1
|
Tavares M, Sousa-Filho JC, Machado IA, Gonçales RA, Antunes D, Mendes-Frias A, Silvestre R, Carvalho A, Torrado E, Cunha C, Rodrigues F. Development of a Versatile Toolbox for Genetic Manipulation of Sporothrix brasiliensis. Microbiol Spectr 2023; 11:e0456422. [PMID: 36847570 PMCID: PMC10101026 DOI: 10.1128/spectrum.04564-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
Sporothrix brasiliensis has emerged as the most virulent species in the Sporothrix schenckii complex, accounting for sporotrichosis. Albeit the new insights into the understanding of host-pathogen interactions and comparative genomics of this fungi, the lack of genetic tools has hindered significant advances in this field of research. Here, we established an Agrobacterium tumefaciens-mediated transformation (ATMT) system to transform different strains of S. brasiliensis. We report parameters that account for a transformation efficiency of 3,179 ± 1,171 transformants/co-cultivation, which include the use of A. tumefaciens AGL-1 in a 2:1 ratio (bacteria:fungi) during 72 h at 26°C. Our data show that a single-copy transgene is transferred to S. brasiliensis that is mitotically stable in 99% of cells after 10 generations without selective pressure. In addition, we created a plasmid toolkit that allows the establishment of fusion proteins of any S. brasiliensis gene of interest with sGFP or mCherry under the control of the GAPDH or H2A endogenous promoters. These modules allow different levels of expression of the desired fusion. Moreover, we successfully targeted these fluorescent proteins to the nucleus and used fluorescence-tagged strains to assess phagocytosis. Overall, our data show that the ATMT system is an easy-to-use and efficient genetic toolbox for studies on recombinant expression and gene function in S. brasiliensis. IMPORTANCE Sporotrichosis is the most prevalent subcutaneous mycosis worldwide and has recently become a public health concern. Although immunocompetent hosts are also prone to sporotrichosis, immunodeficient hosts often develop a more severe and disseminated form of disease. To date, the Rio de Janeiro state in Brazil is the most significant feline zoonotic transmission epicenter in the world, with more than 4,000 human and feline diagnosed cases. Cats play an essential role in the S. brasiliensis infection due to their high susceptibility and transmissibility to other felines and humans. S. brasiliensis is the most virulent etiological agent of sporotrichosis, causing the most severe clinical manifestations. Despite the increasing incidence of sporotrichosis, the identification of virulence traits important for disease establishment, development, and severity has been lacking. In this work, we established an efficient genetic toolbox to manipulate S. brasiliensis that will guide future studies to define new virulence mechanisms and a better understanding of host-pathogen interactions from a molecular perspective.
Collapse
Affiliation(s)
- Matheus Tavares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Jorge Carlos Sousa-Filho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Ian Alves Machado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Relber Aguiar Gonçales
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Daniela Antunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Ana Mendes-Frias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| |
Collapse
|
2
|
Zhang Q, Shu F, Chen X, Liu W, Bian Y, Kang H. Construction of nucleus-directed fluorescent reporter systems and its application to verification of heterokaryon formation in Morchella importuna. Front Microbiol 2022; 13:1051013. [PMID: 36478869 PMCID: PMC9720127 DOI: 10.3389/fmicb.2022.1051013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
INTRODUCTION Morchella importuna (M. importuna) is a rare fungus with high nutrition value and distinct flavor. Despite the successful artificial cultivation, its genetic characteristics and biological processes such as life cycle, reproductive system, and trophic mode remain poorly understood. METHODS Considering this, we constructed pEH2B and pMH2B vectors by fusing M. importuna endogenous histone protein H2B with fluorescent proteins eGFP or mCherry, respectively. Based on the constructed pEH2B and pMH2B vectors, nuclear fluorescence localization was performed via Agrobacterium tumefaciens-mediated transformation (ATMT). These two vectors were both driven by two endogenous promoters glyceraldehyde 3-phosphate dehydrogenase (GPD) and ubiquitin (UBI). The vector-based reporter systems were tested by the paired culture of two genetically modified strains pEH2B-labeled M04M24 (24e, MAT1-1-1) and pMH2B-abeled M04M26 (26m, MAT1-2-1). RESULTS The fluorescence observation and molecular identification results indicated the successful hyphal fusion and heterokaryon formation. We found that the expression of the reporter genes was stable, and it did not interfere with the growth of the fungus. DISCUSSION Our constructed nucleus-directed fluorescent systems in M. importuna can be used for monitoring the dynamic development and reproductive processes in living cells and also for monitoring the interaction between morels and plant roots. Therefore, morels exhibit the potential to be a candidate organism used for the research on basic biology and genetics of ascomycetes.
