1
|
Kim H, Heredia MY, Chen X, Ahmed M, Qasim M, Callender TL, Hernday AD, Rauceo JM. Mitochondrial targeting of Candida albicans SPFH proteins and requirement of stomatins for SDS-induced stress tolerance. Microbiol Spectr 2025; 13:e0173324. [PMID: 39641539 PMCID: PMC11705831 DOI: 10.1128/spectrum.01733-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
The SPFH (stomatin, prohibitin, flotillin, and HflK/HflC) protein superfamily is conserved across all domains of life. Fungal SPFH proteins are required for respiration, stress adaptation, and membrane scaffolding. In the yeast Candida albicans, stomatin-like protein 3 (Slp3) forms punctate foci at the plasma membrane, and SLP3 overexpression causes cell death following exposure to the surfactant, SDS, and the oxidative stressor, H2O2. Here, we sought to determine the cellular localization and functionally characterize stomatin-like protein 2 (Slp2), prohibitin-1 (Phb1), prohibitin-2 (Phb2), and prohibitin-12 (Phb12) in C. albicans. Cytological and western blotting results showed that Slp2-Gfp/Rfp and prohibitin-Gfp fusion proteins localize to the mitochondrion in yeast cells. Growth assay results did not identify any respiration defects in a panel of stomatin and prohibitin mutant strains, suggesting that SPFH respiratory function has diverged in C. albicans from other model eukaryotes. However, a slp2Δ/Δ/slp3Δ/Δ double mutant strain grew poorly in the presence of 0.08% SDS, accumulated intracellular reactive oxidative species, and displayed aberrant ergosterol distribution in the plasma membrane. These phenotypes were not observed in slp2Δ/Δ or slp3Δ/Δ single mutants, indicating a possible indirect genetic interaction between SLP2 and SLP3. In addition, slp2Δ/Δ and slp2Δ/Δ/slp3Δ/Δ mutant strains were slightly resistant to the antifungal drug, fluconazole. Collectively, these findings reveal the cellular localization of Slp2, Phb1, Phb2, and Phb12, highlight the significance of stomatins in C. albicans SDS stress tolerance, and, for the first time, associate stomatins with antifungal resistance. IMPORTANCE Stomatins and prohibitins coordinate respiration and stress adaptation in fungi. Invasive mycoses caused by Candida albicans are a significant cause of morbidity, and candidemia patients show high mortality rates worldwide. Mitochondria are essential for C. albicans commensalism and virulence, and mitochondrial proteins are targets for antifungal interventions. C. albicans encodes five SPFH proteins: two stomatin-like proteins and three prohibitins. We have previously shown that Slp3 is important for C. albicans adaptation to various types of environmental stress. Moreover, synthetic compounds that bind to mammalian prohibitins inhibit C. albicans filamentation and are fungicidal. However, there is limited information available regarding the remaining SPFH proteins. Our findings show that mitochondrial localization of SPFH proteins is conserved in C. albicans. In addition, we demonstrate the importance of stomatins in plasma membrane and mitochondrial stress tolerance.
Collapse
Affiliation(s)
- Hyunjeong Kim
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Marienela Y. Heredia
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Xiao Chen
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Maisha Ahmed
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Mohammad Qasim
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Tracy L. Callender
- Department of Biology, Farmingdale State College of the State University of New York, Farmingdale, New York, USA
| | - Aaron D. Hernday
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Jason M. Rauceo
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| |
Collapse
|
2
|
Yadav A, Sah SK, Perlin DS, Rustchenko E. Candida albicans Genes Modulating Echinocandin Susceptibility of Caspofungin-Adapted Mutants Are Constitutively Expressed in Clinical Isolates with Intermediate or Full Resistance to Echinocandins. J Fungi (Basel) 2024; 10:224. [PMID: 38535232 PMCID: PMC10971431 DOI: 10.3390/jof10030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 11/12/2024] Open
Abstract
The opportunistic fungus Candida albicans is the leading cause of invasive candidiasis in immune-compromised individuals. Drugs from the echinocandin (ECN) class, including caspofungin, are used as a first line of therapy against invasive candidiasis. The only known mechanism of clinical resistance to ECNs is point mutations in the FKS1 gene, which encodes the drug target. However, many clinical isolates developed decreased ECN susceptibilities in the absence of resistance-associated FKS1 mutations. We have identified 15 C. albicans genes that contribute to decreased drug susceptibility. We explored the expression of these 15 genes in clinical isolates with different levels of ECN susceptibility. We found that these 15 genes are expressed in clinical isolates with or without FKS1 mutations, including those strains that are less susceptible to ECNs. In addition, FKS1 expression was increased in such less susceptible isolates compared to highly susceptible isolates. Similarities of gene expression patterns between isolates with decreased ECN susceptibilities in the absence of FKS1 mutations and clinically resistant isolates with mutations in FKS1 suggest that clinical isolates with decreased ECN susceptibilities may be a precursor to development of resistance.
