1
|
Ganser SJ, McNish BA, Schwanitz GL, Delaney JL, Corpus BA, Schilke BA, Biswal AK, Sahi C, Craig EA, Hines JK. Unique characteristics of the J-domain proximal regions of Hsp70 cochaperone Apj1 in prion propagation/elimination and its overlap with Sis1 function. Front Mol Biosci 2024; 11:1392608. [PMID: 38721277 PMCID: PMC11078019 DOI: 10.3389/fmolb.2024.1392608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/27/2024] [Indexed: 09/05/2024] Open
Abstract
J-domain proteins (JDPs) are obligate cochaperones of Hsp70s. The Class A JDP Apj1 of the yeast cytosol has an unusually complex region between the N-terminal J-domain and the substrate binding region-often called the Grich or GF region in Class A and B JDPs because of its typical abundance of glycine. The N-terminal 161-residue Apj1 fragment is known to be sufficient for Apj1 function in prion curing, driven by the overexpression of Hsp104. Further analyzing the N-terminal segment of Apj1, we found that a 90-residue fragment that includes the 70-residue J-domain and the adjacent 12-residue glutamine/alanine (Q/A) segment is sufficient for curing. Furthermore, the 121-residue fragment that includes the Grich region was sufficient to not only sustain the growth of cells lacking the essential Class B JDP Sis1 but also enabled the maintenance of several prions normally dependent on Sis1 for propagation. A J-domain from another cytosolic JDP could substitute for the Sis1-related functions but not for Apj1 in prion curing. Together, these results separate the functions of JDPs in prion biology and underscore the diverse functionality of multi-domain cytosolic JDPs in yeast.
Collapse
Affiliation(s)
| | - Bridget A. McNish
- Department of Chemistry, Lafayette College, Easton, PA, United States
| | | | - John L. Delaney
- Department of Chemistry, Lafayette College, Easton, PA, United States
| | - Bridget A. Corpus
- Department of Chemistry, Lafayette College, Easton, PA, United States
| | - Brenda A. Schilke
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
| | - Anup K. Biswal
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Elizabeth A. Craig
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
| | - Justin K. Hines
- Department of Chemistry, Lafayette College, Easton, PA, United States
| |
Collapse
|
2
|
Zhouravleva GA, Bondarev SA, Trubitsina NP. How Big Is the Yeast Prion Universe? Int J Mol Sci 2023; 24:11651. [PMID: 37511408 PMCID: PMC10380529 DOI: 10.3390/ijms241411651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The number of yeast prions and prion-like proteins described since 1994 has grown from two to nearly twenty. If in the early years most scientists working with the classic mammalian prion, PrPSc, were skeptical about the possibility of using the term prion to refer to yeast cytoplasmic elements with unusual properties, it is now clear that prion-like phenomena are widespread and that yeast can serve as a convenient model for studying them. Here we give a brief overview of the yeast prions discovered so far and focus our attention to the various approaches used to identify them. The prospects for the discovery of new yeast prions are also discussed.
