1
|
Akuta T, Ura T, Oikawa T, Tomioka Y, Eguchi A, Arakawa T. Effects of sodium dodecyl sulfate, Sarkosyl and sodium lauroyl glutamate on the structure of proteins monitored by agarose native gel electrophoresis and circular dichroism. Biophys Chem 2024; 314:107316. [PMID: 39168056 DOI: 10.1016/j.bpc.2024.107316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
We have studied binding properties of three detergents, i.e., sodium dodecyl sulfate (SDS), Sarkosyl and sodium lauroyl glutamate (SLG), to model proteins based on their effects on electrophoretic mobilities of the proteins using agarose native gel electrophoresis and circular dichroism (CD). This simple technology can evaluate the dissociative properties of bound detergents from the proteins and their effects on protein structure. SDS influenced the electrophoretic mobilities of all model proteins more strongly than the other two detergents, implying a stronger inclination for protein binding and subsequent alterations in protein structure or reductions in activity, which are supported by CD analysis. On the contrary, Sarkosyl and SLG showed weaker binding and interfered less with the structure and biological activities, indicating that these detergents may be useful for protein purification and analysis. It appeared that SLG was weaker in protein binding than Sarkosyl, although the effects of these two detergents appeared to depend on the proteins.
Collapse
Affiliation(s)
- Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna, Takahagi, Ibaraki 318-004, Japan.
| | - Tomoto Ura
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan.
| | - Takeshi Oikawa
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna, Takahagi, Ibaraki 318-004, Japan.
| | - Yui Tomioka
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna, Takahagi, Ibaraki 318-004, Japan.
| | - Akiko Eguchi
- Biobank Center, Mie University Hospital, 2-174, Edobashi, Tsu 514-8507, Japan.
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Rd, San Diego, CA 92130, USA.
| |
Collapse
|
2
|
Wang Y, Ruan L, Li R. GPI-anchored Gas1 protein regulates cytosolic proteostasis in budding yeast. G3 (BETHESDA, MD.) 2024; 14:jkad263. [PMID: 38289859 PMCID: PMC10917523 DOI: 10.1093/g3journal/jkad263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/01/2023] [Indexed: 02/01/2024]
Abstract
The decline in protein homeostasis (proteostasis) is a hallmark of cellular aging and aging-related diseases. Maintaining a balanced proteostasis requires a complex network of molecular machineries that govern protein synthesis, folding, localization, and degradation. Under proteotoxic stress, misfolded proteins that accumulate in cytosol can be imported into mitochondria for degradation through the "mitochondrial as guardian in cytosol" (MAGIC) pathway. Here, we report an unexpected role of Gas1, a cell wall-bound glycosylphosphatidylinositol (GPI)-anchored β-1,3-glucanosyltransferase in the budding yeast, in differentially regulating MAGIC and ubiquitin-proteasome system (UPS). Deletion of GAS1 inhibits MAGIC but elevates protein ubiquitination and UPS-mediated protein degradation. Interestingly, we found that the Gas1 protein exhibits mitochondrial localization attributed to its C-terminal GPI anchor signal. But this mitochondria-associated GPI anchor signal is not required for mitochondrial import and degradation of misfolded proteins through MAGIC. By contrast, catalytic inactivation of Gas1 via the gas1-E161Q mutation inhibits MAGIC but not its mitochondrial localization. These data suggest that the glucanosyltransferase activity of Gas1 is important for regulating cytosolic proteostasis.