Collapse
Affiliation(s)
- Anshuman Yadav
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.Y.); (S.K.S.)
| | - Sudisht K. Sah
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.Y.); (S.K.S.)
| | - David S. Perlin
- Hackensack Meridian School of Medicine, Center for Discovery and Innovation, Nutley, NJ 07110, USA;
| | - Elena Rustchenko
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.Y.); (S.K.S.)
| |
Collapse
|
3
|
Xu Y, Gu F, Hu S, Wu Y, Wu C, Deng Y, Gu B, Chen Z, Yang Y. A cell wall-targeted organic-inorganic hybrid nano-catcher for ultrafast capture and SERS detection of invasive fungi. Biosens Bioelectron 2023; 228:115173. [PMID: 36878067 DOI: 10.1016/j.bios.2023.115173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/28/2022] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Due to the extended culture period and various inconveniences in vitro culture, the detection of invasive fungi is rather difficult, leading to high mortality rates of the diseases caused by them. It is, however, crucial for clinical therapy and lowering patient mortality to quickly identify invasive fungus from clinical specimens. A promising non-destructive method for finding fungi is surface-enhanced Raman scattering (SERS), however, its substrate has a low level of selectivity. Clinical sample components can obstruct the target fungi's SERS signal on account of their complexity. Herein, an MNP@PNIPAMAA hybrid organic-inorganic nano-catcher was created by using ultrasonic-initiated polymerization. The caspofungin (CAS), a fungus cell wall-targeting drug, is used in this study. We investigated MNP@PNIPAMAA-CAS as a technique to rapidly extract fungus from complex samples under 3 s. SERS could subsequently be used to instantly identify the fungi that were successfully isolated with an efficacy rate of about 75%. The entire process took just 10 min. This method is an important breakthrough that might be advantageous in terms of the rapid detection of invasive fungi.
Collapse
Affiliation(s)
- Yu Xu
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, China; College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing, 211169, China
| | - Feng Gu
- Department of Laboratory Medicine, Xuzhou Central Hospital, Xuzhou, 221000, China
| | - Shan Hu
- Department of Laboratory Medicine, Xuzhou Tumor Hospital, Xuzhou, 221005, China
| | - Yunjian Wu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Changyu Wu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yaling Deng
- College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing, 211169, China
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China.
| | - Zheng Chen
- School of Material Science and Engineering, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Ying Yang
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, China.
| |
Collapse
|
4
|
Husain F, Yadav A, Sah SK, Hayes JJ, Rustchenko E. Candida albicans Strains Adapted to Caspofungin Due to Aneuploidy Become Highly Tolerant under Continued Drug Pressure. Microorganisms 2022; 11:23. [PMID: 36677315 PMCID: PMC9866909 DOI: 10.3390/microorganisms11010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Candida albicans is a prevalent fungal pathogen of humans. Understanding the development of decreased susceptibility to ECN drugs of this microbe is of substantial interest, as it is viewed as an intermediate step allowing the formation of FKS1 resistance mutations. We used six previously characterized mutants that decreased caspofungin susceptibility either by acquiring aneuploidy of chromosome 5 (Ch5) or by aneuploidy-independent mechanisms. When we exposed these caspofungin-adapted mutants to caspofungin again, we obtained 60 evolved mutants with further decreases in caspofungin susceptibility, as determined with CLSI method. We show that the initial adaptation to caspofungin is coupled with the adaptation to other ECNs, such as micafungin and anidulafungin, in mutants with no ploidy change, but not in aneuploid mutants, which become more susceptible to micafungin and anidulafungin. Furthermore, we find that the initial mechanism of caspofungin adaptation determines the pattern of further adaptation as parentals with no ploidy change further adapt to all ECNs by relatively small decreases in susceptibility, whereas aneuploid parentals adapt to all ECNs, primarily by large decrease in susceptibilities. Our data suggest that either distinct or common mechanisms can govern adaptation to different ECNs.
