1
|
Zhang Y, Yu W, Lu Y, Wu Y, Ouyang Z, Tu Y, He B. Epigenetic Regulation of Fungal Secondary Metabolism. J Fungi (Basel) 2024; 10:648. [PMID: 39330408 PMCID: PMC11433216 DOI: 10.3390/jof10090648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Secondary metabolism is one of the important mechanisms by which fungi adapt to their living environment and promote survival and reproduction. Recent studies have shown that epigenetic regulation, such as DNA methylation, histone modifications, and non-coding RNAs, plays key roles in fungal secondary metabolism and affect fungal growth, survival, and pathogenicity. This review describes recent advances in the study of epigenetic regulation of fungal secondary metabolism. We discuss the way in which epigenetic markers respond to environmental changes and stimulate the production of biologically active compounds by fungi, and the feasibility of these new findings applied to develop new antifungal strategies and optimize secondary metabolism. In addition, we have deliberated on possible future directions of research in this field. A deeper understanding of epigenetic regulatory networks is a key focus for future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Yayi Tu
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (Y.Z.); (W.Y.); (Y.L.); (Y.W.); (Z.O.)
| | - Bin He
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (Y.Z.); (W.Y.); (Y.L.); (Y.W.); (Z.O.)
| |
Collapse
|
2
|
Li Z, Cai C, Huo X, Li X, Lin Z. Sucrose-nonfermenting 1 kinase activates histone acetylase GCN5 to promote cellulase production in Trichoderma. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12617-x. [PMID: 37318636 DOI: 10.1007/s00253-023-12617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
Trichoderma serves as the primary producer of cellulases and hemicellulases in industrial settings as it readily secretes a variety of cellulolytic enzymes. The protein kinase SNF1 (sucrose-nonfermenting 1) can enable cells to adapt to changes in carbon metabolism by phosphorylating key rate-limiting enzymes involved in the maintenance of energy homeostasis and carbon metabolism within cells. Histone acetylation is an important epigenetic regulatory mechanism that influences physiological and biochemical processes. GCN5 is a representative histone acetylase involved in promoter chromatin remodeling and associated transcriptional activation. Here, the TvSNF1 and TvGCN5 genes were identified in Trichoderma viride Tv-1511, which exhibits promising activity with respect to its ability to produce cellulolytic enzymes for biological transformation. The SNF1-mediated activation of the histone acetyltransferase GCN5 was herein found to promote cellulase production in T. viride Tv-1511 via facilitating changes in histone acetylation. These results demonstrated that cellulolytic enzyme activity and the expression of genes encoding cellulases and transcriptional activators were clearly enhanced in T. viride Tv-1511 mutants in which TvSNF1 and TvGCN5 were overexpressed, with concomitant changes in histone H3 acetylation levels associated with these genes. GCN5 was also found to be directly recruited to promoter regions to alter histone acetylation, while SNF1 functioned upstream as a transcriptional activator that promotes GCN5 upregulation at the mRNA and protein levels in the context of cellulase induction in T. viride Tv-1511. These findings underscore the important role that this SNF1-GCN5 cascade plays in regulating cellulase production in T. viride Tv-1511 by promoting altered histone acetylation, offering a theoretical basis for the optimization of T. viride in the context of industrial cellulolytic enzyme production. KEY POINTS: • SNF1 kinase and GCN5 acetylase promoted cellulase production in Trichoderma by increasing the expression of genes encoding cellulases and transcriptional activators • SNF1 and GCN5 promoted cellulase production by driving H3ac modifications, and GCN5 directly band to the promoter regions to catalyze distinct H3ac modifications • SNF1 acts upstream of GCN5 as a transcriptional activator in the cellulase production of Trichoderma.
Collapse
Affiliation(s)
- Zhe Li
- Biology Institute, Qilu University of Technology, Jinan, 250014, China.
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, China.