Collapse
Affiliation(s)
- Yuhao Wang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Linhao Ruan
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Li
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
3
|
Arakawa T, Niikura T, Kita Y, Akuta T. Sodium Dodecyl Sulfate Analogs as a Potential Molecular Biology Reagent. Curr Issues Mol Biol 2024; 46:621-633. [PMID: 38248342 PMCID: PMC10814491 DOI: 10.3390/cimb46010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
In this study, we review the properties of three anionic detergents, sodium dodecyl sulfate (SDS), Sarkosyl, and sodium lauroylglutamate (SLG), as they play a critical role in molecular biology research. SDS is widely used in electrophoresis and cell lysis for proteomics. Sarkosyl and, more frequently, SDS are used for the characterization of neuropathological protein fibrils and the solubilization of proteins. Many amyloid fibrils are resistant to SDS or Sarkosyl to different degrees and, thus, can be readily isolated from detergent-sensitive proteins. SLG is milder than the above two detergents and has been used in the solubilization and refolding of proteins isolated from inclusion bodies. Here, we show that both Sarkosyl and SLG have been used for protein refolding, that the effects of SLG on the native protein structure are weaker for SLG, and that SLG readily dissociates from the native proteins. We propose that SLG may be effective in cell lysis for functional proteomics due to no or weaker binding of SLG to the native proteins.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Labs, 13380 Pantera Rd., San Diego, CA 92130, USA;
| | - Takako Niikura
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan;
| | - Yoshiko Kita
- Alliance Protein Labs, 13380 Pantera Rd., San Diego, CA 92130, USA;
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna, Takahagi-shi 318-0004, Japan;
| |
Collapse
|
4
|
Galkin AP, Sysoev EI, Valina AA. Amyloids and prions in the light of evolution. Curr Genet 2023; 69:189-202. [PMID: 37165144 DOI: 10.1007/s00294-023-01270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
Functional amyloids have been identified in a wide variety of organisms including bacteria, fungi, plants, and vertebrates. Intracellular and extracellular amyloid fibrils of different proteins perform storage, protective, structural, and regulatory functions. The structural organization of amyloid fibrils determines their unique physical and biochemical properties. The formation of these fibrillar structures can provide adaptive advantages that are picked up by natural selection. Despite the great interest in functional and pathological amyloids, questions about the conservatism of the amyloid properties of proteins and the regularities in the appearance of these fibrillar structures in evolution remain almost unexplored. Using bioinformatics approaches and summarizing the data published previously, we have shown that amyloid fibrils performing similar functions in different organisms have been arising repeatedly and independently in the course of evolution. On the other hand, we show that the amyloid properties of a number of bacterial and eukaryotic proteins are evolutionarily conserved. We also discuss the role of protein-based inheritance in the evolution of microorganisms. Considering that missense mutations and the emergence of prions cause the same consequences, we propose the concept that the formation of prions, similarly to mutations, generally causes a negative effect, although it can also lead to adaptations in rare cases. In general, our analysis revealed certain patterns in the emergence and spread of amyloid fibrillar structures in the course of evolution.
Collapse
Affiliation(s)
- Alexey P Galkin
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, St. Petersburg, Russian Federation, 199034.
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation, 199034.
| | - Evgeniy I Sysoev
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, St. Petersburg, Russian Federation, 199034
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation, 199034
| | - Anna A Valina
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation, 199034
| |
Collapse
|
5
|
Search and Identification of Amyloid Proteins. Methods Protoc 2023; 6:mps6010016. [PMID: 36827503 PMCID: PMC9967629 DOI: 10.3390/mps6010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Amyloids are fibrillar proteins with a cross-β structure. Pathological amyloids are associated with the development of a number of incurable diseases, while functional amyloids regulate vital processes. The detection of unknown amyloids in living objects is a difficult task, and therefore the question of the prevalence and biological significance of amyloids remains open. We present a description of two methods, the combination of which makes it possible to find and identify amyloid proteins in the proteome of various organisms. The method of proteomic screening for amyloids allows the detection of the proteins that form SDS-resistant aggregates. SDS resistance is a general feature of amyloid fibrils. Protein aggregates resistant to SDS treatment can be collected by ultracentrifugation and further identified by mass spectrometry. However, in addition to amyloids, SDS-resistant aggregates contain some non-amyloid proteins. To test the amyloid properties of proteins identified by proteomic screening, we developed the method of fibril immunoprecipitation followed by Congo red staining and birefringence analysis. The methods of proteomic screening and immunoprecipitation of fibrillar proteins have been successfully tested and applied for the identification of amyloid proteins in yeast and vertebrates.