Collapse
Affiliation(s)
- Qianqian Zhang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Fang Shu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xin Chen
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Wei Liu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yinbing Bian
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Heng Kang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
3
|
Chowdhury J, Kemppainen M, Delhomme N, Shutava I, Zhou J, Takahashi J, Pardo AG, Lundberg‐Felten J. Laccaria bicolor pectin methylesterases are involved in ectomycorrhiza development with Populus tremula × Populus tremuloides. THE NEW PHYTOLOGIST 2022; 236:639-655. [PMID: 35794841 PMCID: PMC9796311 DOI: 10.1111/nph.18358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The development of ectomycorrhizal (ECM) symbioses between soil fungi and tree roots requires modification of root cell walls. The pectin-mediated adhesion between adjacent root cells loosens to accommodate fungal hyphae in the Hartig net, facilitating nutrient exchange between partners. We investigated the role of fungal pectin modifying enzymes in Laccaria bicolor for ECM formation with Populus tremula × Populus tremuloides. We combine transcriptomics of cell-wall-related enzymes in both partners during ECM formation, immunolocalisation of pectin (Homogalacturonan, HG) epitopes in different methylesterification states, pectin methylesterase (PME) activity assays and functional analyses of transgenic L. bicolor to uncover pectin modification mechanisms and the requirement of fungal pectin methylesterases (LbPMEs) for ECM formation. Immunolocalisation identified remodelling of pectin towards de-esterified HG during ECM formation, which was accompanied by increased LbPME1 expression and PME activity. Overexpression or RNAi of the ECM-induced LbPME1 in transgenic L. bicolor lines led to reduced ECM formation. Hartig Nets formed with LbPME1 RNAi lines were shallower, whereas those formed with LbPME1 overexpressors were deeper. This suggests that LbPME1 plays a role in ECM formation potentially through HG de-esterification, which initiates loosening of adjacent root cells to facilitate Hartig net formation.
Collapse
Affiliation(s)
- Jamil Chowdhury
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
- Department of Plant Physiology, Umeå Plant Science CenterUmeå University90187UmeåSweden
| | - Minna Kemppainen
- Laboratory of Molecular Mycology, Department of Science and Technology, Institute of Basic and Applied MicrobiologyNational University of Quilmes (UNQ), and National Scientific and Technical Research Council (CONICET)B1876BXDBernalArgentina
| | - Nicolas Delhomme
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
| | - Iryna Shutava
- Department of Plant Physiology, Umeå Plant Science CenterUmeå University90187UmeåSweden
| | - Jingjing Zhou
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
- Department of Plant Physiology, Umeå Plant Science CenterUmeå University90187UmeåSweden
| | - Junko Takahashi
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
| | - Alejandro G. Pardo
- Laboratory of Molecular Mycology, Department of Science and Technology, Institute of Basic and Applied MicrobiologyNational University of Quilmes (UNQ), and National Scientific and Technical Research Council (CONICET)B1876BXDBernalArgentina
| | - Judith Lundberg‐Felten
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
| |
Collapse
|
4
|
Zhang Q, Zhao L, Shen M, Liu J, Li Y, Xu S, Chen L, Shi G, Ding Z. Establishment of an Efficient Polyethylene Glycol (PEG)-Mediated Transformation System in Pleurotus eryngii var. ferulae Using Comprehensive Optimization and Multiple Endogenous Promoters. J Fungi (Basel) 2022; 8:jof8020186. [PMID: 35205941 PMCID: PMC8876744 DOI: 10.3390/jof8020186] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Pleurotus eryngii var. ferulae, a fungus of the genus Pleurotus, efficiently degrades lignin, especially during co-cultivation with other fungi. However, low transformation efficiency and heterologous gene expression restrict systematic studies of the molecular mechanisms and metabolic control of natural products in this mushroom. In this study, the homologous resistance marker carboxin (cbx) was used to establish a polyethylene glycol-mediated transformation (PMT) system in P. eryngii var. ferulae. Optimization of the transformation process greatly improved the number of positive transformants. In particular, we