1
|
Yang Z, Lemacon DS, Li S, Cheruiyot A, Kong L, Tan K, Cheng C, Turkay E, He D, You Z. Context-dependent pro- and anti-resection roles of ZKSCAN3 in the regulation of fork processing during replication stress. J Biol Chem 2022; 298:102215. [PMID: 35779634 PMCID: PMC9352557 DOI: 10.1016/j.jbc.2022.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Uncontrolled resection of replication forks under stress can cause genomic instability and influence cancer formation. Extensive fork resection has also been implicated in the chemosensitivity of “BReast CAncer gene” BRCA-deficient cancers. However, how fork resection is controlled in different genetic contexts and how it affects chromosomal stability and cell survival remains incompletely understood. Here, we report a novel function of the transcription repressor ZKSCAN3 in fork protection and chromosomal stability maintenance under replication stress. We show disruption of ZKSCAN3 function causes excessive resection of replication forks by the exonuclease Exo1 and homologous DNA recombination/repair protein Mre11 following fork reversal. Interestingly, in BRCA1-deficient cells, we found ZKSCAN3 actually promotes fork resection upon replication stress. We demonstrate these anti- and pro-resection roles of ZKSCAN3, consisting of a SCAN box, Kruppel-associated box, and zinc finger domain, are mediated by its SCAN box domain and do not require the Kruppel-associated box or zinc finger domains, suggesting that the transcriptional function of ZKSCAN3 is not involved. Furthermore, despite the severe impact on fork structure and chromosomal stability, depletion of ZKSCAN3 did not affect the short-term survival of BRCA1-proficient or BRCA1-deficient cells after treatment with cancer drugs hydroxyurea, PARPi, or cisplatin. Our findings reveal a unique relationship between ZKSCAN3 and BRCA1 in fork protection and add to our understanding of the relationships between replication fork protection, chromosomal instability, and chemosensitivity.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061 China; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Delphine Sangotokun Lemacon
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shan Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abigael Cheruiyot
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lingzhen Kong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ke Tan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chen Cheng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ecenur Turkay
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dalin He
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061 China
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Todd RT, Selmecki A. Expandable and reversible copy number amplification drives rapid adaptation to antifungal drugs. eLife 2020; 9:e58349. [PMID: 32687060 PMCID: PMC7371428 DOI: 10.7554/elife.58349] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Previously, we identified long repeat sequences that are frequently associated with genome rearrangements, including copy number variation (CNV), in many diverse isolates of the human fungal pathogen Candida albicans (Todd et al., 2019). Here, we describe the rapid acquisition of novel, high copy number CNVs during adaptation to azole antifungal drugs. Single-cell karyotype analysis indicates that these CNVs appear to arise via a dicentric chromosome intermediate and breakage-fusion-bridge cycles that are repaired using multiple distinct long inverted repeat sequences. Subsequent removal of the antifungal drug can lead to a dramatic loss of the CNV and reversion to the progenitor genotype and drug susceptibility phenotype. These findings support a novel mechanism for the rapid acquisition of antifungal drug resistance and provide genomic evidence for the heterogeneity frequently observed in clinical settings.
Collapse
Affiliation(s)
- Robert T Todd
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States
| |
Collapse
|
3
|
Lehmann CP, Jiménez-Martín A, Branzei D, Tercero JA. Prevention of unwanted recombination at damaged replication forks. Curr Genet 2020; 66:1045-1051. [PMID: 32671464 PMCID: PMC7599154 DOI: 10.1007/s00294-020-01095-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Homologous recombination is essential for the maintenance of genome integrity but must be strictly controlled to avoid dangerous outcomes that produce the opposite effect, genomic instability. During unperturbed chromosome replication, recombination is globally inhibited at ongoing DNA replication forks, which helps to prevent deleterious genomic rearrangements. This inhibition is carried out by Srs2, a helicase that binds to SUMOylated PCNA and has an anti-recombinogenic function at replication forks. However, at damaged stalled forks, Srs2 is counteracted and DNA lesion bypass can be achieved by recombination-mediated template switching. In budding yeast, template switching is dependent on Rad5. In the absence of this protein, replication forks stall in the presence of DNA lesions and cells die. Recently, we showed that in cells lacking Rad5 that are exposed to DNA damage or replicative stress, elimination of the conserved Mgs1/WRNIP1 ATPase allows an alternative mode of DNA damage bypass that is driven by recombination and facilitates completion of chromosome replication and cell viability. We have proposed that Mgs1 is important to prevent a potentially harmful salvage pathway of recombination at damaged stalled forks. In this review, we summarize our current understanding of how unwanted recombination is prevented at damaged stalled replication forks.