Collapse
|
6
|
Arnthong J, Ponjarat J, Bussadee P, Deenarn P, Prommana P, Phienluphon A, Charoensri S, Champreda V, Zhao XQ, Suwannarangsee S. Enhanced surface display efficiency of β-glucosidase in Saccharomyces cerevisiae by disruption of cell wall protein-encoding genes YGP1 and CWP2. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Sergeeva AV, Belashova TA, Bondarev SA, Velizhanina ME, Barbitoff YA, Matveenko AG, Valina AA, Simanova AL, Zhouravleva GA, Galkin AP. Direct proof of the amyloid nature of yeast prions [PSI+] and [PIN+] by the method of immunoprecipitation of native fibrils. FEMS Yeast Res 2021; 21:6360323. [PMID: 34463335 DOI: 10.1093/femsyr/foab046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Prions are proteins that can exist in several structurally and functionally distinct states, one or more of which is transmissible. Yeast proteins Sup35 and Rnq1 in prion state ([PSI+] and [PIN+], respectively) form oligomers and aggregates, which are transmitted from parents to offspring in a series of generations. Several pieces of indirect evidence indicate that these aggregates also possess amyloid properties, but their binding to amyloid-specific dyes has not been shown in vivo. Meanwhile, it is the specific binding to the Congo Red dye and birefringence in polarized light after such staining that is considered the gold standard for proving the amyloid properties of a protein. Here, we used immunoprecipitation to extract native fibrils of the Sup35 and Rnq1 proteins from yeast strains with different prion status. These fibrils are detected by electron microscopy, stained with Congo Red and exhibit yellow-green birefringence after such staining. All these data show that the Sup35 and Rnq1 proteins in prion state form amyloid fibrils in vivo. The technology of fibrils extraction in combination with standard cytological methods can be used to identify new pathological and functional amyloids in any organism and to analyze the structural features of native amyloid fibrils.
Collapse
Affiliation(s)
- Aleksandra V Sergeeva
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation
| | - Tatyana A Belashova
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation.,Laboratory of Amyloid Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation
| | - Marya E Velizhanina
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation.,Laboratory of Signal Regulation, All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee, 3 , Pushkin, St. Petersburg, Russian Federation
| | - Yury A Barbitoff
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation
| | - Andrew G Matveenko
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation
| | - Anna A Valina
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation
| | - Angelina L Simanova
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation
| | - Alexey P Galkin
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation.,Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation
| |
Collapse
|
8
|
Lipke PN, Mathelié-Guinlet M, Viljoen A, Dufrêne YF. A New Function for Amyloid-Like Interactions: Cross-Beta Aggregates of Adhesins form Cell-to-Cell Bonds. Pathogens 2021; 10:pathogens10081013. [PMID: 34451476 PMCID: PMC8398270 DOI: 10.3390/pathogens10081013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022] Open
Abstract
Amyloid structures assemble through a repeating type of bonding called "cross-β", in which identical sequences in many protein molecules form β-sheets that interdigitate through side chain interactions. We review the structural characteristics of such bonds. Single cell force microscopy (SCFM) shows that yeast expressing Als5 adhesin from Candida albicans demonstrate the empirical characteristics of cross-β interactions. These properties include affinity for amyloid-binding dyes, birefringence, critical concentration dependence, repeating structure, and inhibition by anti-amyloid agents. We present a model for how cross-β bonds form in trans between two adhering cells. These characteristics also apply to other fungal adhesins, so the mechanism appears to be an example of a new type of cell-cell adhesion.