Collapse
Affiliation(s)
- Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Nina P Trubitsina
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Processing of Fluorescent Proteins May Prevent Detection of Prion Particles in [ PSI+] Cells. BIOLOGY 2022; 11:biology11121688. [PMID: 36552198 PMCID: PMC9774836 DOI: 10.3390/biology11121688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Yeast is a convenient model for studying protein aggregation as it is known to propagate amyloid prions. [PSI+] is the prion form of the release factor eRF3 (Sup35). Aggregated Sup35 causes defects in termination of translation, which results in nonsense suppression in strains carrying premature stop codons. N-terminal and middle (M) domains of Sup35 are necessary and sufficient for maintaining [PSI+] in cells while preserving the prion strain's properties. For this reason, Sup35NM fused to fluorescent proteins is often used for [PSI+] detection and investigation. However, we found that in such chimeric constructs, not all fluorescent proteins allow the reliable detection of Sup35 aggregates. Particularly, transient overproduction of Sup35NM-mCherry resulted in a diffuse fluorescent pattern in the [PSI+] cells, while no loss of prions and no effect on the Sup35NM prion properties could be observed. This effect was reproduced in various unrelated strain backgrounds and prion variants. In contrast, Sup35NM fused to another red fluorescent protein, TagRFP-T, allowed the detection of [PSI+] aggregates. Analysis of protein lysates showed that Sup35NM-mCherry is actively degraded in the cell. This degradation was not caused by vacuolar proteases and the ubiquitin-proteasomal system implicated in the Sup35 processing. Even though the intensity of this proteolysis was higher than that of Sup35NM-GFP, it was roughly the same as in the case of Sup35NM-TagRFP-T. Thus, it is possible that, in contrast to TagRFP-T, degradation products of Sup35NM-mCherry still preserve their fluorescent properties while losing the ability to decorate pre-existing Sup35 aggregates. This results in diffuse fluorescence despite the presence of the prion aggregates in the cell. Thus, tagging with fluorescent proteins should be used with caution, as such proteolysis may increase the rate of false-negative results when detecting prion-bearing cells.
Collapse
|
4
|
Differential Interactions of Molecular Chaperones and Yeast Prions. J Fungi (Basel) 2022; 8:jof8020122. [PMID: 35205876 PMCID: PMC8877571 DOI: 10.3390/jof8020122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Baker’s yeast Saccharomyces cerevisiae is an important model organism that is applied to study various aspects of eukaryotic cell biology. Prions in yeast are self-perpetuating heritable protein aggregates that can be leveraged to study the interaction between the protein quality control (PQC) machinery and misfolded proteins. More than ten prions have been identified in yeast, of which the most studied ones include [PSI+], [URE3], and [PIN+]. While all of the major molecular chaperones have been implicated in propagation of yeast prions, many of these chaperones differentially impact propagation of different prions and/or prion variants. In this review, we summarize the current understanding of the life cycle of yeast prions and systematically review the effects of different chaperone proteins on their propagation. Our analysis clearly shows that Hsp40 proteins play a central role in prion propagation by determining the fate of prion seeds and other amyloids. Moreover, direct prion-chaperone interaction seems to be critically important for proper recruitment of all PQC components to the aggregate. Recent results also suggest that the cell asymmetry apparatus, cytoskeleton, and cell signaling all contribute to the complex network of prion interaction with the yeast cell.
Collapse
|
5
|
Amyloid Fragmentation and Disaggregation in Yeast and Animals. Biomolecules 2021; 11:biom11121884. [PMID: 34944528 PMCID: PMC8699242 DOI: 10.3390/biom11121884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/29/2022] Open
Abstract
Amyloids are filamentous protein aggregates that are associated with a number of incurable diseases, termed amyloidoses. Amyloids can also manifest as infectious or heritable particles, known as prions. While just one prion is known in humans and animals, more than ten prion amyloids have been discovered in fungi. The propagation of fungal prion amyloids requires the chaperone Hsp104, though in excess it can eliminate some prions. Even though Hsp104 acts to disassemble prion fibrils, at normal levels it fragments them into multiple smaller pieces, which ensures prion propagation and accelerates prion conversion. Animals lack Hsp104, but disaggregation is performed by the same complement of chaperones that assist Hsp104 in yeast—Hsp40, Hsp70, and Hsp110. Exogenous Hsp104 can efficiently cooperate with these chaperones in animals and promotes disaggregation, especially of large amyloid aggregates, which indicates its potential as a treatment for amyloid diseases. However, despite the significant effects, Hsp104 and its potentiated variants may be insufficient to fully dissolve amyloid. In this review, we consider chaperone mechanisms acting to disassemble heritable protein aggregates in yeast and animals, and their potential use in the therapy of human amyloid diseases.
