1
|
Grabarczyk DB. The Fork Protection Complex: A Regulatory Hub at the Head of the Replisome. Subcell Biochem 2022; 99:83-107. [PMID: 36151374 DOI: 10.1007/978-3-031-00793-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As well as accurately duplicating DNA, the eukaryotic replisome performs a variety of other crucial tasks to maintain genomic stability. For example, organizational elements, like cohesin, must be transferred from the front of the fork to the new strands, and when there is replication stress, forks need to be protected and checkpoint signalling activated. The Tof1-Csm3 (or Timeless-Tipin in humans) Fork Protection Complex (FPC) ensures efficient replisome progression and is required for a range of replication-associated activities. Recent studies have begun to reveal the structure of this complex, and how it functions within the replisome to perform its diverse roles. The core of the FPC acts as a DNA grip on the front of the replisome to regulate fork progression. Other flexibly linked domains and motifs mediate interactions with proteins and specific DNA structures, enabling the FPC to act as a hub at the head of the replication fork.
Collapse
Affiliation(s)
- Daniel B Grabarczyk
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, Würzburg, Germany.
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
2
|
The CWI Pathway: A Versatile Toolbox to Arrest Cell-Cycle Progression. J Fungi (Basel) 2021; 7:jof7121041. [PMID: 34947023 PMCID: PMC8704918 DOI: 10.3390/jof7121041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 02/02/2023] Open
Abstract
Cell-signaling pathways are essential for cells to respond and adapt to changes in their environmental conditions. The cell-wall integrity (CWI) pathway of Saccharomyces cerevisiae is activated by environmental stresses, compounds, and morphogenetic processes that compromise the cell wall, orchestrating the appropriate cellular response to cope with these adverse conditions. During cell-cycle progression, the CWI pathway is activated in periods of polarized growth, such as budding or cytokinesis, regulating cell-wall biosynthesis and the actin cytoskeleton. Importantly, accumulated evidence has indicated a reciprocal regulation of the cell-cycle regulatory system by the CWI pathway. In this paper, we describe how the CWI pathway regulates the main cell-cycle transitions in response to cell-surface perturbance to delay cell-cycle progression. In particular, it affects the Start transcriptional program and the initiation of DNA replication at the G1/S transition, and entry and progression through mitosis. We also describe the involvement of the CWI pathway in the response to genotoxic stress and its connection with the DNA integrity checkpoint, the mechanism that ensures the correct transmission of genetic material and cell survival. Thus, the CWI pathway emerges as a master brake that stops cell-cycle progression when cells are coping with distinct unfavorable conditions.
Collapse
|
3
|
Liakopoulos D. Coupling DNA Replication and Spindle Function in Saccharomyces cerevisiae. Cells 2021; 10:cells10123359. [PMID: 34943867 PMCID: PMC8699587 DOI: 10.3390/cells10123359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/02/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae DNA replication and spindle assembly can overlap. Therefore, signaling mechanisms modulate spindle dynamics in order to ensure correct timing of chromosome segregation relative to genome duplication, especially when replication is incomplete or the DNA becomes damaged. This review focuses on the molecular mechanisms that coordinate DNA replication and spindle dynamics, as well as on the role of spindle-dependent forces in DNA repair. Understanding the coupling between genome duplication and spindle function in yeast cells can provide important insights into similar processes operating in other eukaryotic organisms, including humans.
