse Lifestyles. Genome Biol Evol 2017; 9:3463-3477. [PMID: 29228286 PMCID: PMC5751038 DOI: 10.1093/gbe/evx261] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2017] [Indexed: 02/06/2023] Open
Abstract
Transposable elements (TEs) shape genomes via recombination and transposition, lead to chromosomal rearrangements, create new gene neighborhoods, and alter gene expression. They play key roles in adaptation either to symbiosis in Amanita genus or to pathogenicity in Pyrenophora tritici-repentis. Despite growing evidence of their importance, the abundance and distribution of mobile elements replicating in a "cut-and-paste" fashion is barely described so far. In order to improve our knowledge on this old and ubiquitous class of transposable elements, 1,730 fungal genomes were scanned using both de novo and homology-based approaches. DNA TEs have been identified across the whole data set and display uneven distribution from both DNA TE classification and fungal taxonomy perspectives. DNA TE content correlates with genome size, which confirms that many transposon families proliferate simultaneously. In contrast, it is independent from intron density, average gene distance and GC content. TE count is associated with species' lifestyle and tends to be elevated in plant symbionts and decreased in animal parasites. Lastly, we found that fungi with both RIP and RNAi systems have more total DNA TE sequences but less elements retaining a functional transposase, what reflects stringent control over transposition.
Collapse
Affiliation(s)
- Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, CeNT, University of Warsaw, Poland
| | | | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, CeNT, University of Warsaw, Poland
| |
Collapse
|
26
|
DNA sequence homology induces cytosine-to-thymine mutation by a heterochromatin-related pathway in Neurospora. Nat Genet 2017; 49:887-894. [PMID: 28459455 PMCID: PMC5474309 DOI: 10.1038/ng.3857] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 03/31/2017] [Indexed: 12/16/2022]
Abstract
Eukaryotic genomes contain substantial amounts of repetitive DNA organized in the form of constitutive heterochromatin and associated with repressive epigenetic modifications, such as H3K9me3 and C5-cytosine methylation (5mC). In the fungus Neurospora crassa, H3K9me3 and 5mC are catalyzed, respectively, by a conserved SUV39 histone methyltransferase DIM-5 and a DNMT1-like cytosine methyltransferase DIM-2. Here we show that DIM-2 can also mediate Repeat-Induced Point mutation (RIP) of repetitive DNA in N. crassa. We further show that DIM-2-dependent RIP requires DIM-5, HP1, and other known heterochromatin factors, implying the role of a repeat-induced heterochromatin-related process. Our previous findings suggest that the mechanism of repeat recognition for RIP involves direct interactions between homologous double-stranded (ds) DNA segments. We thus now propose that, in somatic cells, homologous dsDNA/dsDNA interactions between a small number of repeat copies can nucleate a transient heterochromatic state, which, on longer repeat arrays, may lead to the formation of constitutive heterochromatin.
Collapse
|