Collapse
Affiliation(s)
- Peter N. Lipke
- Biology Department, Brooklyn College of City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Correspondence: ; Tel.: +1-(917)-696-4862
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (M.M.-G.); (A.V.); (Y.F.D.)
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (M.M.-G.); (A.V.); (Y.F.D.)
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (M.M.-G.); (A.V.); (Y.F.D.)
| |
Collapse
|
9
|
Andreychuk YV, Zadorsky SP, Zhuk AS, Stepchenkova EI, Inge-Vechtomov SG. Relationship between Type I and Type II Template Processes: Amyloids and Genome Stability. Mol Biol 2020. [DOI: 10.1134/s0026893320050027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Functional Mammalian Amyloids and Amyloid-Like Proteins. Life (Basel) 2020; 10:life10090156. [PMID: 32825636 PMCID: PMC7555005 DOI: 10.3390/life10090156] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Amyloids are highly ordered fibrous cross-β protein aggregates that are notorious primarily because of association with a variety of incurable human and animal diseases (termed amyloidoses), including Alzheimer’s disease (AD), Parkinson’s disease (PD), type 2 diabetes (T2D), and prion diseases. Some amyloid-associated diseases, in particular T2D and AD, are widespread and affect hundreds of millions of people all over the world. However, recently it has become evident that many amyloids, termed “functional amyloids,” are involved in various activities that are beneficial to organisms. Functional amyloids were discovered in diverse taxa, ranging from bacteria to mammals. These amyloids are involved in vital biological functions such as long-term memory, storage of peptide hormones and scaffolding melanin polymerization in animals, substrate attachment, and biofilm formation in bacteria and fungi, etc. Thus, amyloids undoubtedly are playing important roles in biological and pathological processes. This review is focused on functional amyloids in mammals and summarizes approaches used for identifying new potentially amyloidogenic proteins and domains.
Collapse
|
11
|
Antonets KS, Belousov MV, Sulatskaya AI, Belousova ME, Kosolapova AO, Sulatsky MI, Andreeva EA, Zykin PA, Malovichko YV, Shtark OY, Lykholay AN, Volkov KV, Kuznetsova IM, Turoverov KK, Kochetkova EY, Bobylev AG, Usachev KS, Demidov ON, Tikhonovich IA, Nizhnikov AA. Accumulation of storage proteins in plant seeds is mediated by amyloid formation. PLoS Biol 2020; 18:e3000564. [PMID: 32701952 PMCID: PMC7377382 DOI: 10.1371/journal.pbio.3000564] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 06/19/2020] [Indexed: 02/04/2023] Open
Abstract
Amyloids are protein aggregates with a highly ordered spatial structure giving them unique physicochemical properties. Different amyloids not only participate in the development of numerous incurable diseases but control vital functions in archaea, bacteria and eukarya. Plants are a poorly studied systematic group in the field of amyloid biology. Amyloid properties have not yet been demonstrated for plant proteins under native conditions in vivo. Here we show that seeds of garden pea Pisum sativum L. contain amyloid-like aggregates of storage proteins, the most abundant one, 7S globulin Vicilin, forms bona fide amyloids in vivo and in vitro. Full-length Vicilin contains 2 evolutionary conserved β-barrel domains, Cupin-1.1 and Cupin-1.2, that self-assemble in vitro into amyloid fibrils with similar physicochemical properties. However, Cupin-1.2 fibrils unlike Cupin-1.1 can seed Vicilin fibrillation. In vivo, Vicilin forms amyloids in the cotyledon cells that bind amyloid-specific dyes and possess resistance to detergents and proteases. The Vicilin amyloid accumulation increases during seed maturation and wanes at germination. Amyloids of Vicilin resist digestion by gastrointestinal enzymes, persist in canned peas, and exhibit toxicity for yeast and mammalian cells. Our finding for the first time reveals involvement of amyloid formation in the accumulation of storage proteins in plant seeds.