Collapse
Affiliation(s)
- Dimitris Liakopoulos
- CRBM, Université de Montpellier, CNRS, 1919 Route de Mende, 34293 Montpellier, France;
- Laboratory of Biology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
- University Research Center of loannina, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
4
|
Delgado-Román I, Muñoz-Centeno MC. Coupling Between Cell Cycle Progression and the Nuclear RNA Polymerases System. Front Mol Biosci 2021; 8:691636. [PMID: 34409067 PMCID: PMC8365833 DOI: 10.3389/fmolb.2021.691636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic life is possible due to the multitude of complex and precise phenomena that take place in the cell. Essential processes like gene transcription, mRNA translation, cell growth, and proliferation, or membrane traffic, among many others, are strictly regulated to ensure functional success. Such systems or vital processes do not work and adjusts independently of each other. It is required to ensure coordination among them which requires communication, or crosstalk, between their different elements through the establishment of complex regulatory networks. Distortion of this coordination affects, not only the specific processes involved, but also the whole cell fate. However, the connection between some systems and cell fate, is not yet very well understood and opens lots of interesting questions. In this review, we focus on the coordination between the function of the three nuclear RNA polymerases and cell cycle progression. Although we mainly focus on the model organism Saccharomyces cerevisiae, different aspects and similarities in higher eukaryotes are also addressed. We will first focus on how the different phases of the cell cycle affect the RNA polymerases activity and then how RNA polymerases status impacts on cell cycle. A good example of how RNA polymerases functions impact on cell cycle is the ribosome biogenesis process, which needs the coordinated and balanced production of mRNAs and rRNAs synthesized by the three eukaryotic RNA polymerases. Distortions of this balance generates ribosome biogenesis alterations that can impact cell cycle progression. We also pay attention to those cases where specific cell cycle defects generate in response to repressed synthesis of ribosomal proteins or RNA polymerases assembly defects.
Collapse
Affiliation(s)
- Irene Delgado-Román
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. Del Rocío, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Mari Cruz Muñoz-Centeno
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. Del Rocío, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
5
|
Arbel M, Liefshitz B, Kupiec M. DNA damage bypass pathways and their effect on mutagenesis in yeast. FEMS Microbiol Rev 2021; 45:5896953. [PMID: 32840566 DOI: 10.1093/femsre/fuaa038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022] Open
Abstract
What is the origin of mutations? In contrast to the naïve notion that mutations are unfortunate accidents, genetic research in microorganisms has demonstrated that most mutations are created by genetically encoded error-prone repair mechanisms. However, error-free repair pathways also exist, and it is still unclear how cells decide when to use one repair method or the other. Here, we summarize what is known about the DNA damage tolerance mechanisms (also known as post-replication repair) for perhaps the best-studied organism, the yeast Saccharomyces cerevisiae. We describe the latest research, which has established the existence of at least two error-free and two error-prone inter-related mechanisms of damage tolerance that compete for the handling of spontaneous DNA damage. We explore what is known about the induction of mutations by DNA damage. We point to potential paradoxes and to open questions that still remain unanswered.
Collapse
Affiliation(s)
- Matan Arbel
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Batia Liefshitz
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
6
|
Galli M, Frigerio C, Longhese MP, Clerici M. The regulation of the DNA damage response at telomeres: focus on kinases. Biochem Soc Trans 2021; 49:933-943. [PMID: 33769480 DOI: 10.1042/bst20200856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
The natural ends of linear chromosomes resemble those of accidental double-strand breaks (DSBs). DSBs induce a multifaceted cellular response that promotes the repair of lesions and slows down cell cycle progression. This response is not elicited at chromosome ends, which are organized in nucleoprotein structures called telomeres. Besides counteracting DSB response through specialized telomere-binding proteins, telomeres also prevent chromosome shortening. Despite of the different fate of telomeres and DSBs, many proteins involved in the DSB response also localize at telomeres and participate in telomere homeostasis. In particular, the DSB master regulators Tel1/ATM and Mec1/ATR contribute to telomere length maintenance and arrest cell cycle progression when chromosome ends shorten, thus promoting a tumor-suppressive process known as replicative senescence. During senescence, the actions of both these apical kinases and telomere-binding proteins allow checkpoint activation while bulk DNA repair activities at telomeres are still inhibited. Checkpoint-mediated cell cycle arrest also prevents further telomere erosion and deprotection that would favor chromosome rearrangements, which are known to increase cancer-associated genome instability. This review summarizes recent insights into functions and regulation of Tel1/ATM and Mec1/ATR at telomeres both in the presence and in the absence of telomerase, focusing mainly on discoveries in budding yeast.