Collapse
Affiliation(s)
- Carl P Lehmann
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, 28049, Madrid, Spain
| | - Alberto Jiménez-Martín
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, 28049, Madrid, Spain.,Centro Andaluz de Biología del Desarrollo (CSIC/UPO), 41013, Seville, Spain
| | - Dana Branzei
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy.,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100, Pavia, Italy
| | - José Antonio Tercero
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
4
|
Arbel M, Liefshitz B, Kupiec M. How yeast cells deal with stalled replication forks. Curr Genet 2020; 66:911-915. [PMID: 32394094 DOI: 10.1007/s00294-020-01082-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/27/2022]
Abstract
DNA polymerases sometimes stall during DNA replication at sites where DNA is damaged, or upon encounter with proteins or secondary structures of DNA. When that happens, the polymerase clamp PCNA can become modified with a single ubiquitin moiety at lysine 164, opening DNA Damage Tolerance (DDT) mechanisms that either repair or bypass the lesions. An alternative repair mechanism is the salvage recombination (SR) pathway, which copies information from the sister chromatid. SUMOylation of PCNA at the same lysine, or at lysine 127, can recruit the Srs2 helicase, which negatively controls SR. Recently, we have dissected the relationship between SR and the DDT pathways, and showed that overexpression of either the PCNA unloader Elg1, or the Rad52 homologous recombination protein, can bypass the repression by Srs2. Our results shed light on the interactions between different DNA damage repair/bypass proteins, and underscore the importance of PCNA modifications in organizing the complex task of dealing with DNA damage during replication of the genetic material.
Collapse
Affiliation(s)
- Matan Arbel
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, 69978, Ramat, Aviv, Israel
| | - Batia Liefshitz
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, 69978, Ramat, Aviv, Israel
| | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, 69978, Ramat, Aviv, Israel.
| |
Collapse
|
5
|
Mutation in histone deacetylase clr6 promotes the survival of S. pombe cds1 null mutant in response to hydroxyurea. Mol Genet Genomics 2020; 295:695-703. [PMID: 32124033 DOI: 10.1007/s00438-020-01655-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
Abstract
Fission yeast Cds1 is responsible for the replication checkpoint activation and helps to protect replication fork collapse in response to hydroxyurea (HU). Here, we investigated the role of histone deacetylase in response to replication fork arrest and observed that in the presence of HU, the survival of cds1Δ cells was improved when the cells were simultaneously treated with histone deacetylase inhibitors. Furthermore, a mutation in the histone deacetylase gene, clr6, also suppresses the growth defect of cds1Δ cells in response to HU indicating a suppressive role of clr6-1 mutation in cds1 deletion background upon HU treatment. Interestingly, in response to HU, phosphorylation of Chk1 kinase and the number of Rad52YFP foci was reduced in cds1Δ clr6-1 double mutant as compared to cds1Δ single mutant indicating a decrease in the level of DNA damage in response to HU. Accordingly, the single-cell gel electrophoresis assay revealed a drastic reduction in the tail length of cds1Δ clr6-1 double mutant as compared to cds1Δ cells in the presence of HU suggesting the suppression of chromosomal defects in the double mutant. Taken together, we proposed that there could be transient suppression of fork collapse in cds1Δ clr6-1 double mutant upon HU treatment due to the delay in mitotic progression that leads to the facilitation of cell growth.
Collapse
|
6
|
Wallace NA. Catching HPV in the Homologous Recombination Cookie Jar. Trends Microbiol 2019; 28:191-201. [PMID: 31744663 DOI: 10.1016/j.tim.2019.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/27/2022]
Abstract
To replicate, the human papillomaviruses (HPVs) that cause anogenital and oropharyngeal malignancies must simultaneously activate DNA repair pathways and avoid the cell cycle arrest that normally accompanies DNA repair. For years it seemed that HPV oncogenes activated the homologous recombination pathway to facilitate the HPV lifecycle. However, recent developments show that, although homologous recombination gene expression and markers of pathway activation are increased, homologous recombination itself is attenuated. This review provides an overview of the diverse ways that HPV oncogenes manipulate homologous recombination and ideas on how the resulting dysregulation and inhibition offer opportunities for improved therapies and biomarkers.