Collapse
Affiliation(s)
- Kirill S. Antonets
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Mikhail V. Belousov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Anna I. Sulatskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Maria E. Belousova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
| | - Anastasiia O. Kosolapova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Maksim I. Sulatsky
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | - Yury V. Malovichko
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Oksana Y. Shtark
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
| | | | | | | | | | | | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Konstantin S. Usachev
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Oleg. N. Demidov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
- INSERM UMR1231, UBFC, Dijon, France
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Anton A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
12
|
Functional amyloids of eukaryotes: criteria, classification, and biological significance. Curr Genet 2020; 66:849-866. [DOI: 10.1007/s00294-020-01079-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 11/26/2022]
|
13
|
Amyloidogenic Peptides in Human Neuro-Degenerative Diseases and in Microorganisms: A Sorrow Shared Is a Sorrow Halved? Molecules 2020; 25:molecules25040925. [PMID: 32093040 PMCID: PMC7070710 DOI: 10.3390/molecules25040925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 01/06/2023] Open
Abstract
The term "amyloid" refers to proteinaceous deposits of peptides that might be generated from larger precursor proteins e.g., by proteolysis. Common to these peptides is a stable cross-β dominated secondary structure which allows self-assembly, leading to insoluble oligomers and lastly to fibrils. These highly ordered protein aggregates have been, for a long time, mainly associated with human neurodegenerative diseases such as Alzheimer's disease (Amyloid-β peptides). However, they also exert physiological functions such as in release of deposited hormones in human beings. In the light of the rediscovery of our microbial commensals as important companions in health and disease, the fact that microbes also possess amyloidogenic peptides is intriguing. Transmission of amyloids by iatrogenic means or by consumption of contaminated meat from diseased animals is a well-known fact. What if also our microbial commensals might drive human amyloidosis or suffer from our aggregated amyloids? Moreover, as the microbial amyloids are evolutionarily older, we might learn from these organisms how to cope with the sword of Damocles forged of endogenous, potentially toxic peptides. This review summarizes knowledge about the interplay between human amyloids involved in neurodegenerative diseases and microbial amyloids.
Collapse
|
14
|
Rekstina VV, Bykova AA, Ziganshin RH, Kalebina TS. GPI-Modified Proteins Non-covalently Attached to Saccharomyces cerevisiae Yeast Cell Wall. BIOCHEMISTRY (MOSCOW) 2019; 84:1513-1520. [PMID: 31870255 DOI: 10.1134/s0006297919120101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Yeast cell wall GPI-anchored proteins lack the lipid part of the anchor and are covalently bound to the high-molecular-weight polysaccharides glucan and/or chitin through the mannose residues. They perform many functions, including participation in the cell wall molecular ensemble formation and providing cell resistance to stress. In this work, we identified a pool of GPI-modified proteins firmly bound to the cell wall by non-covalent interactions with the high-molecular-weight structural polysaccharides. We believe that the detected proteins are intermediate forms in the processing of the cell wall GPI-proteins, since they had already lost the lipid part of the GPI anchor and are absent in the lipoprotein fraction extracted according to Folch, but were not yet incorporated into the cell wall by the covalent binding to high-molecular-weight polysaccharides because they could be extracted into water by heating of delipidized cell walls. This group of previously unknown proteins might be present in the cell wall in a form of lipid-associated microcompartments represented by transport vesicles recently found in yeast. GPI-modified proteins non-covalently attached to the high-molecular-weight polysaccharides were found in the cell walls of both the parent strain and yeast devoid of glucanosyltransglycosylase Bgl2, which indicates that the pathway of their incorporation into the cell wall is independent on this enzyme.