Collapse
Affiliation(s)
| | | | | | | | - Elena Rustchenko
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
5
|
Yang L, Zhu H, Li M, Yu Q. The Tricalbin-Family Endoplasmic Reticulum-Plasma Membrane Tethering Proteins Attenuate ROS-Involved Caspofungin Sensitivity in Candida albicans. Microbiol Spectr 2022; 10:e0207922. [PMID: 36445092 PMCID: PMC9769562 DOI: 10.1128/spectrum.02079-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022] Open
Abstract
The endoplasmic reticulum-plasma membrane (ER-PM) contacts are one kind of important membrane contact structures in eukaryotic cells, which mediate material and message exchange between the ER and the PM. However, the specific types and functions of ER-PM tethering proteins are poorly understood in the human fungal pathogen Candida albicans. In this study, we observed that the two tricalbin-family proteins, i.e., Tcb1 and Tcb3, were colocalized with the ER-PM contacts in C. albicans. Deletion of the tricalbin-encoding genes TCB1 and TCB3 remarkably reduced ER-PM contacts, suggesting that tricalbins are ER-PM tethering proteins of C. albicans. Stress sensitivity assays showed that the TCB-deleted strains, including tcb1Δ/Δ, tcb3Δ/Δ, and tcb1Δ/Δ tcb3Δ/Δ, exhibited hypersensitivity to cell wall stress induced by caspofungin. Further investigation revealed that caspofungin induced drastic reactive oxygen species (ROS) accumulation in the mutants, which was attributed to enhanced oxidation of Ero1 in the ER lumen. Removal of intracellular ROS by the ROS scavenger vitamin C rescued the growth of the mutants under caspofungin treatment, indicating that Ero1 oxidation-related ROS accumulation was involved in caspofungin hypersensitivity of the mutants. Moreover, deletion of the TCB genes decreased secretion of extracellular aspartyl proteinases, reduced transport of the cell wall protein Hwp1 from the cytoplasm to the cell wall, and attenuated virulence of the fungal pathogen. This study sheds a light on the role of ER-PM tethering proteins in maintenance of cell wall integrity and virulence in fungal pathogens. IMPORTANCE The endoplasmic reticulum-plasma membrane contacts are important membrane contact structures in eukaryotic cells, functioning in material and message exchange between the ER and the PM. We observed that the two tricalbin-family endoplasmic reticulum-plasma membrane contact proteins are required for tolerance to caspofungin-induced cell wall stress in the pathogenic fungus Candida albicans. The tricalbin mutants exhibited hypersensitivity to cell wall stress induced by caspofungin. Further investigation revealed that Ero1 oxidation-related reactive species oxygen accumulation was involved in caspofungin hypersensitivity of the tricalbin mutants. Moreover, loss of tricalbins reduced secretion of extracellular aspartyl proteinases, decreased transport of the cell wall proteins from the cytoplasm to the cell wall, and attenuated virulence of the fungal pathogen. This study uncovers the role of ER-PM tethering proteins in sustaining protein secretion, maintenance of cell wall integrity and virulence in fungal pathogens.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Hangqi Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| |
Collapse
|
6
|
Multiple Genes of Candida albicans Influencing Echinocandin Susceptibility in Caspofungin-Adapted Mutants. Antimicrob Agents Chemother 2022; 66:e0097722. [PMID: 36354349 PMCID: PMC9765025 DOI: 10.1128/aac.00977-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Candida albicans is an opportunistic human fungal pathogen that causes invasive infections in immunocompromised individuals. Despite the high anticandidal activity among the echinocandins (ECNs), a first-line therapy, resistance remains an issue. Furthermore, many clinical isolates display decreased ECN susceptibility, a physiological state which is thought to lead to resistance. Determining the factors that can decrease susceptibility is of high importance. We searched for such factors genome-wide by comparing the transcriptional profiles of five mutants that acquired decreased caspofungin susceptibility in vitro in the absence of canonical FKS1 resistance mutations. The mutants were derived from two genetic backgrounds and arose due to independent mutational events, some with monosomic chromosome 5 (Ch5). We found that the mutants exhibit common transcriptional changes. In particular, all mutants upregulate five genes from Ch2 in concert. Knockout experiments show that all five genes positively influence caspofungin and anidulafungin susceptibility and play a role in regulating the cell wall mannan and glucan contents. The functions of three of these genes, orf19.1766, orf19.6867, and orf19.5833, were previously unknown, and our work expands the known functions of LEU42 and PR26. Importantly, orf19.1766 and LEU42 have no human orthologues. Our results provide important clues as to basic mechanisms of survival in the presence of ECNs while identifying new genes controlling ECN susceptibility and revealing new targets for the development of novel antifungal drugs.
