1
|
Nithianandam V, Sarkar S, Feany MB. Pathways controlling neurotoxicity and proteostasis in mitochondrial complex I deficiency. Hum Mol Genet 2024; 33:860-871. [PMID: 38324746 PMCID: PMC11070137 DOI: 10.1093/hmg/ddae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/02/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
Neuromuscular disorders caused by dysfunction of the mitochondrial respiratory chain are common, severe and untreatable. We recovered a number of mitochondrial genes, including electron transport chain components, in a large forward genetic screen for mutations causing age-related neurodegeneration in the context of proteostasis dysfunction. We created a model of complex I deficiency in the Drosophila retina to probe the role of protein degradation abnormalities in mitochondrial encephalomyopathies. Using our genetic model, we found that complex I deficiency regulates both the ubiquitin/proteasome and autophagy/lysosome arms of the proteostasis machinery. We further performed an in vivo kinome screen to uncover new and potentially druggable mechanisms contributing to complex I related neurodegeneration and proteostasis failure. Reduction of RIOK kinases and the innate immune signaling kinase pelle prevented neurodegeneration in complex I deficiency animals. Genetically targeting oxidative stress, but not RIOK1 or pelle knockdown, normalized proteostasis markers. Our findings outline distinct pathways controlling neurodegeneration and protein degradation in complex I deficiency and introduce an experimentally facile model in which to study these debilitating and currently treatment-refractory disorders.
Collapse
Affiliation(s)
- Vanitha Nithianandam
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, 5425 Wisconsin Avenue, Chevy Chase, MD 20815, United States
| | - Souvarish Sarkar
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, 5425 Wisconsin Avenue, Chevy Chase, MD 20815, United States
| | - Mel B Feany
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, 5425 Wisconsin Avenue, Chevy Chase, MD 20815, United States
| |
Collapse
|
2
|
Ghandadi M, Dobi A, Malhotra SV. A role for RIO kinases in the crosshair of cancer research and therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189100. [PMID: 38604268 DOI: 10.1016/j.bbcan.2024.189100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
RIO (right open reading frame) family of kinases including RIOK1, RIOK2 and RIOK3 are known for their role in the ribosomal biogenesis. Dysfunction of RIO kinases have been implicated in malignancies, including acute myeloid leukemia, glioma, breast, colorectal, lung and prostatic adenocarcinoma suggesting RIO kinases as potential targets in cancer. In vitro, in vivo and clinical studies have demonstrated that RIO kinases are overexpressed in various types of cancers suggesting important roles in tumorigenesis, especially in metastasis. In the context of malignancies, RIO kinases are involved in cancer-promoting pathways including AKT/mTOR, RAS, p53 and NF-κB and cell cycle regulation. Here we review the role of RIO kinases in cancer development emphasizing their potential as therapeutic target and encouraging further development and investigation of inhibitors in the context of cancer.
Collapse
Affiliation(s)
- Morteza Ghandadi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Medicinal Plants Research Center, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery at the Uniformed Services, University of the Health Sciences, Bethesda, MD 20817, USA; Henry Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Sanjay V Malhotra
- Department of Cell, Development and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
3
|
Félix-Pérez T, Mora-García M, Rebolloso-Gómez Y, DelaGarza-Varela A, Castro-Velázquez G, Peña-Gómez SG, Riego-Ruiz L, Sánchez-Olea R, Calera MR. Translation initiation factor eIF1A rescues hygromycin B sensitivity caused by deleting the carboxy-terminal tail in the GPN-loop GTPase Npa3. FEBS J 2024; 291:2191-2208. [PMID: 38431777 DOI: 10.1111/febs.17106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The essential yeast protein GPN-loop GTPase 1 (Npa3) plays a critical role in RNA polymerase II (RNAPII) assembly and subsequent nuclear import. We previously identified a synthetic lethal interaction between a mutant lacking the carboxy-terminal 106-amino acid tail of Npa3 (npa3ΔC) and a bud27Δ mutant. As the prefoldin-like Bud27 protein participates in ribosome biogenesis and translation, we hypothesized that Npa3 may also regulate these biological processes. We investigated this proposal by using Saccharomyces cerevisiae strains episomally expressing either wild-type Npa3 or hypomorphic mutants (Npa3ΔC, Npa3K16R, and Npa3G70A). The Npa3ΔC mutant fully supports RNAPII nuclear localization and activity. However, the Npa3K16R and Npa3G70A mutants only partially mediate RNAPII nuclear targeting and exhibit a higher reduction in Npa3 function. Cell proliferation in these strains displayed an increased sensitivity to protein synthesis inhibitors hygromycin B and geneticin/G418 (npa3G70A > npa3K16R > npa3ΔC > NPA3 cells) but not to transcriptional elongation inhibitors 6-azauracil, mycophenolic acid or 1,10-phenanthroline. In all three mutant strains, the increase in sensitivity to both aminoglycoside antibiotics was totally rescued by expressing NPA3. Protein synthesis, visualized by quantifying puromycin incorporation into nascent-polypeptide chains, was markedly more sensitive to hygromycin B inhibition in npa3ΔC, npa3K16R, and npa3G70A than NPA3 cells. Notably, high-copy expression of the TIF11 gene, that encodes the eukaryotic translation initiation factor 1A (eIF1A) protein, completely suppressed both phenotypes (of reduced basal cell growth and increased sensitivity to hygromycin B) in npa3ΔC cells but not npa3K16R or npa3G70A cells. We conclude that Npa3 plays a critical RNAPII-independent and previously unrecognized role in translation initiation.