optimized: (i) protoplast preparation and regeneration; (ii) screening methods; and (iii) transformation-promoting factors. The optimized transformation efficiency reached 72.7 CFU/μg, which is higher than the average level of Pleurotus sp. (10–40 CFU/μg). Moreover, three endogenous promoters (Ppfgpd1, Ppfgpd2, and Ppfsar1) were screened and evaluated for different transcription initiation characteristics. A controllable overexpression system was established using these three promoters that satisfied various heterologous gene expression requirements, such as strong or weak, varied, or stable expression levels. This study lays the foundation for recombinant protein expression in P. eryngii var. ferulae and provides a method to investigate the underlying molecular mechanisms and secondary metabolic pathway modifications.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Mengye Shen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Jingyun Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-511-85918221
| |
Collapse
|
5
|
Kemppainen M, Pardo A. Nucleus-directed fluorescent reporter system for promoter studies in the ectomycorrhizal fungus Laccaria bicolor. J Microbiol Methods 2021; 190:106341. [PMID: 34610385 DOI: 10.1016/j.mimet.2021.106341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022]
Abstract
Currently ectomycorrhizal research suffers from a lack of molecular tools specifically adapted to study gene expression in fungal symbionts. Considering that, we designed pReNuK, a cloning vector for transcriptional promoter studies in the ectomycorrhizal basidiomycete Laccaria bicolor. The pReNuK vector offers the use of a nuclear localizing and chromatin incorporating histone H2B-mCherry fluorescent reporter protein and it is specifically optimized for efficient transgene expression in Laccaria. Moreover, pReNuK is designed to work in concert with Agrobacterium-mediated transformation under hygromycin B resistance selection. The functionality of the pReNuK reporter system was tested with the constitutive Laccaria glyceraldehyde 3-phosphate dehydrogenase gene promoter and further validated with the nitrogen source regulated nitrate reductase gene promoter. The expression of the nucleus-directed H2B-mCherry reporter is highly stable in time. Moreover, the transformation of Laccaria with pReNuK and the expression of the reporter do not have negative effects on the growth of the fungus. The pReNuK offers a novel tool for studying in vivo gene expression regulation in Laccaria, the leading fungal model for ectomycorrhizal research.
Collapse
Affiliation(s)
- Minna Kemppainen
- Laboratory of Molecular Mycology, Institute of Basic and Applied Microbiology, Department of Science and Technology, National University of Quilmes and CONICET, Bernal, Province of Buenos Aires, Argentina.
| | - Alejandro Pardo
- Laboratory of Molecular Mycology, Institute of Basic and Applied Microbiology, Department of Science and Technology, National University of Quilmes and CONICET, Bernal, Province of Buenos Aires, Argentina
| |
Collapse
|
6
|
Molecular characterization of a new endornavirus inhabiting the ectomycorrhizal fungus Hygrophorus penarioides. Braz J Microbiol 2021; 52:1167-1172. [PMID: 33900612 DOI: 10.1007/s42770-021-00500-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022] Open
Abstract
Viruses hosted by uncultivated fungi have been poorly studied. We carried out studies to characterize a large dsRNA segment (~20 kbp) detected in the basidiomycetous, ectomycorrhizal fungus Hygrophorus penarioides. The dsRNA was gel-purified and its randomly amplified cDNA fragments were used for high throughput sequencing (HTS). Reads were de novo assembled and BLASTx analysis revealed sequence similarity to viruses of the family Endornaviridae. The 5' and 3' terminal sequences of the dsRNA segment were determined by performing RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE). The full-length cDNA sequence of the putative endornavirus comprises 16,785 nt and contains a single, long open reading frame which encodes for a polyprotein of 5522 aa with conserved domains for cysteine-rich region, helicase, glycosyltransferase, and RNA-dependent RNA polymerase. The virus was named Hygrophorus penarioides endornavirus 1 (HpEnV1). A BLASTp search performed using the polyprotein sequence revealed that the most closely related, fully sequenced endornavirus to HpEnV1 is Ceratobasidium endornavirus B.
Collapse
|