Collapse
Affiliation(s)
- Michela Galli
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Chiara Frigerio
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| |
Collapse
|
7
|
The Amazing Acrobat: Yeast's Histone H3K56 Juggles Several Important Roles While Maintaining Perfect Balance. Genes (Basel) 2021; 12:genes12030342. [PMID: 33668997 PMCID: PMC7996553 DOI: 10.3390/genes12030342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/16/2023] Open
Abstract
Acetylation on lysine 56 of histone H3 of the yeast Saccharomyces cerevisiae has been implicated in many cellular processes that affect genome stability. Despite being the object of much research, the complete scope of the roles played by K56 acetylation is not fully understood even today. The acetylation is put in place at the S-phase of the cell cycle, in order to flag newly synthesized histones that are incorporated during DNA replication. The signal is removed by two redundant deacetylases, Hst3 and Hst4, at the entry to G2/M phase. Its crucial location, at the entry and exit points of the DNA into and out of the nucleosome, makes this a central modification, and dictates that if acetylation and deacetylation are not well concerted and executed in a timely fashion, severe genomic instability arises. In this review, we explore the wealth of information available on the many roles played by H3K56 acetylation and the deacetylases Hst3 and Hst4 in DNA replication and repair.
Collapse
|
8
|
Cerritelli SM, El Hage A. RNases H1 and H2: guardians of the stability of the nuclear genome when supply of dNTPs is limiting for DNA synthesis. Curr Genet 2020; 66:1073-1084. [PMID: 32886170 DOI: 10.1007/s00294-020-01086-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 11/29/2022]
Abstract
RNA/DNA hybrids are processed by RNases H1 and H2, while single ribonucleoside-monophosphates (rNMPs) embedded in genomic DNA are removed by the error-free, RNase H2-dependent ribonucleotide excision repair (RER) pathway. In the absence of RER, however, topoisomerase 1 (Top1) can cleave single genomic rNMPs in a mutagenic manner. In RNase H2-deficient mice, the accumulation of genomic rNMPs above a threshold of tolerance leads to catastrophic genomic instability that causes embryonic lethality. In humans, deficiencies in RNase H2 induce the autoimmune disorders Aicardi-Goutières syndrome and systemic lupus erythematosus, and cause skin and intestinal cancers. Recently, we reported that in Saccharomyces cerevisiae, the depletion of Rnr1, the major catalytic subunit of ribonucleotide reductase (RNR), which converts ribonucleotides to deoxyribonucleotides, leads to cell lethality in absence of RNases H1 and H2. We hypothesized that under replicative stress and compromised DNA repair that are elicited by an insufficient supply of deoxyribonucleoside-triphosphates (dNTPs), cells cannot survive the accumulation of persistent RNA/DNA hybrids. Remarkably, we found that cells lacking RNase H2 accumulate ~ 5-fold more genomic rNMPs in absence than in presence of Rnr1. When the load of genomic rNMPs is further increased in the presence of a replicative DNA polymerase variant that over-incorporates rNMPs in leading or lagging strand, cells missing both Rnr1 and RNase H2 suffer from severe growth defects. These are reversed in absence of Top1. Thus, in cells lacking RNase H2 and containing a limiting supply of dNTPs, there is a threshold of tolerance for the accumulation of genomic ribonucleotides that is tightly associated with Top1-mediated DNA damage. In this mini-review, we describe the implications of the loss of RNase H2, or RNases H1 and H2, on the integrity of the nuclear genome and viability of budding yeast cells that are challenged with a critically low supply of dNTPs. We further propose that our findings in budding yeast could pave the way for the study of the potential role of mammalian RNR in RNase H2-related diseases.