Collapse
Affiliation(s)
- Tania Félix-Pérez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| | | | | | | | | | | | - Lina Riego-Ruiz
- División de Biología Molecular, IPICYT, San Luis Potosí, Mexico
| | | | - Mónica R Calera
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| |
Collapse
|
4
|
Damizia M, Moretta GM, De Wulf P. The RioK1 network determines p53 activity at multiple levels. Cell Death Discov 2023; 9:410. [PMID: 37935656 PMCID: PMC10630321 DOI: 10.1038/s41420-023-01704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
By responding to a host of adverse conditions, ranging from DNA damage to viral infection, transcription factor p53 supports genomic stability, cellular health, and survival. Not surprisingly, tumours across the cancer spectrum carry mutations in p53, misexpress the protein, or dysregulate its activity. Several signalling pathways, many of which comprise oncogenic proteins, converge upon p53 to control its stability and activity. We here present the conserved kinase/ATPase RioK1 as an upstream factor that determines p53 activity at the DNA, RNA, and protein levels. It achieves this task by integrating the regulatory events that act on p53 into a coherent response circuit. We will also discuss how RIOK1 overexpression represents an alternative mechanism for cancers to inactivate p53, and how targeting RioK1 could eradicate malignancies that are driven by a dysregulated RioK1-p53 network.
Collapse
Affiliation(s)
- Michela Damizia
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123, Trento (TN), Italy
| | - Gian Mario Moretta
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123, Trento (TN), Italy
| | - Peter De Wulf
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123, Trento (TN), Italy.
| |
Collapse
|
5
|
Handle F, Puhr M, Gruber M, Andolfi C, Schäfer G, Klocker H, Haybaeck J, De Wulf P, Culig Z. The Oncogenic Protein Kinase/ATPase RIOK1 Is Up-Regulated via the c-myc/E2F Transcription Factor Axis in Prostate Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1284-1297. [PMID: 37301535 DOI: 10.1016/j.ajpath.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
The atypical protein kinase/ATPase RIO kinase (RIOK)-1 is involved in pre-40S ribosomal subunit production, cell-cycle progression, and protein arginine N-methyltransferase 5 methylosome substrate recruitment. RIOK1 overexpression is a characteristic of several malignancies and is correlated with cancer stage, therapy resistance, poor patient survival, and other prognostic factors. However, its role in prostate cancer (PCa) is unknown. In this study, the expression, regulation, and therapeutic potential of RIOK1 in PCa were examined. RIOK1 mRNA and protein expression were elevated in PCa tissue samples and correlated with proliferative and protein homeostasis-related pathways. RIOK1 was identified as a downstream target gene of the c-myc/E2F transcription factors. Proliferation of PCa cells was significantly reduced with RIOK1 knockdown and overexpression of the dominant-negative RIOK1-D324A mutant. Biochemical inhibition of RIOK1 with toyocamycin led to strong antiproliferative effects in androgen receptor-negative and -positive PCa cell lines with EC50 values of 3.5 to 8.8 nmol/L. Rapid decreases in RIOK1 protein expression and total rRNA content, and a shift in the 28S/18S rRNA ratio, were found with toyocamycin treatment. Apoptosis was induced with toyocamycin treatment at a level similar to that with the chemotherapeutic drug docetaxel used in clinical practice. In summary, the current study indicates that RIOK1 is a part of the MYC oncogene network, and as such, could be considered for future treatment of patients with PCa.
