1
|
Zhao H, Xu Y, Yang L, Wang Y, Li M, Chen L. Biological Function of Prophage-Related Gene Cluster Δ VpaChn25_RS25055~Δ VpaChn25_0714 of Vibrio parahaemolyticus CHN25. Int J Mol Sci 2024; 25:1393. [PMID: 38338671 PMCID: PMC10855970 DOI: 10.3390/ijms25031393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Vibrio parahaemolyticus is the primary foodborne pathogen known to cause gastrointestinal infections in humans. Nevertheless, the molecular mechanisms of V. parahaemolyticus pathogenicity are not fully understood. Prophages carry virulence and antibiotic resistance genes commonly found in Vibrio populations, and they facilitate the spread of virulence and the emergence of pathogenic Vibrio strains. In this study, we characterized three such genes, VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055, within the largest prophage gene cluster in V. parahaemolyticus CHN25. The deletion mutants ΔVpaChn25_RS25055, ΔVpaChn25_0713, ΔVpaChn25_0714, and ΔVpaChn25_RS25055-0713-0714 were derived with homologous recombination, and the complementary mutants ΔVpaChn25_0713-com, ΔVpaChn25_0714-com, ΔVpaChn25_RS25055-com, ΔVpaChn25_RS25055-0713-0714-com were also constructed. In the absence of the VpaChn25_RS25055, VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055-0713-0714 genes, the mutants showed significant reductions in low-temperature survivability and biofilm formation (p < 0.001). The ΔVpaChn25_0713, ΔVpaChn25_RS25055, and ΔVpaChn25_RS25055-0713-0714 mutants were also significantly defective in swimming motility (p < 0.001). In the Caco-2 model, the above four mutants attenuated the cytotoxic effects of V. parahaemolyticus CHN25 on human intestinal epithelial cells (p < 0.01), especially the ΔVpaChn25_RS25055 and ΔVpaChn25_RS25055-0713-0714 mutants. Transcriptomic analysis showed that 15, 14, 8, and 11 metabolic pathways were changed in the ΔVpaChn25_RS25055, ΔVpaChn25_0713, ΔVpaChn25_0714, and ΔVpaChn25_RS25055-0713-0714 mutants, respectively. We labeled the VpaChn25_RS25055 gene with superfolder green fluorescent protein (sfGFP) and found it localized at both poles of the bacteria cell. In addition, we analyzed the evolutionary origins of the above genes. In summary, the prophage genes VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055 enhance V. parahaemolyticus CHN25's survival in the environment and host. Our work improves the comprehension of the synergy between prophage-associated genes and the evolutionary process of V. parahaemolyticus.
Collapse
Affiliation(s)
- Hui Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Yingwei Xu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Lianzhi Yang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Yaping Wang
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Richmond, VA 23284, USA;
| | - Mingyou Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| |
Collapse
|
2
|
Foxall RL, Means J, Marcinkiewicz AL, Schillaci C, DeRosia-Banick K, Xu F, Hall JA, Jones SH, Cooper VS, Whistler CA. Inoviridae prophage and bacterial host dynamics during diversification, succession, and Atlantic invasion of Pacific-native Vibrio parahaemolyticus. mBio 2024; 15:e0285123. [PMID: 38112441 PMCID: PMC10790759 DOI: 10.1128/mbio.02851-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE An understanding of the processes that contribute to the emergence of pathogens from environmental reservoirs is critical as changing climate precipitates pathogen evolution and population expansion. Phylogeographic analysis of Vibrio parahaemolyticus hosts combined with the analysis of their Inoviridae phage resolved ambiguities of diversification dynamics which preceded successful Atlantic invasion by the epidemiologically predominant ST36 lineage. It has been established experimentally that filamentous phage can limit host recombination, but here, we show that phage loss is linked to rapid bacterial host diversification during epidemic spread in natural ecosystems alluding to a potential role for ubiquitous inoviruses in the adaptability of pathogens. This work paves the way for functional analyses to define the contribution of inoviruses in the evolutionary dynamics of environmentally transmitted pathogens.
Collapse
Affiliation(s)
- Randi L. Foxall
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Jillian Means
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Graduate Program in Microbiology, University of New Hampshire, Durham, New Hampshire, USA
| | - Ashely L. Marcinkiewicz
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Graduate Program in Microbiology, University of New Hampshire, Durham, New Hampshire, USA
| | - Christopher Schillaci
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Kristin DeRosia-Banick
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
| | - Feng Xu
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Jeffrey A. Hall
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, USA
| | - Stephen H. Jones
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Vaughn S. Cooper
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cheryl A. Whistler
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
3
|
López-García E, Benítez-Cabello A, Tronchoni J, Arroyo-López FN. Understanding the transcriptomic response of Lactiplantibacillus pentosus LPG1 during Spanish-style green table olive fermentations. Front Microbiol 2023; 14:1264341. [PMID: 37808291 PMCID: PMC10556671 DOI: 10.3389/fmicb.2023.1264341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Lactiplantibacillus pentosus (Lbp. pentosus) is a species of lactic acid bacteria with a great relevance during the table olive fermentation process, with ability to form non-pathogenic biofilms on olive epidermis. The objective of this work is to deepen into the genetic mechanisms of adaptation of Lpb. pentosus LPG1 during Spanish-style green table olive fermentations, as well as to obtain a better understanding of the mechanisms of adherence of this species to the fruit surface. For this purpose, we have carried out a transcriptomic analysis of the differential gene expression of this bacterium during 60 days of fermentation in both brine and biofilms ecosystems. In brines, it was noticed that a total of 235 genes from Lpb. pentosus LPG1 were differentially expressed during course of fermentation and grouped into 9 clusters according to time-course analysis. Transport and metabolism of carbohydrates and amino acids, energy production, lactic acid and exopolysaccharide synthesis genes increased their expression in the planktonic cells during course of fermentation. On the other hand, expression of genes associated to stress response, bacteriocin synthesis and membrane protein decreased. A total of 127 genes showed significant differential expression between Lpb. pentosus LPG1 planktonic (brine) and sessile (biofilms) cells at the end of fermentation process (60 days). Among the 64 upregulated genes in biofilms, we found genes involved in adhesion (strA), exopolysaccharide production (ywqD, ywqE, and wbnH), cell shape and elongation (MreB), and well as prophage excision. Deeping into the genetic bases of beneficial biofilm formation by Lpb. pentosus strains with probiotic potential will help to turn this fermented vegetable into a carrier of beneficial microorganisms to the final consumers.