| | - Chunjing Cai
- Biology Institute, Qilu University of Technology, Jinan, 250014, China
| | - Xuexue Huo
- Biology Institute, Qilu University of Technology, Jinan, 250014, China
| | - Xuan Li
- Biology Institute, Qilu University of Technology, Jinan, 250014, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
3
|
Functional Characterization of the GNAT Family Histone Acetyltransferase Elp3 and GcnE in Aspergillus fumigatus. Int J Mol Sci 2023; 24:ijms24032179. [PMID: 36768506 PMCID: PMC9916960 DOI: 10.3390/ijms24032179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Post-translational modifications of chromatin structure by histone acetyltransferase (HATs) play a pivotal role in the regulation of gene expression and diverse biological processes. However, the function of GNAT family HATs, especially Elp3, in the opportunistic human pathogenic fungus Aspergillus fumigatus is largely unknown. To investigate the roles of the GNAT family HATs Elp3 and GcnE in the A. fumigatus, we have generated and characterized individual null Δelp3 and ΔgcnE mutants. The radial growth of fungal colonies was significantly decreased by the loss of elp3 or gcnE, and the number of asexual spores (conidia) in the ΔgcnE mutant was significantly reduced. Moreover, the mRNA levels of the key asexual development regulators were also significantly low in the ΔgcnE mutant compared to wild type (WT). Whereas both the Δelp3 and ΔgcnE mutants were markedly impaired in the formation of adherent biofilms, the ΔgcnE mutant showed a complete loss of surface structure and of intercellular matrix. The ΔgcnE mutant responded differently to oxidative stressors and showed significant susceptibility to triazole antifungal agents. Furthermore, Elp3 and GcnE function oppositely in the production of secondary metabolites, and the ΔgcnE mutant showed attenuated virulence. In conclusion, Elp3 and GcnE are associated with diverse biological processes and can be potential targets for controlling the pathogenic fungus.
Collapse
|
4
|
Li Y, Song Z, Wang E, Dong L, Bai J, Wang D, Zhu J, Zhang C. Potential antifungal targets based on histones post-translational modifications against invasive aspergillosis. Front Microbiol 2022; 13:980615. [PMID: 36016791 PMCID: PMC9395700 DOI: 10.3389/fmicb.2022.980615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
As a primary cause of death in patients with hematological malignancies and transplant recipients, invasive aspergillosis (IA) is a condition that warrants attention. IA infections have been increasing, which remains a significant cause of morbidity and mortality in immunocompromised patients. During the past decade, antifungal drug resistance has emerged, which is especially concerning for management given the limited options for treating azole-resistant infections and the possibility of failure of prophylaxis in those high-risk patients. Histone posttranslational modifications (HPTMs), mainly including acetylation, methylation, ubiquitination and phosphorylation, are crucial epigenetic mechanisms regulating various biological events, which could modify the conformation of histone and influence chromatin-associated nuclear processes to regulate development, cellular responsiveness, and biological phenotype without affecting the underlying genetic sequence. In recent years, fungi have become important model organisms for studying epigenetic regulation. HPTMs involves in growth and development, secondary metabolite biosynthesis and virulence in Aspergillus. This review mainly aims at summarizing the acetylation, deacetylation, methylation, demethylation, and sumoylation of histones in IA and connect this knowledge to possible HPTMs-based antifungal drugs. We hope this research could provide a reference for exploring new drug targets and developing low-toxic and high-efficiency antifungal strategies.
Collapse
Affiliation(s)
- Yiman Li
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhihui Song
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ente Wang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Liming Dong
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jie Bai
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Dong Wang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jinyan Zhu
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chao Zhang,
| |
Collapse
|
5
|
Li Z, Zhang H, Cai C, Lin Z, Zhen Z, Chu J, Guo K. Histone acetyltransferase GCN5-mediated lysine acetylation modulates salt stress aadaption of Trichoderma. Appl Microbiol Biotechnol 2022; 106:3033-3049. [PMID: 35376971 DOI: 10.1007/s00253-022-11897-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/28/2022] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
Abstract
Trichoderma viride has a wide range of applications in plant growth promotion, biological control, cellulase production, and biomass utilization. Salinity is a major limitation to Trichoderma strains in the natural environment and fermentation environment, and to improve the adaptability of Trichoderma to salt stress is of great significance to its applications in industry and agriculture. Histone acetylation plays important roles in the regulation of physiological and biochemical processes including various stress responses. GCN5 is the most representative histone acetylase, which plays vital roles in chromatin remodeling of promoters to facilitate the transcription activation. In this paper, we identified a GCN5-encoding gene TvGCN5 in T. viride Tv-1511, and characterized the function and regulating mechanism of TvGCN5-mediated acetylation of histone H3 in the salt adoption of Tv-1511, by constructions of the deletion mutants (Tv-1511-△GCN5) and overexpression mutants (Tv-1511-GCN5-OE) of TvGCN5. Results showed that compared with wild-type Tv-1511, the over-expression of TvGCN5 resulted in the longer mycelia diameter and more biomass under salt stress. Furthermore, Tv-1511-△GCN5 strains obtained the improved sodium (Na+) compartmentation and antioxidant capacity by upregulating the transcriptional levels of genes encoding PM H+-ATPase, vacuolar H+-ATPase, and antioxidant enzymes. Notably, the changes in the transcriptional expressions of these genes are tightly modulated by the TvGCN5-mediated acetylated level of histone H3 in their promoter regions. In all, these results reveal that TvGCN5 plays an important role in stress tolerance of T. viride Tv-1511, and provides potential insight to facilitate the application of epigenetic modulation in the expanding utilization of Trichoderma. KEY POINTS: • Overexpresison of TvGCN5 improves the adoption of T. viride Tv-1511 to salt stress by increasing acetylation level of histone H3 on the promoter regions of sodium-transport and antioxidant-related genes, at H3K9ac, H3K14ac, H3K23ac, and H3K27ac. • Overexprsison of TvGCN5 enhances the ion transport and compartmentation capacity by upregulating the expressions and activities of PM and vacuolar H+-ATPase to tolerate salt stress. • Overexprsison of TvGCN5 promotes the antioxidant capacity by increasing the expressions and activities of antioxidant enzymes in response to salt stress.