Collapse
Affiliation(s)
- Florian Handle
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria; Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martina Gruber
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Chiara Andolfi
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Schäfer
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria; Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Peter De Wulf
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
6
|
Zhao X, Dan C, Gong XY, Li YL, Qu ZL, Sun HY, An LL, Guo WH, Mei J, Gui JF, Zhang YB. Yellow catfish RIO kinases (RIOKs) negatively regulate fish interferon-mediated antiviral response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104656. [PMID: 36746265 DOI: 10.1016/j.dci.2023.104656] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
In mammals, right open reading frame kinases (RIOKs) are initially reported to participate in cancer cell proliferation, apoptosis, migration and invasion, and recently they have been related to host immune response. Little is known about the homologs of RIOKs in fish. In the current study, we cloned three homologous genes of RIOK family in yellow catfish (Pelteobagrus fulvidraco), termed Pfriok1, Pfriok2 and Pfriok3. Pfriok1, Pfriok2 and Pfriok3 were constitutively expressed at relatively high levels in yellow catfish tissues, and their mRNA levels were not changed under viral infection. Individual overexpression of PfRIOK1, PfRIOK2 and PfRIOK3 attenuated fish interferon (IFN) response, thereby promoting viral replication in fish cells. Mechanistically, yellow catfish RIOK proteins downregulated fish IFN response through attenuating TBK1 protein levels in cytoplasm. Our findings suggest that yellow catfish RIOK1, RIOK2 and RIOK3 are involved in downregulating fish IFN antiviral response.
Collapse
Affiliation(s)
- Xiang Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Cheng Dan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xiu-Ying Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yi-Lin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Zi-Ling Qu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Hao-Yu Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Li-Li An
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Wen-Hao Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi-Bing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
7
|
Smith TA, Lopez-Perez GS, Herneisen AL, Shortt E, Lourido S. Screening the Toxoplasma kinome with high-throughput tagging identifies a regulator of invasion and egress. Nat Microbiol 2022; 7:868-881. [PMID: 35484233 PMCID: PMC9167752 DOI: 10.1038/s41564-022-01104-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
Protein kinases regulate fundamental aspects of eukaryotic cell biology, making them attractive chemotherapeutic targets in parasites like Plasmodium spp. and Toxoplasma gondii. To systematically examine the parasite kinome, we developed a high-throughput tagging (HiT) strategy to endogenously label protein kinases with an auxin-inducible degron and fluorophore. Hundreds of tagging vectors were assembled from synthetic sequences in a single reaction and used to generate pools of mutants to determine localization and function. Examining 1,160 arrayed clones, we assigned 40 protein localizations and associated 15 kinases with distinct defects. The fitness of tagged alleles was also measured by pooled screening, distinguishing delayed from acute phenotypes. A previously unstudied kinase, associated with a delayed phenotype, was shown to be a regulator of invasion and egress. We named the kinase Store Potentiating/Activating Regulatory Kinase (SPARK), based on its impact on intracellular Ca2+ stores. Despite homology to mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1), SPARK lacks a lipid-binding domain, suggesting a rewiring of the pathway in parasites. HiT screening extends genome-wide approaches into complex cellular phenotypes, providing a scalable and versatile platform to dissect parasite biology.