Collapse
|
7
|
The Role of Sfp1 in Candida albicans Cell Wall Maintenance. J Fungi (Basel) 2022; 8:jof8111196. [PMID: 36422017 PMCID: PMC9692975 DOI: 10.3390/jof8111196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The cell wall is the first interface for Candida albicans interaction with the surrounding environment and the host cells. Therefore, maintenance of cell wall integrity (CWI) is crucial for C. albicans survival and host-pathogen interaction. In response to environmental stresses, C. albicans undergoes cell wall remodeling controlled by multiple signaling pathways and transcription regulators. Here, we explored the role of the transcription factor Sfp1 in CWI. A deletion of the SFP1 gene not only caused changes in cell wall properties, cell wall composition and structure but also modulated expression of cell wall biosynthesis and remodeling genes. In addition, Cas5 is a known transcription regulator for C. albicans CWI and cell wall stress response. Interestingly, our results indicated that Sfp1 negatively controls the CAS5 gene expression by binding to its promoter element. Together, this study provides new insights into the regulation of C. albicans CWI and stress response.
Collapse
|
8
|
Jenull S, Shivarathri R, Tsymala I, Penninger P, Trinh PC, Nogueira F, Chauhan M, Singh A, Petryshyn A, Stoiber A, Chowdhary A, Chauhan N, Kuchler K. Transcriptomics and Phenotyping Define Genetic Signatures Associated with Echinocandin Resistance in Candida auris. mBio 2022; 13:e0079922. [PMID: 35968956 PMCID: PMC9426441 DOI: 10.1128/mbio.00799-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Candida auris emerged as a human fungal pathogen only during the past decade. Remarkably, C. auris displays high degrees of genomic diversity and phenotypic plasticity, with four major clades causing hospital outbreaks with high mortality and morbidity rates. C. auris can show clinical resistance to all classes of antifungal drugs, including echinocandins that are usually recommended as first-line therapies for invasive candidiasis. Here, we exploit transcriptomics coupled with phenotypic profiling to characterize a set of clinical C. auris isolates displaying pronounced echinocandin resistance (ECN-R). A hot spot mutation in the echinocandin FKS1 target gene is present in all resistant isolates. Moreover, ECN-R strains share a core signature set of 362 genes differentially expressed in ECN-R isolates. Among others, mitochondrial gene expression and genes affecting cell wall function appear to be the most prominent, with the latter correlating well with enhanced adhesive traits, increased cell wall mannan content, and altered sensitivity to cell wall stress of ECN-R isolates. Moreover, ECN-R phenotypic signatures were also linked to pathogen recognition and interaction with immune cells. Hence, transcriptomics paired with phenotyping is a suitable tool to predict resistance and fitness traits as well as treatment outcomes in pathogen populations with complex phenotypic diversity. IMPORTANCE The surge in antimicrobial drug resistance in some bacterial and fungal pathogens constitutes a significant challenge to health care facilities. The emerging human fungal pathogen Candida auris has been particularly concerning, as isolates can display pan-antifungal resistance traits against all drugs, including echinocandins. However, the mechanisms underlying this phenotypic diversity remain poorly understood. We identify transcriptomic signatures in C. auris isolates resistant to otherwise fungicidal echinocandins. We identify a set of differentially expressed genes shared by resistant strains compared to unrelated susceptible isolates. Moreover, phenotyping demonstrates that resistant strains show distinct behaviors, with implications for host-pathogen interactions. Hence, this work provides a solid basis to identify the mechanistic links between antifungal multidrug resistance and fitness costs that affect the interaction of C. auris with host immune defenses.