Collapse
Affiliation(s)
- Zhe Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China. .,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, China.
| | - Hao Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Chunjing Cai
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
| | - Zhen Zhen
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Jie Chu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Kai Guo
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| |
Collapse
|
6
|
Zhang J, Gao J, Li M, Shao Y, Chen F. MrGcn5 is required for the mycotoxin production, sexual and asexual development in Monascus ruber. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Radosa S, Sprague JL, Lau SH, Tóth R, Linde J, Krüger T, Sprenger M, Kasper L, Westermann M, Kniemeyer O, Hube B, Brakhage AA, Gácser A, Hillmann F. The fungivorous amoeba Protostelium aurantium targets redox homeostasis and cell wall integrity during intracellular killing of Candida parapsilosis. Cell Microbiol 2021; 23:e13389. [PMID: 34460149 DOI: 10.1111/cmi.13389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/08/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022]
Abstract
Predatory interactions among microbes are major evolutionary driving forces for biodiversity. The fungivorous amoeba Protostelium aurantium has a wide fungal food spectrum including foremost pathogenic members of the genus Candida. Here we show that upon phagocytic ingestion by the amoeba, Candida parapsilosis is confronted with an oxidative burst and undergoes lysis within minutes of processing in acidified phagolysosomes. On the fungal side, a functional genomic approach identified copper and redox homeostasis as primary targets of amoeba predation, with the highly expressed copper exporter gene CRP1 and the peroxiredoxin gene PRX1 contributing to survival when encountered with P. aurantium. The fungicidal activity was largely retained in intracellular vesicles of the amoebae. Following their isolation, the content of these vesicles induced immediate killing and lysis of C. parapsilosis in vitro. Proteomic analysis identified 56 vesicular proteins from P. aurantium. Although completely unknown proteins were dominant, many of them could be categorised as hydrolytic enzymes targeting the fungal cell wall, indicating that fungal cell wall structures are under selection pressure by predatory phagocytes in natural environments. TAKE AWAY: The amoeba Protostelium aurantium feeds on fungi, such as Candida parapsilosis. Ingested yeast cells are exposed to reactive oxygen species. A copper exporter and a peroxiredoxin contribute to fungal defence. Yeast cells undergo intracellular lysis. Lysis occurs via a cocktail of hydrolytic enzymes from intracellular vesicles.
Collapse
Affiliation(s)
- Silvia Radosa
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Jakob L Sprague
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.,Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Siu-Hin Lau
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Jörg Linde
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Marcel Sprenger
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.,Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | | | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Bernhard Hube
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.,Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.,Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Falk Hillmann
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| |
Collapse
|
8
|
Herkersdorf S, Krüger T, Wein P, Löffler S, Fontaine T, Gressler M, Hertweck C, Brakhage AA, Hoffmeister D. Bacterial cell wall-degrading enzymes induce basidiomycete natural product biosynthesis. Environ Microbiol 2021; 23:4360-4371. [PMID: 34081381 DOI: 10.1111/1462-2920.15621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Natural products play a vital role for intermicrobial interactions. In the basidiomycete arena an important representative is variegatic acid, a lactone natural product pigment whose ecological relevance stems from both inhibiting bacterial swarming and from indirect participation in breakdown of organic matter by brown-rotting fungi. Previous work showed that the presence of bacteria stimulates variegatic acid production. However, the actual external molecular trigger that prompts its biosynthesis in the mushroom hyphae remained unknown. Here, we report on the identification of Bacillus subtilis subtilisin E (AprE) and chitosanase (Csn) as primary inducers of pulvinic acid pigment formation. Using the established co-culture system of B. subtilis and Serpula lacrymans, we used activity-guided FPLC-based fractionation of B. subtilis culture supernatants and subsequent peptide fingerprinting to identify candidates, and their role was corroborated by means of a pigment production assay using heterologously produced chitosanase and subtilisin. B. subtilis mutants defective in either the aprE or the csn gene still triggered pigmentation, yet to a lower degree, which points to a multicausal scenario and suggests the combined activity of these cell wall polymer-attacking enzymes as true stimulus.