Collapse
|
6
|
Ishikawa T. Saccharomyces cerevisiae in neuroscience: how unicellular organism helps to better understand prion protein? Neural Regen Res 2021; 16:489-495. [PMID: 32985470 PMCID: PMC7996030 DOI: 10.4103/1673-5374.293137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The baker’s yeast Saccharomyces (S.) cerevisiae is a single-celled eukaryotic model organism widely used in research on life sciences. Being a unicellular organism, S. cerevisiae has some evident limitations in application to neuroscience. However, yeast prions are extensively studied and they are known to share some hallmarks with mammalian prion protein or other amyloidogenic proteins found in the pathogenesis of Alzheimer’s, Parkinson’s, or Huntington’s diseases. Therefore, the yeast S. cerevisiae has been widely used for basic research on aggregation properties of proteins in cellulo and on their propagation. Recently, a yeast-based study revealed that some regions of mammalian prion protein and amyloid β1–42 are capable of induction and propagation of yeast prions. It is one of the examples showing that evolutionarily distant organisms share common mechanisms underlying the structural conversion of prion proteins making yeast cells a useful system for studying mammalian prion protein. S. cerevisiae has also been used to design novel screening systems for anti-prion compounds from chemical libraries. Yeast-based assays are cheap in maintenance and safe for the researcher, making them a very good choice to perform preliminary screening before further characterization in systems engaging mammalian cells infected with prions. In this review, not only classical red/white colony assay but also yeast-based screening assays developed during last year are discussed. Computational analysis and research carried out using yeast prions force us to expect that prions are widely present in nature. Indeed, the last few years brought us several examples indicating that the mammalian prion protein is no more peculiar protein – it seems that a better understanding of prion proteins nature-wide may aid us with the treatment of prion diseases and other amyloid-related medical conditions.
Collapse
Affiliation(s)
- Takao Ishikawa
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Huang YW, Kushnirov VV, King CY. Mutable yeast prion variants are stabilized by a defective Hsp104 chaperone. Mol Microbiol 2020; 115:774-788. [PMID: 33190361 DOI: 10.1111/mmi.14643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 11/30/2022]
Abstract
Gorkovskiy et al. observed that many [PSI+ ] prion isolates, obtained in yeast with the mutant Hsp104T160M chaperone, propagate poorly in wild-type cells and suggested that Hsp104 is part of the cellular anti-prion system, curing many nascent [PSI+ ] variants. Here, we argue that the concept may require reassessment. We induced [PSI+ ] variants in both the wild-type and the mutant background. Three new variants were isolated in the T160M background. They exhibited lower thermostability, possessed novel structural features, and were inherently mutable, changing to well-characterized VH, VK, and VL variants in wild-type cells. In contrast, VH, VK, and VL of the wild-type background, could not change freely and were lost in the mutant, due to insufficient chaperone activity. Thus, mutant Hsp104 can impose as much restriction against emerging prion variants as the wild-type protein. Such restriction conserved the transmutable variants in the T160M background, since new structures mis-templated from them could not gain a foothold. We further demonstrate excess Hsp104T160M or Hsp104∆2-147 can eliminate nearly all of the [PSI+ ] variants in their native background. This finding contradicts the generally held belief that Hsp104-induced [PSI+ ] curing requires its N-terminal domain, and may help settling the current contention regarding how excess Hsp104 cures [PSI+ ].