Collapse
Affiliation(s)
- Sabrina Jenull
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Raju Shivarathri
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Irina Tsymala
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Philipp Penninger
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Phan-Canh Trinh
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Filomena Nogueira
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
- CCRI-St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Manju Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Ashutosh Singh
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Andriy Petryshyn
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Anton Stoiber
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Anuradha Chowdhary
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Neeraj Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Karl Kuchler
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| |
Collapse
|
9
|
Perrine-Walker F. Caspofungin resistance in Candida albicans: genetic factors and synergistic compounds for combination therapies. Braz J Microbiol 2022; 53:1101-1113. [PMID: 35352319 PMCID: PMC9433586 DOI: 10.1007/s42770-022-00739-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
Caspofungin and other echinocandins have been used for the treatment of human infections by the opportunistic yeast pathogen, Candida albicans. There has been an increase in infections by non-albicans Candida species such as Candida glabrata, Candida parapsilosis, Candida tropicalis, Candida krusei, and Candida auris in clinical or hospital settings. This is problematic to public health due to the increasing prevalence of echinocandin resistant species/strains. This review will present a summary on various studies that investigated the inhibitory action of caspofungin on 1,3-β-D-glucan synthesis, on cell wall structure, and biofilm formation of C. albicans. It will highlight some of the issues linked to caspofungin resistance or reduced caspofungin sensitivity in various Candida species and the potential benefits of antimicrobial peptides and other compounds in synergy with caspofungin.
Collapse
Affiliation(s)
- Francine Perrine-Walker
- Department of Biochemistry and Genetics, La Trobe Institute For Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
10
|
Ibe C, Oladele RO, Alamir O. Our pursuit for effective antifungal agents targeting fungal cell wall components, where are we? Int J Antimicrob Agents 2021; 59:106477. [PMID: 34798234 DOI: 10.1016/j.ijantimicag.2021.106477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 01/09/2023]
Abstract
Invasive mycotic infections account for an unacceptably high mortality rates in humans. These infections are initiated by the fungal cell wall which mediates host-fungi interactions. The cell wall is fused to the physiology of fungi, and it is involved in essential functions in the entire cell functionality. Components of the cell wall are synthesised and modified in the cell wall space by the activities of cell wall proteins through a range of signalling pathways that have only been described in many fungi, therefore making them suitable drug targets. The echinocandins class of cell wall-active drugs block cell wall β-1,3-glucan biosynthesis through inhibiting the catalytic subunit of the synthetic protein complex. Resistance to echinocandins can be through the acquisition of single nucleotide polymorphisms and/or through activation of cell wall signalling pathways resulting in altered cell wall proteome and elevated chitin content in the cell wall. Countering the cell wall remodelling process will enhance the effectiveness of β-1,3-glucan-active antifungal agents. Cell surface proteins are also important antifungal targets which can be used to develop rapid and robust diagnostics and more effective therapeutics. The cell wall remains a crucial target in fungi that needs to be harnessed to combat mycotic infections.
Collapse
Affiliation(s)
- Chibuike Ibe
- Department of Microbiology, Abia State University, PMB 2000 Uturu, Abia State, Nigeria.