Collapse
Affiliation(s)
- Sebastian Herkersdorf
- Department of Pharmaceutical Microbiology at the Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University, Beutenbergstrasse 11a, Jena, 07745, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Susanne Löffler
- Department of Pharmaceutical Microbiology at the Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University, Beutenbergstrasse 11a, Jena, 07745, Germany
| | - Thierry Fontaine
- Department of Mycology, Fungal Biology and Pathogenicity, Institut Pasteur, Paris, France
| | - Markus Gressler
- Department of Pharmaceutical Microbiology at the Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University, Beutenbergstrasse 11a, Jena, 07745, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University, Beutenbergstrasse 11a, Jena, 07745, Germany
| |
Collapse
|
9
|
Lin CJ, Hou YH, Chen YL. The histone acetyltransferase GcnE regulates conidiation and biofilm formation in Aspergillus fumigatus. Med Mycol 2020; 58:248-259. [PMID: 31100153 DOI: 10.1093/mmy/myz043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/22/2019] [Accepted: 04/11/2019] [Indexed: 01/03/2023] Open
Abstract
Histone modifications play a crucial role in eukaryotic gene regulation. The Spt-Ada-Gcn5-acetyltransferase (SAGA) complex controls histone acetylation, with Gcn5 (GcnE) acting as the acetyltransferase. In the Aspergillus species, GcnE has been shown to regulate asexual development and secondary metabolism. Apart from this, GcnE is required for pathogenicity in plant fungal pathogen A. flavus; however, the role of GcnE in the pathogenicity of human pathogenic fungus A. fumigatus is unknown. In this study, we uncovered the key roles of GcnE in A. fumigatus conidiation, stress responses, and biofilm formation. We observed that deletion of gcnE resulted in aberrant conidiation in which conidiophores displayed abnormal phialide formation. In addition, the ΔgcnE mutant grew slightly faster under limited nitrogen sources (1 mM of ammonium or nitrate) compared to the wild type. The ΔgcnE mutant exhibited increased susceptibility to cell wall-perturbing agents, H2O2 and menadione but enhanced tolerance to LiCl. Furthermore, we showed that GcnE is involved in biofilm formation, and overexpression of adherence-related genes such as somA or uge3 partially rescued biofilm formation defects in the ΔgcnE mutant background. Interestingly, GcnE was not required for virulence in a neutropenic murine model of invasive aspergillosis. These results suggest that GcnE is critical for conidiation and biofilm formation but not virulence in A. fumigatus.
Collapse
Affiliation(s)
- Chi-Jan Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Yi-Hsuan Hou
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| |
Collapse
|
10
|
Son YE, Cho HJ, Chen W, Son SH, Lee MK, Yu JH, Park HS. The role of the VosA-repressed dnjA gene in development and metabolism in Aspergillus species. Curr Genet 2020; 66:621-633. [PMID: 32060628 DOI: 10.1007/s00294-020-01058-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
The DnaJ family of proteins (or J-proteins) are molecular chaperones that govern protein folding, degradation, and translocation in many organisms. Although J-proteins play key roles in eukaryotic and prokaryotic biology, the role of J-proteins in Aspergillus species is currently unknown. In this study, we characterized the dnjA gene, which encodes a putative DnaJ protein, in two Aspergillus species: Aspergillus nidulans and Aspergillus flavus. Expression of the dnjA gene is inhibited by the velvet regulator VosA, which plays a pivotal role in spore survival and metabolism in Aspergillus. The deletion of dnjA decreased the number of asexual spores (conidia), produced abnormal conidiophores, and reduced sexual fruiting bodies (cleistothecia) or sclerotia. In addition, the absence of dnjA caused increased sterigmatocystin or aflatoxin production in A. nidulans and A. flavus, respectively. These results suggest that DnjA plays a conserved role in asexual and sexual development and mycotoxin production in Aspergillus species. However, DnjA also plays a species-specific role; AniDnjA but not AflDnjA, affects conidial viability, trehalose contents, and thermal tolerance of conidia. In plant virulence assay, the infection ability of the ΔAfldnjA mutant decreased in the kernels, suggesting that DnjA plays a crucial role in the pathogenicity of A. flavus. Taken together, these results demonstrate that DnjA is multifunctional in Aspergillus species; it is involved in diverse biological processes, including fungal differentiation and secondary metabolism.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - He-Jin Cho
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Gottingen, Göttingen, Germany
| | - Sung-Hun Son
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Mi-Kyung Lee
- Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Republic of Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA.,Department of Systems Biotechnology, Konkuk University, Seoul, 05030, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|