Collapse
Affiliation(s)
- V V Rekstina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - A A Bykova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - R H Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - T S Kalebina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| |
Collapse
|
15
|
|
16
|
RNA-binding protein FXR1 is presented in rat brain in amyloid form. Sci Rep 2019; 9:18983. [PMID: 31831836 PMCID: PMC6908614 DOI: 10.1038/s41598-019-55528-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/28/2019] [Indexed: 01/27/2023] Open
Abstract
Amyloids are β-sheets-rich protein fibrils that cause neurodegenerative and other incurable human diseases affecting millions of people worldwide. However, a number of proteins is functional in the amyloid state in various organisms from bacteria to humans. Using an original proteomic approach, we identified a set of proteins forming amyloid-like aggregates in the brain of young healthy rats. One of them is the FXR1 protein, which is known to regulate memory and emotions. We showed that FXR1 clearly colocalizes in cortical neurons with amyloid-specific dyes Congo-Red, Thioflavines S and T. FXR1 extracted from brain by immunoprecipitation shows yellow-green birefringence after staining with Congo red. This protein forms in brain detergent-resistant amyloid oligomers and insoluble aggregates. RNA molecules that are colocalized with FXR1 in cortical neurons are insensitive to treatment with RNase A. All these data suggest that FXR1 functions in rat brain in amyloid form. The N-terminal amyloid-forming fragment of FXR1 is highly conserved across mammals. We assume that the FXR1 protein may be presented in amyloid form in brain of different species of mammals, including humans.
Collapse
|
17
|
Kosolapova AO, Belousov MV, Sulatskaya AI, Belousova ME, Sulatsky MI, Antonets KS, Volkov KV, Lykholay AN, Shtark OY, Vasileva EN, Zhukov VA, Ivanova AN, Zykin PA, Kuznetsova IM, Turoverov KK, Tikhonovich IA, Nizhnikov AA. Two Novel Amyloid Proteins, RopA and RopB, from the Root Nodule Bacterium Rhizobium leguminosarum. Biomolecules 2019; 9:biom9110694. [PMID: 31690032 PMCID: PMC6920782 DOI: 10.3390/biom9110694] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Amyloids represent protein fibrils with a highly ordered spatial structure, which not only cause dozens of incurable human and animal diseases but also play vital biological roles in Archaea, Bacteria, and Eukarya. Despite the fact that association of bacterial amyloids with microbial pathogenesis and infectious diseases is well known, there is a lack of information concerning the amyloids of symbiotic bacteria. In this study, using the previously developed proteomic method for screening and identification of amyloids (PSIA), we identified amyloidogenic proteins in the proteome of the root nodule bacterium Rhizobium leguminosarum. Among 54 proteins identified, we selected two proteins, RopA and RopB, which are predicted to have β-barrel structure and are likely to be involved in the control of plant-microbial symbiosis. We demonstrated that the full-length RopA and RopB form bona fide amyloid fibrils in vitro. In particular, these fibrils are β-sheet-rich, bind Thioflavin T (ThT), exhibit green birefringence upon staining with Congo Red (CR), and resist treatment with ionic detergents and proteases. The heterologously expressed RopA and RopB intracellularly aggregate in yeast and assemble into amyloid fibrils at the surface of Escherichia coli. The capsules of the R. leguminosarum cells bind CR, exhibit green birefringence, and contain fibrils of RopA and RopB in vivo.
Collapse
Affiliation(s)
- Anastasiia O Kosolapova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Mikhail V Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia.
| | - Maria E Belousova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia.
| | - Kirill S Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Kirill V Volkov
- Research Resource Center "Molecular and Cell Technologies", Research Park, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Anna N Lykholay
- Research Resource Center "Molecular and Cell Technologies", Research Park, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Oksana Y Shtark
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, 196608, Russia.
| | - Ekaterina N Vasileva
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, 196608, Russia.
| | - Vladimir A Zhukov
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, 196608, Russia.
| | - Alexandra N Ivanova
- Research Resource Center "Molecular and Cell Technologies", Research Park, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
- Komarov Botanical Institute RAS, 197376 Komarov Botanical Institute RAS, Russia.
| | - Pavel A Zykin
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia.
- Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia.
| | - Igor A Tikhonovich
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, 196608, Russia.
| | - Anton A Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| |
Collapse
|
18
|
More than just a phase: the search for membraneless organelles in the bacterial cytoplasm. Curr Genet 2019; 65:691-694. [PMID: 30603876 DOI: 10.1007/s00294-018-00927-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 12/16/2022]
Abstract
The bacterial cytoplasm, once thought to be a relatively undifferentiated reaction medium, has now been recognized to have extensive microstructure. This microstructure includes bacterial microcompartments, inclusion bodies, granules, and even some membrane-bound vesicles. Several recent papers suggest that bacteria may also organize their cytoplasm using an additional mechanism: phase-separated membraneless organelles, a strategy commonly used by eukaryotes. Phase-separated membraneless organelles such as Cajal bodies, the nucleolus, and stress granules allow proteins to become concentrated in sub-compartments of eukaryotic cells without being surrounded by a barrier to diffusion. In this review, we summarize the known structural organization of the bacterial cytoplasm and discuss the recent evidence that phase-separated membraneless organelles might also play a role in bacterial systems. We specifically focus on bacterial ribonucleoprotein complexes and two different protein components of the bacterial nucleoid that may have the ability to form subcellular partitions within bacteria cells.
Collapse
|
19
|
Sergeeva AV, Sopova JV, Belashova TA, Siniukova VA, Chirinskaite AV, Galkin AP, Zadorsky SP. Amyloid properties of the yeast cell wall protein Toh1 and its interaction with prion proteins Rnq1 and Sup35. Prion 2018; 13:21-32. [PMID: 30558459 PMCID: PMC6422396 DOI: 10.1080/19336896.2018.1558763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Amyloids are non-branching fibrils that are composed of stacked monomers stabilized by intermolecular β-sheets. Some amyloids are associated with incurable diseases, whereas others, functional amyloids, regulate different vital processes. The prevalence and significance of functional amyloids in wildlife are still poorly understood. In recent years, by applying new approach of large-scale proteome screening, a number of novel candidate amyloids were identified in the yeast Saccharomyces cerevisiae, many of which are localized in the yeast cell wall. In this work, we showed that one of these proteins, Toh1, possess amyloid properties. The Toh1-YFP hybrid protein forms detergent-resistant aggregates in the yeast cells while being expressed under its own PTOH1 or inducible PCUP1 promoter. Using bacterial system for generation of extracellular amyloid aggregates C-DAG, we demonstrated that the N-terminal Toh1 fragment, containing amyloidogenic regions predicted in silico, binds Congo Red dye, manifests ‘apple-green’ birefringence when examined between crossed polarizers, and forms amyloid-like fibrillar aggregates visualized by TEM. We have established that the Toh1(20–365)-YFP hybrid protein fluorescent aggregates are co-localized with a high frequency with Rnq1C-CFP and Sup35NM-CFP aggregates in the yeast cells containing [PIN+] and [PSI+] prions, and physical interaction of these aggregated proteins was confirmed by FRET. This is one of a few known cases of physical interaction of non-Q/N-rich amyloid-like protein and Q/N-rich amyloids, suggesting that interaction of different amyloid proteins may be determined not only by similarity of their primary structures but also by similarity of their secondary structures and of conformational folds.