Collapse
Affiliation(s)
- Yu-Wen Huang
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Vitaly V Kushnirov
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - Chih-Yen King
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
Barbitoff YA, Matveenko AG, Bondarev SA, Maksiutenko EM, Kulikova AV, Zhouravleva GA. Quantitative assessment of chaperone binding to amyloid aggregates identifies specificity of Hsp40 interaction with yeast prion fibrils. FEMS Yeast Res 2020; 20:5831717. [PMID: 32379306 DOI: 10.1093/femsyr/foaa025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
Yeast self-perpetuating protein aggregates (yeast prions) provide a framework to investigate the interaction of misfolded proteins with the protein quality control machinery. The major component of this system that facilitates propagation of all known yeast amyloid prions is the Hsp104 chaperone that catalyzes fibril fragmentation. Overproduction of Hsp104 cures some yeast prions via a fragmentation-independent mechanism. Importantly, major cytosolic chaperones of the Hsp40 group, Sis1 and Ydj1, oppositely affect yeast prion propagation, and are capable of stimulating different activities of Hsp104. In this work, we developed a quantitative method to investigate the Hsp40 binding to amyloid aggregates. We demonstrate that Sis1 binds fibrils formed by the Sup35NM protein with higher affinity compared to Ydj1. Moreover, the interaction of Sis1 with the fibrils formed by the other yeast prion protein, Rnq1, is orders of magnitude weaker. We show that the deletion of the dimerization domain of Sis1 (crucial for the curing of [PSI+] by excess Hsp104) decreases its affinity to both Sup35NM and Rnq1 fibrils. Taken together, these results suggest that tight binding of Hsp40 to the amyloid fibrils is likely to enhance aggregate malpartition instead of fibril fragmentation.
Collapse
Affiliation(s)
- Yury A Barbitoff
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia
| | - Andrew G Matveenko
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia
| | - Evgeniia M Maksiutenko
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia.,St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia
| | - Alexandra V Kulikova
- Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya ul. 29, St. Petersburg, 195251 Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia
| |
Collapse
|
9
|
Lemarre P, Pujo-Menjouet L, Sindi SS. A unifying model for the propagation of prion proteins in yeast brings insight into the [PSI+] prion. PLoS Comput Biol 2020; 16:e1007647. [PMID: 32453794 PMCID: PMC7274466 DOI: 10.1371/journal.pcbi.1007647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/05/2020] [Accepted: 03/06/2020] [Indexed: 11/18/2022] Open
Abstract
The use of yeast systems to study the propagation of prions and amyloids has emerged as a crucial aspect of the global endeavor to understand those mechanisms. Yeast prion systems are intrinsically multi-scale: the molecular chemical processes are indeed coupled to the cellular processes of cell growth and division to influence phenotypical traits, observable at the scale of colonies. We introduce a novel modeling framework to tackle this difficulty using impulsive differential equations. We apply this approach to the [PSI+] yeast prion, which is associated with the misconformation and aggregation of Sup35. We build a model that reproduces and unifies previously conflicting experimental observations on [PSI+] and thus sheds light onto characteristics of the intracellular molecular processes driving aggregate replication. In particular our model uncovers a kinetic barrier for aggregate replication at low densities, meaning the change between prion or prion-free phenotype is a bi-stable transition. This result is based on the study of prion curing experiments, as well as the phenomenon of colony sectoring, a phenotype which is often ignored in experimental assays and has never been modeled. Furthermore, our results provide further insight into the effect of guanidine hydrochloride (GdnHCl) on Sup35 aggregates. To qualitatively reproduce the GdnHCl curing experiment, aggregate replication must not be completely inhibited, which suggests the existence of a mechanism different than Hsp104-mediated fragmentation. Those results are promising for further development of the [PSI+] model, but also for extending the use of this novel framework to other yeast prion or amyloid systems.