Collapse
Affiliation(s)
- Susana M Cerritelli
- SFR, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Aziz El Hage
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
9
|
Arbel M, Liefshitz B, Kupiec M. How yeast cells deal with stalled replication forks. Curr Genet 2020; 66:911-915. [PMID: 32394094 DOI: 10.1007/s00294-020-01082-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/27/2022]
Abstract
DNA polymerases sometimes stall during DNA replication at sites where DNA is damaged, or upon encounter with proteins or secondary structures of DNA. When that happens, the polymerase clamp PCNA can become modified with a single ubiquitin moiety at lysine 164, opening DNA Damage Tolerance (DDT) mechanisms that either repair or bypass the lesions. An alternative repair mechanism is the salvage recombination (SR) pathway, which copies information from the sister chromatid. SUMOylation of PCNA at the same lysine, or at lysine 127, can recruit the Srs2 helicase, which negatively controls SR. Recently, we have dissected the relationship between SR and the DDT pathways, and showed that overexpression of either the PCNA unloader Elg1, or the Rad52 homologous recombination protein, can bypass the repression by Srs2. Our results shed light on the interactions between different DNA damage repair/bypass proteins, and underscore the importance of PCNA modifications in organizing the complex task of dealing with DNA damage during replication of the genetic material.
Collapse
Affiliation(s)
- Matan Arbel
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, 69978, Ramat, Aviv, Israel
| | - Batia Liefshitz
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, 69978, Ramat, Aviv, Israel
| | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, 69978, Ramat, Aviv, Israel.
| |
Collapse
|
10
|
Access to PCNA by Srs2 and Elg1 Controls the Choice between Alternative Repair Pathways in Saccharomyces cerevisiae. mBio 2020; 11:mBio.00705-20. [PMID: 32371600 PMCID: PMC7403780 DOI: 10.1128/mbio.00705-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
PCNA, the ring that encircles DNA maintaining the processivity of DNA polymerases, is modified by ubiquitin and SUMO. Whereas ubiquitin is required for bypassing lesions through the DNA damage tolerance (DDT) pathways, we show here that SUMOylation represses another pathway, salvage recombination. The Srs2 helicase is recruited to SUMOylated PCNA and prevents the salvage pathway from acting. The pathway can be induced by overexpressing the PCNA unloader Elg1, or the homologous recombination protein Rad52. Our results underscore the role of PCNA modifications in controlling the various bypass and DNA repair mechanisms. During DNA replication, stalling can occur when the replicative DNA polymerases encounter lesions or hard-to replicate regions. Under these circumstances, the processivity factor PCNA gets ubiquitylated at lysine 164, inducing the DNA damage tolerance (DDT) mechanisms that can bypass lesions encountered during DNA replication. PCNA can also be SUMOylated at the same residue or at lysine 127. Surprisingly, pol30-K164R mutants display a higher degree of sensitivity to DNA-damaging agents than pol30-KK127,164RR strains, unable to modify any of the lysines. Here, we show that in addition to translesion synthesis and strand-transfer DDT mechanisms, an alternative repair mechanism (“salvage recombination”) that copies information from the sister chromatid is repressed by the recruitment of Srs2 to SUMOylated PCNA. Overexpression of Elg1, the PCNA unloader, or of the recombination protein Rad52 allows its activation. We dissect the genetic requirements for this pathway, as well as the interactions between Srs2 and Elg1.
