1
|
Elias M, Gani S, Lerner Y, Yamin K, Tor C, Patel A, Matityahu A, Dessau M, Qvit N, Onn I. Developing a peptide to disrupt cohesin head domain interactions. iScience 2023; 26:107498. [PMID: 37664609 PMCID: PMC10470313 DOI: 10.1016/j.isci.2023.107498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Cohesin mediates the 3-D structure of chromatin and is involved in maintaining genome stability and function. The cohesin core comprises Smc1 and Smc3, elongated-shaped proteins that dimerize through globular domains at their edges, called head and hinge. ATP binding to the Smc heads induces their dimerization and the formation of two active sites, while ATP hydrolysis results in head disengagement. This ATPase cycle is essential for driving cohesin activity. We report on the development of the first cohesin-inhibiting peptide (CIP). The CIP binds Smc3 in vitro and inhibits the ATPase activity of the holocomplex. Treating yeast cells with the CIP prevents cohesin's tethering activity and, interestingly, leads to the accumulation of cohesin on chromatin. CIP3 also affects cohesin activity in human cells. Altogether, we demonstrate the power of peptides to inhibit cohesin in cells and discuss the potential application of CIPs as a therapeutic approach.
Collapse
Affiliation(s)
- Maria Elias
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Samar Gani
- Protein-Protein Interactions Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Yana Lerner
- Protein-Protein Interactions Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Katreen Yamin
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Chen Tor
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Adarsh Patel
- The Lab for Structural Biology of Infectious Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Avi Matityahu
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Moshe Dessau
- The Lab for Structural Biology of Infectious Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Nir Qvit
- Protein-Protein Interactions Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Itay Onn
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
2
|
Fold-change of chromatin condensation in yeast is a conserved property. Sci Rep 2022; 12:17393. [PMID: 36253460 PMCID: PMC9576780 DOI: 10.1038/s41598-022-22340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/13/2022] [Indexed: 01/10/2023] Open
Abstract
During mitosis, chromatin is condensed and organized into mitotic chromosomes. Condensation is critical for genome stability and dynamics, yet the degree of condensation is significantly different between multicellular and single-cell eukaryotes. What is less clear is whether there is a minimum degree of chromosome condensation in unicellular eukaryotes. Here, we exploited two-photon microscopy to analyze chromatin condensation in live and fixed cells, enabling studies of some organisms that are not readily amenable to genetic modification. This includes the yeasts Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, and Candida albicans, as well as a protist Trypanosoma brucei. We found that mitotic chromosomes in this range of species are condensed about 1.5-fold relative to interphase chromatin. In addition, we used two-photon microscopy to reveal that chromatin reorganization in interphase human hepatoma cells infected by the hepatitis C virus is decondensed compared to uninfected cells, which correlates with the previously reported viral-induced changes in chromatin dynamics. This work demonstrates the power of two-photon microscopy to analyze chromatin in a broad range of cell types and conditions, including non-model single-cell eukaryotes. We suggest that similar condensation levels are an evolutionarily conserved property in unicellular eukaryotes and important for proper chromosome segregation. Furthermore, this provides new insights into the process of chromatin condensation during mitosis in unicellular organisms as well as the response of human cells to viral infection.
Collapse
|
3
|
Ming Sun S, Batté A, Elmer M, van der Horst SC, van Welsem T, Bean G, Ideker T, van Leeuwen F, van Attikum H. A genetic interaction map centered on cohesin reveals auxiliary factors involved in sister chromatid cohesion in S. cerevisiae. J Cell Sci 2020; 133:jcs237628. [PMID: 32299836 PMCID: PMC7325435 DOI: 10.1242/jcs.237628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/26/2020] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic chromosomes are replicated in interphase and the two newly duplicated sister chromatids are held together by the cohesin complex and several cohesin auxiliary factors. Sister chromatid cohesion is essential for accurate chromosome segregation during mitosis, yet has also been implicated in other processes, including DNA damage repair, transcription and DNA replication. To assess how cohesin and associated factors functionally interconnect and coordinate with other cellular processes, we systematically mapped the genetic interactions of 17 cohesin genes centered on quantitative growth measurements of >52,000 gene pairs in the budding yeast Saccharomyces cerevisiae Integration of synthetic genetic interactions unveiled a cohesin functional map that constitutes 373 genetic interactions, revealing novel functional connections with post-replication repair, microtubule organization and protein folding. Accordingly, we show that the microtubule-associated protein Irc15 and the prefoldin complex members Gim3, Gim4 and Yke2 are new factors involved in sister chromatid cohesion. Our genetic interaction map thus provides a unique resource for further identification and functional interrogation of cohesin proteins. Since mutations in cohesin proteins have been associated with cohesinopathies and cancer, it may also help in identifying cohesin interactions relevant in disease etiology.
Collapse
Affiliation(s)
- Su Ming Sun
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, Netherlands
| | - Amandine Batté
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, Netherlands
| | - Mireille Elmer
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, Netherlands
- Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, 2600 AA, Delft, Netherlands
| | - Sophie C van der Horst
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | - Gordon Bean
- Bioinformatics and Systems Biology Program, University of California, San Diego; La Jolla, CA, 92093, USA
| | - Trey Ideker
- Bioinformatics and Systems Biology Program, University of California, San Diego; La Jolla, CA, 92093, USA
- Department of Medicine, Division of Genetics, University of California, San Diego; La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego; La Jolla, CA, 92093, USA
- Cancer Cell Map Initiative (CCMI), Moores UCSD Cancer Center, La Jolla, CA, 92093, USA
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, Netherlands
| |
Collapse
|
4
|
Liu W, Biton E, Pathania A, Matityahu A, Irudayaraj J, Onn I. Monomeric cohesin state revealed by live-cell single-molecule spectroscopy. EMBO Rep 2020; 21:e48211. [PMID: 31886609 PMCID: PMC7001500 DOI: 10.15252/embr.201948211] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
The cohesin complex plays an important role in the maintenance of genome stability. Cohesin is composed of four core subunits and a set of regulatory subunits that interact with the core subunits. Less is known about cohesin dynamics in live cells and on the contribution of individual subunits to the overall complex. Understanding the tethering mechanism of cohesin is still a challenge, especially because the proposed mechanisms are still not conclusive. Models proposed to describe tethering depend on either the monomeric cohesin ring or a cohesin dimer. Here, we investigate the role of cohesin dynamics and stoichiometry in live yeast cells at single-molecule resolution. We explore the effect of regulatory subunit deletion on cohesin mobility and found that depletion of different regulatory subunits has opposing effects. Finally, we show that cohesin exists mostly as a canonical monomer throughout the cell cycle, and its monomeric form is independent of its regulatory factors. Our results demonstrate that single-molecule tools have the potential to provide new insights into the cohesin mechanism of action in live cells.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Bioengineering, Micro and Nanotechnology LaboratoryCancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Mills Breast Cancer InstituteCarle Foundation HospitalUrbanaILUSA
| | - Elisheva Biton
- The Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | - Anjali Pathania
- The Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | - Avi Matityahu
- The Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | - Joseph Irudayaraj
- Department of Bioengineering, Micro and Nanotechnology LaboratoryCancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Mills Breast Cancer InstituteCarle Foundation HospitalUrbanaILUSA
| | - Itay Onn
- The Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| |
Collapse
|