Collapse
Affiliation(s)
- Paul Lemarre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France
- INRIA Rhônes-Alpes, INRIA, Villeurbanne, France
- Department of Applied Mathematics, University of California Merced, Merced, California, United States of America
| | - Laurent Pujo-Menjouet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France
- INRIA Rhônes-Alpes, INRIA, Villeurbanne, France
| | - Suzanne S. Sindi
- Department of Applied Mathematics, University of California Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Chernoff YO, Grizel AV, Rubel AA, Zelinsky AA, Chandramowlishwaran P, Chernova TA. Application of yeast to studying amyloid and prion diseases. ADVANCES IN GENETICS 2020; 105:293-380. [PMID: 32560789 PMCID: PMC7527210 DOI: 10.1016/bs.adgen.2020.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloids are fibrous cross-β protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent model system for studying molecular and cellular mechanisms governing amyloid formation and propagation. Genetic techniques allowing for the expression of mammalian or human amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast advantages for characterization of the properties of disease-related proteins. Chimeric constructs employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for antagonists of amyloid formation, propagation and/or toxicity. This review summarizes up to date achievements of yeast assays in application to studying mammalian and human disease-related aggregating proteins, and discusses both limitations and further perspectives of yeast-based strategies.
Collapse
Affiliation(s)
- Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States; Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia.
| | - Anastasia V Grizel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia; Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Andrew A Zelinsky
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
11
|
Functional amyloids of eukaryotes: criteria, classification, and biological significance. Curr Genet 2020; 66:849-866. [DOI: 10.1007/s00294-020-01079-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 11/26/2022]
|
12
|
Ishikawa T, Lisiecki K. Anti-prion drug screening system in Saccharomyces cerevisiae based on an artificial [LEU2 +] prion. Fungal Genet Biol 2019; 134:103280. [PMID: 31622671 DOI: 10.1016/j.fgb.2019.103280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022]
Abstract
Proteinaceous infectious particles causing mammalian transmissible spongiform encephalopathies or prions are being extensively studied. However due to their hazardous nature, the initial screening of potential anti-prion drugs is often made in a yeast-based screening system utilizing a well-characterized [PSI+] prion (amyloid formed by the translation termination factor Sup35p). In the [PSI+] prion screening system (white/red colony assay), the prion phenotype yields white colonies while addition of an anti-prion drug will yield red colonies. However, this system has some limitations. It is difficult to quantify the effectiveness of the anti-prion compound, the diffusion of the studied compound may affect the result, and the deficiency of glutathione in cells may prevent the formation of red pigment in cured cells. Therefore, alternative yeast prion screening systems are still needed. This article aims to present an alternative yeast-based system to evaluate anti-prion activity of chemical compounds. The method that was used is based on an artificial [LEU2+] prion created by fusing Leu2p with the prion-forming domain of Sup35p in Saccharomyces cerevisiae. Phenotypic analysis and semi-denaturating detergent agarose gel electrophoresis (SDD-AGE) confirmed the presence of the artificial [LEU2+] prion in yeast cells. This screening system verified the anti-prion activity of 3 drugs that were found to have been active in the white/red colony assay, while one compound (6-chlorotacrine) that was active in the white/red colony assay was found to be inactive in the [LEU2+] system. This new system also appears to be more sensitive than the white/red colony assay.
Collapse
Affiliation(s)
- Takao Ishikawa
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Poland.
| | - Kamil Lisiecki
- Laboratory of Natural Products Chemistry, Division of Organic Chemistry, Faculty of Chemistry, University of Warsaw, Poland
| |
Collapse
|
13
|
Three J-proteins impact Hsp104-mediated variant-specific prion elimination: a new critical role for a low-complexity domain. Curr Genet 2019; 66:51-58. [PMID: 31230108 PMCID: PMC6925661 DOI: 10.1007/s00294-019-01006-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
Prions are self-propagating protein isoforms that are typically amyloid. In Saccharomyces cerevisiae, amyloid prion aggregates are fragmented by a trio involving three classes of chaperone proteins: Hsp40s, also known as J-proteins, Hsp70s, and Hsp104. Hsp104, the sole Hsp100-class disaggregase in yeast, along with the Hsp70 Ssa and the J-protein Sis1, is required for the propagation of all known amyloid yeast prions. However, when Hsp104 is ectopically overexpressed, only the prion [PSI+] is efficiently eliminated from cell populations via a highly debated mechanism that also requires Sis1. Recently, we reported roles for two additional J-proteins, Apj1 and Ydj1, in this process. Deletion of Apj1, a J-protein involved in the degradation of sumoylated proteins, partially blocks Hsp104-mediated [PSI+] elimination. Apj1 and Sis1 were found to have overlapping functions, as overexpression of one compensates for loss of function of the other. In addition, overexpression of Ydj1, the most abundant J-protein in the yeast cytosol, completely blocks Hsp104-mediated curing. Yeast prions exhibit structural polymorphisms known as “variants”; most intriguingly, these J-protein effects were only observed for strong variants, suggesting variant-specific mechanisms. Here, we review these results and present new data resolving the domains of Apj1 responsible, specifically implicating the involvement of Apj1’s Q/S-rich low-complexity domain.