Collapse
|
11
|
Sobolewska A, Halas A, Plachta M, McIntyre J, Sledziewska-Gojska E. Regulation of the abundance of Y-family polymerases in the cell cycle of budding yeast in response to DNA damage. Curr Genet 2020; 66:749-763. [PMID: 32076806 PMCID: PMC7363672 DOI: 10.1007/s00294-020-01061-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/21/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
Y-family DNA polymerases mediate DNA damage tolerance via translesion synthesis (TLS). Because of the intrinsically error-prone nature of these enzymes, their activities are regulated at several levels. Here, we demonstrate the common regulation of the cellular abundance of Y-family polymerases, polymerase eta (Pol eta), and Rev1, in response to DNA damage at various stages of the cell cycle. UV radiation influenced polymerase abundance more when cells were exposed in S-phase than in G1- or G2-phases. We noticed two opposing effects of UV radiation in S-phase. On one hand, exposure to increasing doses of UV radiation at the beginning of this phase increasingly delayed S-phase progression. As a result, the accumulation of Pol eta and Rev1, which in nonirradiated yeast is initiated at the S/G2-phase boundary, was gradually shifted into the prolonged S-phase. On the other hand, the extent of polymerase accumulation was inversely proportional to the dose of irradiation, such that the accumulation was significantly lower after exposure to 80 J/m2 in S-phase than after exposure to 50 J/m2 or 10 J/m2. The limitation of polymerase accumulation in S-phase-arrested cells in response to high UV dose was suppressed upon RAD9 (but not MRC1) deletion. Additionally, hydroxyurea, which activates mainly the Mrc1-dependent checkpoint, did not limit Pol eta or Rev1 accumulation in S-phase-arrested cells. The results show that the accumulation of Y-family TLS polymerases is limited in S-phase-arrested cells due to high levels of DNA damage and suggest a role of the Rad9 checkpoint protein in this process.
Collapse
Affiliation(s)
- Aleksandra Sobolewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Agnieszka Halas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Michal Plachta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Ewa Sledziewska-Gojska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
12
|
Genetic investigation of formaldehyde-induced DNA damage response in Schizosaccharomyces pombe. Curr Genet 2020; 66:593-605. [DOI: 10.1007/s00294-020-01057-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 02/02/2023]
|
13
|
Distinct associations of the Saccharomyces cerevisiae Rad9 protein link Mac1-regulated transcription to DNA repair. Curr Genet 2019; 66:531-548. [PMID: 31784768 DOI: 10.1007/s00294-019-01047-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
While it is known that ScRad9 DNA damage checkpoint protein is recruited to damaged DNA by recognizing specific histone modifications, here we report a different way of Rad9 recruitment on chromatin under non DNA damaging conditions. We found Rad9 to bind directly with the copper-modulated transcriptional activator Mac1, suppressing both its DNA binding and transactivation functions. Rad9 was recruited to active Mac1-target promoters (CTR1, FRE1) and along CTR1 coding region following the association pattern of RNA polymerase (Pol) II. Hir1 histone chaperone also interacted directly with Rad9 and was partly required for its localization throughout CTR1 gene. Moreover, Mac1-dependent transcriptional initiation was necessary and sufficient for Rad9 recruitment to the heterologous ACT1 coding region. In addition to Rad9, Rad53 kinase also localized to CTR1 coding region in a Rad9-dependent manner. Our data provide an example of a yeast DNA-binding transcriptional activator that interacts directly with a DNA damage checkpoint protein in vivo and is functionally restrained by this protein, suggesting a new role for Rad9 in connecting factors of the transcription machinery with the DNA repair pathway under unchallenged conditions.
Collapse
|
14
|
Menin L, Colombo CV, Maestrini G, Longhese MP, Clerici M. Tel1/ATM Signaling to the Checkpoint Contributes to Replicative Senescence in the Absence of Telomerase. Genetics 2019; 213:411-429. [PMID: 31391264 PMCID: PMC6781906 DOI: 10.1534/genetics.119.302391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/27/2019] [Indexed: 11/18/2022] Open
Abstract
Telomeres progressively shorten at every round of DNA replication in the absence of telomerase. When they become critically short, telomeres trigger replicative senescence by activating a DNA damage response that is governed by the Mec1/ATR and Tel1/ATM protein kinases. While Mec1/ATR is known to block cell division when extended single-stranded DNA (ssDNA) accumulates at eroded telomeres, the molecular mechanism by which Tel1/ATM promotes senescence is still unclear. By characterizing a Tel1-hy184 mutant variant that compensates for the lack of Mec1 functions, we provide evidence that Tel1 promotes senescence by signaling to a Rad9-dependent checkpoint. Tel1-hy184 anticipates senescence onset in telomerase-negative cells, while the lack of Tel1 or the expression of a kinase-defective (kd) Tel1 variant delays it. Both Tel1-hy184 and Tel1-kd do not alter ssDNA generation at telomeric DNA ends. Furthermore, Rad9 and (only partially) Mec1 are responsible for the precocious senescence promoted by Tel1-hy184. This precocious senescence is mainly caused by the F1751I, D1985N, and E2133K amino acid substitutions, which are located in the FRAP-ATM-TRAPP domain of Tel1 and also increase Tel1 binding to DNA ends. Altogether, these results indicate that Tel1 induces replicative senescence by directly signaling dysfunctional telomeres to the checkpoint machinery.