| | - Rita O Oladele
- Medical Microbiology & Parasitology, College of Medicine, University of Lagos, Lagos State, Nigeria
| | - Omran Alamir
- Natural Sciences, College of Health Sciences, Public Authority for Applied Education and Training, Al Asimah, Kuwait
| |
Collapse
|
11
|
Razzaq I, Berg MD, Jiang Y, Genereaux J, Uthayakumar D, Kim GH, Agyare-Tabbi M, Halder V, Brandl CJ, Lajoie P, Shapiro RS. The SAGA and NuA4 component Tra1 regulates Candida albicans drug resistance and pathogenesis. Genetics 2021; 219:iyab131. [PMID: 34849885 PMCID: PMC8633099 DOI: 10.1093/genetics/iyab131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 11/14/2022] Open
Abstract
Candida albicans is the most common cause of death from fungal infections. The emergence of resistant strains reducing the efficacy of first-line therapy with echinocandins, such as caspofungin calls for the identification of alternative therapeutic strategies. Tra1 is an essential component of the SAGA and NuA4 transcriptional co-activator complexes. As a PIKK family member, Tra1 is characterized by a C-terminal phosphoinositide 3-kinase domain. In Saccharomyces cerevisiae, the assembly and function of SAGA and NuA4 are compromised by a Tra1 variant (Tra1Q3) with three arginine residues in the putative ATP-binding cleft changed to glutamine. Whole transcriptome analysis of the S. cerevisiae tra1Q3 strain highlights Tra1's role in global transcription, stress response, and cell wall integrity. As a result, tra1Q3 increases susceptibility to multiple stressors, including caspofungin. Moreover, the same tra1Q3 allele in the pathogenic yeast C. albicans causes similar phenotypes, suggesting that Tra1 broadly mediates the antifungal response across yeast species. Transcriptional profiling in C. albicans identified 68 genes that were differentially expressed when the tra1Q3 strain was treated with caspofungin, as compared to gene expression changes induced by either tra1Q3 or caspofungin alone. Included in this set were genes involved in cell wall maintenance, adhesion, and filamentous growth. Indeed, the tra1Q3 allele reduces filamentation and other pathogenesis traits in C. albicans. Thus, Tra1 emerges as a promising therapeutic target for fungal infections.
Collapse
Affiliation(s)
- Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Matthew D Berg
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Yuwei Jiang
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Grace H Kim
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Michelle Agyare-Tabbi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Viola Halder
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| |
Collapse
|
12
|
Ichikawa Y, Bruno VM, Woolford CA, Kim H, Do E, Brewer GC, Mitchell AP. Environmentally contingent control of Candida albicans cell wall integrity by transcriptional regulator Cup9. Genetics 2021; 218:iyab075. [PMID: 33989396 PMCID: PMC8864738 DOI: 10.1093/genetics/iyab075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/07/2021] [Indexed: 11/14/2022] Open
Abstract
The fungal pathogen Candida albicans is surrounded by a cell wall that is the target of caspofungin and other echinocandin antifungals. Candida albicans can grow in several morphological forms, notably budding yeast and hyphae. Yeast and hyphal forms differ in cell wall composition, leading us to hypothesize that there may be distinct genes required for yeast and hyphal responses to caspofungin. Mutants in 27 genes reported previously to be caspofungin hypersensitive under yeast growth conditions were all caspofungin hypersensitive under hyphal growth conditions as well. However, a screen of mutants defective in transcription factor genes revealed that Cup9 is required for normal caspofungin tolerance under hyphal and not yeast growth conditions. In a hyphal-defective efg1Δ/Δ background, Cup9 is still required for normal caspofungin tolerance. This result argues that Cup9 function is related to growth conditions rather than cell morphology. RNA-seq conducted under hyphal growth conditions indicated that 361 genes were up-regulated and 145 genes were down-regulated in response to caspofungin treatment. Both classes of caspofungin-responsive genes were enriched for cell wall-related proteins, as expected for a response to disruption of cell wall integrity and biosynthesis. The cup9Δ/Δ mutant, treated with caspofungin, had reduced RNA levels of 40 caspofungin up-regulated genes, and had increased RNA levels of 8 caspofungin down-regulated genes, an indication that Cup9 has a narrow rather than global role in the cell wall integrity response. Five Cup9-activated surface-protein genes have roles in cell wall integrity, based on mutant analysis published previously (PGA31 and IFF11) or shown here (ORF19.3499, ORF19.851, or PGA28), and therefore may explain the hypersensitivity of the cup9Δ/Δmutant to caspofungin. Our findings define Cup9 as a new determinant of caspofungin susceptibility.
Collapse
Affiliation(s)
- Yuichi Ichikawa
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Division of Cancer Biology, The Cancer Institute of JFCR, Koto-ku, Tokyo 135-8550, Japan
| | - Vincent M Bruno
- Department of Microbiology and Immunology and Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Carol A Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Hannah Kim
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Eunsoo Do
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Grace C Brewer
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Aaron P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|