Collapse
Affiliation(s)
- Elio López-García
- Department of Food Biotechnology, Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
| | - Antonio Benítez-Cabello
- Department of Food Biotechnology, Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
| | - Jordi Tronchoni
- Universidad Internacional de Valencia, Comunidad Valencia, Spain
| | - Francisco Noé Arroyo-López
- Department of Food Biotechnology, Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
| |
Collapse
|
4
|
Li X, Wang X, Li R, Zhang W, Wang L, Yan B, Zhu T, Xu Y, Tan D. Characterization of a Filamentous Phage, Vaf1, from Vibrio alginolyticus AP-1. Appl Environ Microbiol 2023; 89:e0052023. [PMID: 37255423 PMCID: PMC10304664 DOI: 10.1128/aem.00520-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
Filamentous phages are ubiquitously distributed in the global oceans. However, little is known about their biological contribution to their host's genetic and phenotypic diversity. In this study, a filamentous phage, Vaf1, was isolated and characterized from the emerging marine pathogen strain Vibrio alginolyticus AP-1. We explored the effects of the resident phage Vaf1 on the host physiology under diverse conditions by precisely deleting the entire phage Vaf1. Our results demonstrate that the presence of phage Vaf1 significantly increased biofilm formation, swarming motility, and contact-dependent competition. Furthermore, the gene expression profile suggests that several phage genes were upregulated in response to low-nutrient conditions. Unexpectedly, an in vivo study of zebrafish shows that fish infected with strain ΔVaf1 survived longer than those infected with wild-type strain AP-1, indicating that Vaf1 contributes to the virulence of V. alginolyticus. Together, our results provide direct evidence for the effect of Vaf1 phage-mediated phenotypic changes in marine bacteria V. alginolyticus. This further emphasizes the impressive complexity and diversity that filamentous phage-host interactions pose and the challenges associated with bacterial disease control in marine aquaculture. IMPORTANCE Non-lytic filamentous phages can replicate without killing their host, establishing long-term persistence within the bacterial host. In contrast to the well-studied CTXφ phage of the human-pathogenic Vibrio cholerae, little is known about the filamentous phage Vaf1 and its biological role in host fitness. In this study, we constructed a filamentous phage-deleted strain, ΔVaf1, and provided direct evidence on how an intact phage, φVaf1, belonging to the family Inoviridae, helps the bacterial host AP-1 to overcome adverse environmental conditions. Our results likely open new avenues for fundamental studies on how filamentous phage-host interactions regulate different aspects of Vibrio cell behaviors.
Collapse
Affiliation(s)
- Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiao Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Ruoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wan Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bo Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tongyu Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Demeng Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Antibacterial Activity and Components of the Methanol-Phase Extract from Rhizomes of Pharmacophagous Plant Alpinia officinarum Hance. Molecules 2022; 27:molecules27134308. [PMID: 35807553 PMCID: PMC9268307 DOI: 10.3390/molecules27134308] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
The rhizomes of Alpinia officinarum Hance (known as the smaller galangal) have been used as a traditional medicine for over 1000 years. Nevertheless, little research is available on the bacteriostatic activity of the herb rhizomes. In this study, we employed, for the first time, a chloroform and methanol extraction method to investigate the antibacterial activity and components of the rhizomes of A. officinarum Hance. The results showed that the growth of five species of pathogenic bacteria was significantly inhibited by the galangal methanol-phase extract (GMPE) (p < 0.05). The GMPE treatment changed the bacterial cell surface hydrophobicity, membrane fluidity and/or permeability. Comparative transcriptomic analyses revealed approximately eleven and ten significantly altered metabolic pathways in representative Gram-positive Staphylococcus aureus and Gram-negative Enterobacter sakazakii pathogens, respectively (p < 0.05), demonstrating different antibacterial action modes. The GMPE was separated further using a preparative high-performance liquid chromatography (Prep-HPLC) technique, and approximately 46 and 45 different compounds in two major component fractions (Fractions 1 and 4, respectively) were identified using ultra-HPLC combined with mass spectrometry (UHPLC-MS) techniques. o-Methoxy cinnamaldehyde (40.12%) and p-octopamine (62.64%) were the most abundant compounds in Fractions 1 and 4, respectively. The results of this study provide data for developing natural products from galangal rhizomes against common pathogenic bacteria.
Collapse
|