Collapse
Affiliation(s)
- Luca Menin
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano 20126, Italy
| | - Chiara Vittoria Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano 20126, Italy
| | - Giorgia Maestrini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano 20126, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano 20126, Italy
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano 20126, Italy
| |
Collapse
|
15
|
Harari Y, Gershon L, Alonso-Perez E, Klein S, Berneman Y, Choudhari K, Singh P, Sau S, Liefshitz B, Kupiec M. Telomeres and stress in yeast cells: When genes and environment interact. Fungal Biol 2019; 124:311-315. [PMID: 32389293 DOI: 10.1016/j.funbio.2019.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022]
Abstract
Telomeres are structures composed of simple DNA repeats and specific proteins that protect the eukaryotic chromosomal ends from degradation, and facilitate the replication of the genome. They are central to the maintenance of the genome integrity, and play important roles in the development of cancer and in the process of aging in humans. The yeast Saccharomyces cerevisiae has greatly contributed to our understanding of basic telomere biology. Our laboratory has carried out systematic screen for mutants that affect telomere length, and identified ∼500 genes that, when mutated, affect telomere length. Remarkably, all ∼500 TLM (Telomere Length Maintenance) genes participate in a very tight homeostatic process, and it is enough to mutate one of them to change the steady-state telomere length. Despite this complex network of balances, it is also possible to change telomere length in yeast by applying several types of external stresses. We summarize our insights about the molecular mechanisms by which genes and environment interact to affect telomere length.
Collapse
Affiliation(s)
- Yaniv Harari
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Lihi Gershon
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Elisa Alonso-Perez
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Shir Klein
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Yael Berneman
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Karan Choudhari
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Pragyan Singh
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Soumitra Sau
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata, India
| | - Batia Liefshitz
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel.
| |
Collapse
|
16
|
Estrem C, Moore JK. Help or hindrance: how do microtubule-based forces contribute to genome damage and repair? Curr Genet 2019; 66:303-311. [PMID: 31501990 DOI: 10.1007/s00294-019-01033-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
Abstract
Forces generated by molecular motors and the cytoskeleton move the nucleus and genome during many cellular processes, including cell migration and division. How these forces impact the genome, and whether cells regulate cytoskeletal forces to preserve genome integrity is unclear. We recently demonstrated that, in budding yeast, mutants that stabilize the microtubule cytoskeleton cause excessive movement of the mitotic spindle and nucleus. We found that increased nuclear movement results in DNA damage and increased time to repair the damage through homology-directed repair. Our results indicate that nuclear movement impairs DNA repair through increased tension on chromosomes and nuclear deformation. However, the previous studies have shown genome mobility, driven by cytoskeleton-based forces, aids in homology-directed DNA repair. This sets up an apparent paradox, where genome mobility may prevent or promote DNA repair. Hence, this review explores how the genome is affected by nuclear movement and how genome mobility could aid or hinder homology-directed repair.