Collapse
|
14
|
Huang YW, King CY. A complete catalog of wild-type Sup35 prion variants and their protein-only propagation. Curr Genet 2019; 66:97-122. [DOI: 10.1007/s00294-019-01003-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 10/26/2022]
|
15
|
Killian AN, Miller SC, Hines JK. Impact of Amyloid Polymorphism on Prion-Chaperone Interactions in Yeast. Viruses 2019; 11:v11040349. [PMID: 30995727 PMCID: PMC6521183 DOI: 10.3390/v11040349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 12/22/2022] Open
Abstract
Yeast prions are protein-based genetic elements found in the baker's yeast Saccharomyces cerevisiae, most of which are amyloid aggregates that propagate by fragmentation and spreading of small, self-templating pieces called propagons. Fragmentation is carried out by molecular chaperones, specifically Hsp104, Hsp70, and Hsp40. Like other amyloid-forming proteins, amyloid-based yeast prions exhibit structural polymorphisms, termed "strains" in mammalian systems and "variants" in yeast, which demonstrate diverse phenotypes and chaperone requirements for propagation. Here, the known differential interactions between chaperone proteins and yeast prion variants are reviewed, specifically those of the yeast prions [PSI+], [RNQ+]/[PIN+], and [URE3]. For these prions, differences in variant-chaperone interactions (where known) with Hsp104, Hsp70s, Hsp40s, Sse1, and Hsp90 are summarized, as well as some interactions with chaperones of other species expressed in yeast. As amyloid structural differences greatly impact chaperone interactions, understanding and accounting for these variations may be crucial to the study of chaperones and both prion and non-prion amyloids.
Collapse
Affiliation(s)
- Andrea N Killian
- Department of Chemistry, Lafayette College, Easton, PA 18042, USA.
| | - Sarah C Miller
- Department of Chemistry, Lafayette College, Easton, PA 18042, USA.
| | - Justin K Hines
- Department of Chemistry, Lafayette College, Easton, PA 18042, USA.
| |
Collapse
|
16
|
More than just a phase: the search for membraneless organelles in the bacterial cytoplasm. Curr Genet 2019; 65:691-694. [PMID: 30603876 DOI: 10.1007/s00294-018-00927-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 12/16/2022]
Abstract
The bacterial cytoplasm, once thought to be a relatively undifferentiated reaction medium, has now been recognized to have extensive microstructure. This microstructure includes bacterial microcompartments, inclusion bodies, granules, and even some membrane-bound vesicles. Several recent papers suggest that bacteria may also organize their cytoplasm using an additional mechanism: phase-separated membraneless organelles, a strategy commonly used by eukaryotes. Phase-separated membraneless organelles such as Cajal bodies, the nucleolus, and stress granules allow proteins to become concentrated in sub-compartments of eukaryotic cells without being surrounded by a barrier to diffusion. In this review, we summarize the known structural organization of the bacterial cytoplasm and discuss the recent evidence that phase-separated membraneless organelles might also play a role in bacterial systems. We specifically focus on bacterial ribonucleoprotein complexes and two different protein components of the bacterial nucleoid that may have the ability to form subcellular partitions within bacteria cells.