Collapse
Affiliation(s)
- Tyler A Smith
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Alice L Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Wang Y, Xie X, Li S, Zhang D, Zheng H, Zhang M, Zhang Z. Co-overexpression of RIOK1 and AKT1 as a prognostic risk factor in glioma. J Cancer 2021; 12:5745-5752. [PMID: 34475988 PMCID: PMC8408104 DOI: 10.7150/jca.60596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most frequent primary malignancies of the brain. Although the treatment strategy has significantly improved, patient prognosis remains poor. In vitro studies have shown that the right open reading frame kinase 1/protein kinase B (RIOK1-AKT) signaling pathway plays an important role in the malignant phenotype of glioma cells. This study aimed to investigate the co-expression of RIOK1 and ATK in glioma tissues and its clinical significance. Compared with normal tissues, RIOK1 and AKT1 expression were significantly upregulated in glioma tissues. In addition, patients with higher World Health Organization staging grades had increased RIOK1 and AKT1 expression levels, and RIOK1 and AKT1 expression were positively correlated. Notably, both RIOK1 and AKT1 expressions were correlated with poor prognosis. In vitro experiments showed that silencing RIOK1 inhibited the proliferation, migration, and invasion of glioma cell lines by suppressing AKT and c-Myc expression. These results indicate that the RIOK1-AKT1 axis could play an important role in GBM progression.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Human Anatomy, Shenyang Medical College, Shenyang City, Liaoning Province 110034, P.R. China.,Department of Pathology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang City, Liaoning Province 110034, P.R. China
| | - Xiaochen Xie
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Shu Li
- Department of Human Anatomy, Shenyang Medical College, Shenyang City, Liaoning Province 110034, P.R. China
| | - Dongyong Zhang
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Heping District, Shenyang City, Liaoning Province, 110001, P.R. China
| | - Heyu Zheng
- Department of Human Anatomy, Shenyang Medical College, Shenyang City, Liaoning Province 110034, P.R. China
| | - Min Zhang
- Department of Pathology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang City, Liaoning Province 110034, P.R. China
| | - Zhong Zhang
- Department of Pathology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang City, Liaoning Province 110034, P.R. China
| |
Collapse
|
9
|
Preynat-Seauve O, Nguyen EBV, Westermaier Y, Héritier M, Tardy S, Cambet Y, Feyeux M, Caillon A, Scapozza L, Krause KH. Novel Mechanism for an Old Drug: Phenazopyridine is a Kinase Inhibitor Affecting Autophagy and Cellular Differentiation. Front Pharmacol 2021; 12:664608. [PMID: 34421588 PMCID: PMC8371461 DOI: 10.3389/fphar.2021.664608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Phenazopyridine is a widely used drug against urinary tract pain. The compound has also been shown to enhance neural differentiation of pluripotent stem cells. However, its mechanism of action is not understood. Based on its chemical structure, we hypothesized that phenazopyridine could be a kinase inhibitor. Phenazopyridine was investigated in the following experimental systems: 1) activity of kinases in pluripotent stem cells; 2) binding to recombinant kinases, and 3) functional impact on pluripotent stem cells. Upon addition to pluripotent stem cells, phenazopyridine induced changes in kinase activities, particularly involving Mitogen-Activated Protein Kinases, Cyclin-Dependent Kinases, and AKT pathway kinases. To identify the primary targets of phenazopyridine, we screened its interactions with 401 human kinases. Dose-inhibition curves showed that three of these kinases interacted with phenazopyridine with sub-micromolar binding affinities: cyclin-G-associated kinase, and the two phosphatidylinositol kinases PI4KB and PIP4K2C, the latter being known for participating in pain induction. Docking revealed that phenazopyridine forms strong H-bonds with the hinge region of the ATP-binding pocket of these kinases. As previous studies suggested increased autophagy upon inhibition of the phosphatidyl-inositol/AKT pathway, we also investigated the impact of phenazopyridine on this pathway and found an upregulation. In conclusion, our study demonstrates for the first time that phenazopyridine is a kinase inhibitor, impacting notably phosphatidylinositol kinases involved in nociception.