Collapse
Affiliation(s)
- Cassi Estrem
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
17
|
A role for the yeast PCNA unloader Elg1 in eliciting the DNA damage checkpoint. Curr Genet 2019; 66:79-84. [PMID: 31332476 DOI: 10.1007/s00294-019-01020-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022]
Abstract
During cell proliferation, the genome is constantly threatened by cellular and external factors. When the DNA is damaged, or when its faithful duplication is delayed by DNA polymerase stalling, the cells induce a coordinated response termed the DNA damage response (DDR) or checkpoint. Elg1 forms an RFC-like complex in charge of unloading the DNA polymerase processively factor PCNA during DNA replication and DNA repair. Using checkpoint-inducible strains, a recently published paper (Sau et al. in mBio 10(3):e01159-19. https://doi.org/10.1128/mbio.01159-19, 2019) uncovered a role for Elg1 in eliciting the DNA damage checkpoint (DC), one of the branches of the DDR. The apical kinase Mec1/ATR phosphorylates Elg1, as well as the adaptor proteins Rad9/53BP1 and Dpb11/TopBP1, which are recruited to the site of DNA damage to amplify the checkpoint signal. In the absence of Elg1, Rad9 and Dpb11 are recruited but fail to be phosphorylated and the signal is therefore not amplified. Thus, Elg1 appears to coordinate DNA repair and the induction of the DNA damage checkpoint.
Collapse
|
18
|
ATM and ATR Influence Meiotic Crossover Formation Through Antagonistic and Overlapping Functions in Caenorhabditis elegans. Genetics 2019; 212:431-443. [PMID: 31015193 DOI: 10.1534/genetics.119.302193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/14/2019] [Indexed: 01/08/2023] Open
Abstract
During meiosis, formation of double-strand breaks (DSBs) and repair by homologous recombination between homologs creates crossovers (COs) that facilitate chromosome segregation. CO formation is tightly regulated to ensure the integrity of this process. The DNA damage response kinases, Ataxia-telangiectasia mutated (ATM) and RAD3-related (ATR) have emerged as key regulators of CO formation in yeast, flies, and mice, influencing DSB formation, repair pathway choice, and cell cycle progression. The molecular networks that ATM and ATR influence during meiosis are still being resolved in other organisms. Here, we show that Caenorhabditis elegans ATM and ATR homologs, ATM-1 and ATL-1 respectively, act at multiple steps in CO formation to ultimately ensure that COs are formed on all chromosomes. We show a role for ATM-1 in regulating the choice of repair template, biasing use of the homologous chromosome instead of the sister chromatid. Our data suggest a model in which ATM-1 and ATL-1 have antagonistic roles in very early repair processing, but are redundantly required for accumulation of the RAD-51 recombinase at DSB sites. We propose that these features of ATM-1 and ATL-1 ensure both CO formation on all chromosomes and accurate repair of additional DSBs.
Collapse
|
19
|
Versatility of the Mec1 ATM/ATR signaling network in mediating resistance to replication, genotoxic, and proteotoxic stresses. Curr Genet 2019; 65:657-661. [PMID: 30610294 PMCID: PMC6510830 DOI: 10.1007/s00294-018-0920-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 01/11/2023]
Abstract
The ataxia-telangiectasia mutated/ATM and Rad3-related (ATM/ATR) family proteins are evolutionarily conserved serine/threonine kinases best known for their roles in mediating the DNA damage response. Upon activation, ATM/ATR phosphorylate numerous targets to stabilize stalled replication forks, repair damaged DNA, and inhibit cell cycle progression to ensure survival of the cell and safeguard integrity of the genome. Intriguingly, separation of function alleles of the human ATM and MEC1, the budding yeast ATM/ATR, were shown to confer widespread protein aggregation and acute sensitivity to different types of proteotoxic agents including heavy metal, amino acid analogue, and an aggregation-prone peptide derived from the Huntington’s disease protein. Further analyses unveiled that ATM and Mec1 promote resistance to perturbation in protein homeostasis via a mechanism distinct from the DNA damage response. In this minireview, we summarize the key findings and discuss ATM/ATR as a multifaceted signalling protein capable of mediating cellular response to both DNA and protein damage.
Collapse
|