Collapse
|
17
|
Involvement of the two l-lactate dehydrogenase in development and pathogenicity in Fusarium graminearum. Curr Genet 2018; 65:591-605. [DOI: 10.1007/s00294-018-0909-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
|
18
|
Prion Replication in the Mammalian Cytosol: Functional Regions within a Prion Domain Driving Induction, Propagation, and Inheritance. Mol Cell Biol 2018; 38:MCB.00111-18. [PMID: 29784771 PMCID: PMC6048315 DOI: 10.1128/mcb.00111-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
Prions of lower eukaryotes are transmissible protein particles that propagate by converting homotypic soluble proteins into growing protein assemblies. Prion activity is conferred by so-called prion domains, regions of low complexity that are often enriched in glutamines and asparagines (Q/N). Prions of lower eukaryotes are transmissible protein particles that propagate by converting homotypic soluble proteins into growing protein assemblies. Prion activity is conferred by so-called prion domains, regions of low complexity that are often enriched in glutamines and asparagines (Q/N). The compositional similarity of fungal prion domains with intrinsically disordered domains found in many mammalian proteins raises the question of whether similar sequence elements can drive prion-like phenomena in mammals. Here, we define sequence features of the prototype Saccharomyces cerevisiae Sup35 prion domain that govern prion activities in mammalian cells by testing the ability of deletion mutants to assemble into self-perpetuating particles. Interestingly, the amino-terminal Q/N-rich tract crucially important for prion induction in yeast was dispensable for the prion life cycle in mammalian cells. Spontaneous and template-assisted prion induction, growth, and maintenance were preferentially driven by the carboxy-terminal region of the prion domain that contains a putative soft amyloid stretch recently proposed to act as a nucleation site for prion assembly. Our data demonstrate that preferred prion nucleation domains can differ between lower and higher eukaryotes, resulting in the formation of prions with strikingly different amyloid cores.
Collapse
|
19
|
Astor MT, Kamiya E, Sporn ZA, Berger SE, Hines JK. Variant-specific and reciprocal Hsp40 functions in Hsp104-mediated prion elimination. Mol Microbiol 2018; 109:41-62. [PMID: 29633387 PMCID: PMC6099457 DOI: 10.1111/mmi.13966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 01/02/2023]
Abstract
The amyloid-based prions of Saccharomyces cerevisiae are heritable aggregates of misfolded proteins, passed to daughter cells following fragmentation by molecular chaperones including the J-protein Sis1, Hsp70 and Hsp104. Overexpression of Hsp104 efficiently cures cell populations of the prion [PSI+ ] by an alternative Sis1-dependent mechanism that is currently the subject of significant debate. Here, we broadly investigate the role of J-proteins in this process by determining the impact of amyloid polymorphisms (prion variants) on the ability of well-studied Sis1 constructs to compensate for Sis1 and ask whether any other S. cerevisiae cytosolic J-proteins are also required for this process. Our comprehensive screen, examining all 13 members of the yeast cytosolic/nuclear J-protein complement, uncovered significant variant-dependent genetic evidence for a role of Apj1 (antiprion DnaJ) in this process. For strong, but not weak [PSI+ ] variants, depletion of Apj1 inhibits Hsp104-mediated curing. Overexpression of either Apj1 or Sis1 enhances curing, while overexpression of Ydj1 completely blocks it. We also demonstrated that Sis1 was the only J-protein necessary for the propagation of at least two weak [PSI+ ] variants and no J-protein alteration, or even combination of alterations, affected the curing of weak [PSI+ ] variants, suggesting the possibility of biochemically distinct, variant-specific Hsp104-mediated curing mechanisms.