Collapse
Affiliation(s)
- Olivier Preynat-Seauve
- Laboratory of Therapy and Stem Cells, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Evelyne Bao-Vi Nguyen
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yvonne Westermaier
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Margaux Héritier
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Sébastien Tardy
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Yves Cambet
- READS Unit, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Maxime Feyeux
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélie Caillon
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Laboratory of Therapy and Stem Cells, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Wang T, Li LY, Chen YF, Fu SW, Wu ZW, Du BB, Yang XF, Zhang WS, Hao XY, Guo TK. Ribosome assembly factor URB1 contributes to colorectal cancer proliferation through transcriptional activation of ATF4. Cancer Sci 2020; 112:101-116. [PMID: 32888357 PMCID: PMC7780016 DOI: 10.1111/cas.14643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Ribosome assembly factor URB1 is essential for ribosome biogenesis. However, its latent role in cancer remains unclear. Analysis of The Cancer Genome Atlas database and clinical tissue microarray staining showed that URB1 expression was upregulated in colorectal cancer (CRC) and prominently related to clinicopathological characteristics. Silencing of URB1 hampered human CRC cell proliferation and growth in vitro and in vivo. Microarray screening, ingenuity pathway analysis, and JASPAR assessment indicated that activating transcription factor 4 (ATF4) and X‐box binding protein 1 (XBP1) are potential downstream targets of URB1 and could transcriptionally interact through direct binding. Silencing of URB1 significantly decreased ATF4 and cyclin A2 (CCNA2) expression in vivo and in vitro. Restoration of ATF4 effectively reversed the malignant proliferation phenotype of URB1‐silenced CRC cells. Dual‐luciferase reporter and ChIP assays indicated that XBP1 transcriptionally activated ATF4 by binding with its promoter region. X‐box binding protein 1 colocalized with ATF4 in the nuclei of RKO cells, and ATF4 mRNA expression was positively regulated by XBP1. This study shows that URB1 contributes to oncogenesis and CRC growth through XBP1‐mediated transcriptional activation of ATF4. Therefore, URB1 could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Tao Wang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lai-Yuan Li
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Yi-Feng Chen
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Si-Wu Fu
- The School of Medical College, Northwest Minzu University, Lanzhou, China
| | - Zhi-Wei Wu
- The School of Preclinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Bin-Bin Du
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiong-Fei Yang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Wei-Sheng Zhang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiang-Yong Hao
- Department of General Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Tian-Kang Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of General Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| |
Collapse
|
11
|
Arbel M, Liefshitz B, Kupiec M. How yeast cells deal with stalled replication forks. Curr Genet 2020; 66:911-915. [PMID: 32394094 DOI: 10.1007/s00294-020-01082-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/27/2022]
Abstract
DNA polymerases sometimes stall during DNA replication at sites where DNA is damaged, or upon encounter with proteins or secondary structures of DNA. When that happens, the polymerase clamp PCNA can become modified with a single ubiquitin moiety at lysine 164, opening DNA Damage Tolerance (DDT) mechanisms that either repair or bypass the lesions. An alternative repair mechanism is the salvage recombination (SR) pathway, which copies information from the sister chromatid. SUMOylation of PCNA at the same lysine, or at lysine 127, can recruit the Srs2 helicase, which negatively controls SR. Recently, we have dissected the relationship between SR and the DDT pathways, and showed that overexpression of either the PCNA unloader Elg1, or the Rad52 homologous recombination protein, can bypass the repression by Srs2. Our results shed light on the interactions between different DNA damage repair/bypass proteins, and underscore the importance of PCNA modifications in organizing the complex task of dealing with DNA damage during replication of the genetic material.
Collapse
Affiliation(s)
- Matan Arbel
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, 69978, Ramat, Aviv, Israel
| | - Batia Liefshitz
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, 69978, Ramat, Aviv, Israel
| | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, 69978, Ramat, Aviv, Israel.
| |
Collapse
|
12
|
Krutyhołowa R, Reinhardt-Tews A, Chramiec-Głąbik A, Breunig KD, Glatt S. Fungal Kti12 proteins display unusual linker regions and unique ATPase p-loops. Curr Genet 2020; 66:823-833. [PMID: 32236652 PMCID: PMC7363723 DOI: 10.1007/s00294-020-01070-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 12/24/2022]
Abstract
Kti12 (Kluyveromyces lactis toxin insensitive 12) is an evolutionary highly conserved ATPase, crucial for the tRNA-modification activity of the eukaryotic Elongator complex. The protein consists of an N-terminal ATPase and a C-terminal tRNA-binding domain, which are connected by a flexible linker. The precise role of the linker region and its involvement in the communication between the two domains and their activities remain elusive. Here, we analyzed all available Kti12 protein sequences and report the discovery of a subset of Kti12 proteins with abnormally long linker regions. These Kti12 proteins are characterized by a co-occurring lysine to leucine substitution in their Walker A motif, previously thought to be invariable. We show that the K14L substitution lowers the affinity to ATP, but does not affect the catalytic activity of Kti12 at high ATP concentrations. We compare the activity of mutated variants of Kti12 in vitro with complementation assays in vivo in yeast. Ultimately, we compared Kti12 to other known p-loop ATPase family members known to carry a similar deviant Walker A motif. Our data establish Kti12 of Eurotiomycetes as an example of eukaryotic ATPase harboring a significantly deviating but still functional Walker A motif.
Collapse
Affiliation(s)
- Rościsław Krutyhołowa
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland.,Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | - Karin D Breunig
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland.
| |
Collapse
|