Collapse
Affiliation(s)
- A V Sergeeva
- a Department of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russian Federation
| | - J V Sopova
- a Department of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russian Federation.,b Vavilov Institute of General Genetics, St. Petersburg Branch , Russian Academy of Sciences , St. Petersburg , Russian Federation
| | - T A Belashova
- a Department of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russian Federation.,b Vavilov Institute of General Genetics, St. Petersburg Branch , Russian Academy of Sciences , St. Petersburg , Russian Federation
| | - V A Siniukova
- b Vavilov Institute of General Genetics, St. Petersburg Branch , Russian Academy of Sciences , St. Petersburg , Russian Federation
| | - A V Chirinskaite
- a Department of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russian Federation
| | - A P Galkin
- a Department of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russian Federation.,b Vavilov Institute of General Genetics, St. Petersburg Branch , Russian Academy of Sciences , St. Petersburg , Russian Federation
| | - S P Zadorsky
- a Department of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russian Federation.,b Vavilov Institute of General Genetics, St. Petersburg Branch , Russian Academy of Sciences , St. Petersburg , Russian Federation
| |
Collapse
|
20
|
Galkin AP, Velizhanina ME, Sopova YV, Shenfeld AA, Zadorsky SP. Prions and Non-infectious Amyloids of Mammals - Similarities and Differences. BIOCHEMISTRY (MOSCOW) 2018; 83:1184-1195. [PMID: 30472956 DOI: 10.1134/s0006297918100048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Amyloids are highly ordered aggregates of protein fibrils exhibiting cross-β structure formed by intermolecular hydrogen bonds. Pathological amyloid deposition is associated with the development of several socially significant incurable human diseases. Of particular interest are infectious amyloids, or prions, that cause several lethal neurodegenerative diseases in humans and can be transmitted from one organism to another. Because of almost complete absence of criteria for infectious and non-infectious amyloids, there is a lack of consensus, especially, in the definition of similarities and differences between prions and non-infectious amyloids. In this review, we formulated contemporary molecular-biological criteria for identification of prions and non-infectious amyloids and focused on explaining the differences between these two types of molecules.
Collapse
Affiliation(s)
- A P Galkin
- St. Petersburg Branch of Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg, 199034, Russia. .,St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia
| | - M E Velizhanina
- St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia
| | - Yu V Sopova
- St. Petersburg Branch of Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg, 199034, Russia.,St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia
| | - A A Shenfeld
- St. Petersburg Branch of Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg, 199034, Russia.,St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia
| | - S P Zadorsky
- St. Petersburg Branch of Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg, 199034, Russia. .,St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia
| |
Collapse
|
21
|
Cascarina SM, Ross ED. Aggregation and degradation scales for prion-like domains: sequence features and context weigh in. Curr Genet 2018; 65:387-392. [PMID: 30310993 DOI: 10.1007/s00294-018-0890-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022]
Abstract
Protein aggregation in vivo is generally combated by extensive proteostatic defenses. Many proteostasis factors specifically recognize aggregation-prone features and re-fold or degrade the targeted protein. However, protein aggregation is not uncommon, suggesting that some proteins employ evasive strategies to aggregate in spite of the proteostasis machinery. Therefore, in addition to understanding the inherent aggregation propensity of protein sequences, it is important to understand how these sequences affect proteostatic recognition and regulation in vivo. In a recent study, we used a genetic mutagenesis and screening approach to explore the aggregation or degradation promoting effects of the canonical amino acids in the context of G-rich and Q/N-rich prion-like domains (PrLDs). Our results indicate that aggregation propensity scales are strongly influenced by the interplay between specific PrLD features and proteostatic recognition. Here, we briefly review these results and expand upon their potential implications. In addition, a preliminary exploration of the yeast proteome suggests that these proteostatic regulation heuristics may influence the compositional features of native G-rich and Q/N-rich domains in yeast. These results improve our understanding of the features affecting the aggregation and proteostatic regulation of prion-like domains in a cellular context, and suggest that the sequence space for native prion-like domains may be shaped by proteostatic constraints.
Collapse
Affiliation(s)
- Sean M Cascarina
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, 80523, CO, USA
| | - Eric D Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, 80523, CO, USA.
| |
Collapse
|
22
|
A reversible liquid drop aggregation controls glucose response in yeast. Curr Genet 2018; 64:785-788. [DOI: 10.1007/s00294-018-0805-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/05/2018] [Indexed: 12/18/2022]
|