Collapse
Affiliation(s)
| | - Erina Kamiya
- Department of ChemistryLafayette CollegeEastonPAUSA
| | - Zachary A. Sporn
- Department of ChemistryLafayette CollegeEastonPAUSA
- Present address:
Geisinger Commonwealth School of MedicineScrantonPAUSA
| | | | | |
Collapse
|
20
|
Greene LE, Zhao X, Eisenberg E. Curing of [PSI +] by Hsp104 Overexpression: Clues to solving the puzzle. Prion 2018; 12:9-15. [PMID: 29227184 DOI: 10.1080/19336896.2017.1412911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The yeast [PSI+] prion, which is the amyloid form of Sup35, has the unusual property of being cured not only by the inactivation of, but also by the overexpression of Hsp104. Even though this latter observation was made more than two decades ago, the mechanism of curing by Hsp104 overexpression has remained controversial. This question has been investigated in depth by our laboratory by combining live cell imaging of GFP-labeled Sup35 with standard plating assays of yeast overexpressing Hsp104. We will discuss why the curing of [PSI+] by Hsp104 overexpression is not compatible with a mechanism of either inhibition of severing of the prion seeds or asymmetric segregation of the seeds. Instead, our recent data (J. Biol. Chem. 292:8630-8641) indicate that curing is due to dissolution of the prion seeds, which in turn is dependent on the trimming activity of Hsp104. This trimming activity decreases the size of the seeds by dissociating monomers from the fibers, but unlike Hsp104 severing activity, it does not increase the number of prion seeds. Finally, we will discuss the other factors that affect the curing of [PSI+] by Hsp104 overexpression and how these factors may relate to the trimming activity of Hsp104.
Collapse
Affiliation(s)
- Lois E Greene
- a Laboratory of Cell Biology , NHLBI, NIH , Bethesda , MD , USA
| | - Xiaohong Zhao
- a Laboratory of Cell Biology , NHLBI, NIH , Bethesda , MD , USA
| | - Evan Eisenberg
- a Laboratory of Cell Biology , NHLBI, NIH , Bethesda , MD , USA
| |
Collapse
|
21
|
Wisniewski BT, Sharma J, Legan ER, Paulson E, Merrill SJ, Manogaran AL. Toxicity and infectivity: insights from de novo prion formation. Curr Genet 2018; 64:117-123. [PMID: 28856415 PMCID: PMC5777878 DOI: 10.1007/s00294-017-0736-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
Prions are infectious misfolded proteins that assemble into oligomers and large aggregates, and are associated with neurodegeneration. It is believed that the oligomers contribute to cytotoxicity, although genetic and environmental factors have also been shown to have additional roles. The study of the yeast prion [PSI +] has provided valuable insights into how prions form and why they are toxic. Our recent work suggests that SDS-resistant oligomers arise and remodel early during the prion formation process, and lysates containing these newly formed oligomers are infectious. Previous work shows that toxicity is associated with prion formation and this toxicity is exacerbated by deletion of the VPS5 gene. Here, we show that newly made oligomer formation and infectivity of vps5∆ lysates are similar to wild-type strains. However using green fluorescent protein fusions, we observe that the assembly of fluorescent cytoplasmic aggregates during prion formation is different in vps5∆ strains. Instead of large immobile aggregates, vps5∆ strains have an additional population of small mobile foci. We speculate that changes in the cellular milieu in vps5∆ strains may reduce the cell's ability to efficiently recruit and sequester newly formed prion particles into central deposition sites, resulting in toxicity.
Collapse
Affiliation(s)
- Brett T Wisniewski
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Jaya Sharma
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Emily R Legan
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Emily Paulson
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, 53201, USA
| | - Stephen J Merrill
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, 53201, USA
| | - Anita L Manogaran
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA.
| |
Collapse
|
22
|
Differential effects of chaperones on yeast prions: CURrent view. Curr Genet 2017; 64:317-325. [DOI: 10.1007/s00294-017-0750-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/09/2017] [Accepted: 09/12/2017] [Indexed: 01/01/2023]
|