Collapse
|
7
|
Ma M, Rodriguez A, Sugimoto K. Activation of ATR-related protein kinase upon DNA damage recognition. Curr Genet 2019; 66:327-333. [PMID: 31624858 DOI: 10.1007/s00294-019-01039-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
Chromosomes are constantly damaged by exogenous and endogenous factors. To cope with DNA damage, eukaryotic cells are equipped with three phosphatidylinositol 3-kinase-related kinases (PIKKs), such as ATM, ATR, and DNA-PK. PIKKs are structurally related to phosphatidylinositol 3-kinase (lipid kinase), however possess protein kinase activities. The Mre11-Rad50-Nbs1 and the Ku complex interact with and activate ATM and DNA-PKcs at double-stranded DNA breaks (DSBs), respectively. In contrast, ATR responds to various types of DNA lesions by interacting with replication protein A (RPA)-covered single-stranded DNA (ssDNA). Several lines of evidence have established a model in which ATR is activated by interacting with ATR activating proteins including TopBP1 and ETAA1 at DNA lesions in humans, yet the interaction of ATR with RPA-covered ssDNA does not result in ATR activation. In budding yeast, the Mec1-Ddc2 complex (Mec1-Ddc2) corresponds to ATR-ATRIP. Similar to ATR, Mec1 activation is accomplished by interactions with Mec1 activating proteins, which are Ddc1, Dpb11 (TopBP1 homolog) and Dna2. However, recent studies provide results supporting the idea that Mec1ATR is also activated by interacting with RPA-covered ssDNA tracts. These observations suggest that all the ATM, ATR, DNA-PK family proteins can be activated immediately upon DNA damage recognition.
Collapse
Affiliation(s)
- Minh Ma
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Anibian Rodriguez
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Katsunori Sugimoto
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
8
|
Harari Y, Gershon L, Alonso-Perez E, Klein S, Berneman Y, Choudhari K, Singh P, Sau S, Liefshitz B, Kupiec M. Telomeres and stress in yeast cells: When genes and environment interact. Fungal Biol 2019; 124:311-315. [PMID: 32389293 DOI: 10.1016/j.funbio.2019.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022]
Abstract
Telomeres are structures composed of simple DNA repeats and specific proteins that protect the eukaryotic chromosomal ends from degradation, and facilitate the replication of the genome. They are central to the maintenance of the genome integrity, and play important roles in the development of cancer and in the process of aging in humans. The yeast Saccharomyces cerevisiae has greatly contributed to our understanding of basic telomere biology. Our laboratory has carried out systematic screen for mutants that affect telomere length, and identified ∼500 genes that, when mutated, affect telomere length. Remarkably, all ∼500 TLM (Telomere Length Maintenance) genes participate in a very tight homeostatic process, and it is enough to mutate one of them to change the steady-state telomere length. Despite this complex network of balances, it is also possible to change telomere length in yeast by applying several types of external stresses. We summarize our insights about the molecular mechanisms by which genes and environment interact to affect telomere length.
Collapse
Affiliation(s)
- Yaniv Harari
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Lihi Gershon
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Elisa Alonso-Perez
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Shir Klein
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Yael Berneman
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Karan Choudhari
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Pragyan Singh
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Soumitra Sau
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata, India
| | - Batia Liefshitz
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel.
| |
Collapse
|
9
|
A role for the yeast PCNA unloader Elg1 in eliciting the DNA damage checkpoint. Curr Genet 2019; 66:79-84. [PMID: 31332476 DOI: 10.1007/s00294-019-01020-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022]
Abstract
During cell proliferation, the genome is constantly threatened by cellular and external factors. When the DNA is damaged, or when its faithful duplication is delayed by DNA polymerase stalling, the cells induce a coordinated response termed the DNA damage response (DDR) or checkpoint. Elg1 forms an RFC-like complex in charge of unloading the DNA polymerase processively factor PCNA during DNA replication and DNA repair. Using checkpoint-inducible strains, a recently published paper (Sau et al. in mBio 10(3):e01159-19. https://doi.org/10.1128/mbio.01159-19, 2019) uncovered a role for Elg1 in eliciting the DNA damage checkpoint (DC), one of the branches of the DDR. The apical kinase Mec1/ATR phosphorylates Elg1, as well as the adaptor proteins Rad9/53BP1 and Dpb11/TopBP1, which are recruited to the site of DNA damage to amplify the checkpoint signal. In the absence of Elg1, Rad9 and Dpb11 are recruited but fail to be phosphorylated and the signal is therefore not amplified. Thus, Elg1 appears to coordinate DNA repair and the induction of the DNA damage checkpoint.
Collapse
|