1
|
Bhattacharjee P, Wang D, Anderson D, Buckler JN, de Geus E, Yan F, Polekhina G, Schittenhelm R, Creek DJ, Harris LD, Sadler AJ. The immune response to RNA suppresses nucleic acid synthesis by limiting ribose 5-phosphate. EMBO J 2024; 43:2636-2660. [PMID: 38778156 PMCID: PMC11217295 DOI: 10.1038/s44318-024-00100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 05/25/2024] Open
Abstract
During infection viruses hijack host cell metabolism to promote their replication. Here, analysis of metabolite alterations in macrophages exposed to poly I:C recognises that the antiviral effector Protein Kinase RNA-activated (PKR) suppresses glucose breakdown within the pentose phosphate pathway (PPP). This pathway runs parallel to central glycolysis and is critical to producing NADPH and pentose precursors for nucleotides. Changes in metabolite levels between wild-type and PKR-ablated macrophages show that PKR controls the generation of ribose 5-phosphate, in a manner distinct from its established function in gene expression but dependent on its kinase activity. PKR phosphorylates and inhibits the Ribose 5-Phosphate Isomerase A (RPIA), thereby preventing interconversion of ribulose- to ribose 5-phosphate. This activity preserves redox control but decreases production of ribose 5-phosphate for nucleotide biosynthesis. Accordingly, the PKR-mediated immune response to RNA suppresses nucleic acid production. In line, pharmacological targeting of the PPP during infection decreases the replication of the Herpes simplex virus. These results identify an immune response-mediated control of host cell metabolism and suggest targeting the RPIA as a potential innovative antiviral treatment.
Collapse
Affiliation(s)
- Pushpak Bhattacharjee
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Die Wang
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Joshua N Buckler
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Eveline de Geus
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Feng Yan
- Australian Centre for Blood Diseases, Department of Clinical Hematology, Monash University, Clayton, VIC, 3004, Australia
| | - Galina Polekhina
- Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Ralf Schittenhelm
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Anthony J Sadler
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
2
|
Heinisch JJ, Murra A, Fernández Murillo L, Schmitz HP. The Role of Glucose-6-phosphate Dehydrogenase in the Wine Yeast Hanseniaspora uvarum. Int J Mol Sci 2024; 25:2395. [PMID: 38397078 PMCID: PMC10889316 DOI: 10.3390/ijms25042395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Hanseniaspora uvarum is the predominant yeast species in the majority of wine fermentations, which has only recently become amenable to directed genetic manipulation. The genetics and metabolism of H. uvarum have been poorly studied as compared to other yeasts of biotechnological importance. This work describes the construction and characterization of homozygous deletion mutants in the HuZWF1 gene, encoding glucose-6-phosphate dehydrogenase (G6PDH), which provides the entrance into the oxidative part of the pentose phosphate pathway (PPP) and serves as a major source of NADPH for anabolic reactions and oxidative stress response. Huzwf1 deletion mutants grow more slowly on glucose medium than wild-type and are hypersensitive both to hydrogen peroxide and potassium bisulfite, indicating that G6PDH activity is required to cope with these stresses. The mutant also requires methionine for growth. Enzyme activity can be restored by the expression of heterologous G6PDH genes from other yeasts and humans under the control of a strong endogenous promoter. These findings provide the basis for a better adaptation of H. uvarum to conditions used in wine fermentations, as well as its use for other biotechnological purposes and as an expression organism for studying G6PDH functions in patients with hemolytic anemia.
Collapse
Affiliation(s)
- Jürgen J. Heinisch
- AG Genetik, Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastr. 11, D-49076 Osnabrück, Germany; (A.M.); (L.F.M.); (H.-P.S.)
| | | | | | | |
Collapse
|
3
|
Pinson B, Moenner M, Saint-Marc C, Granger-Farbos A, Daignan-Fornier B. On-demand utilization of phosphoribosyl pyrophosphate by downstream anabolic pathways. J Biol Chem 2023; 299:105011. [PMID: 37414150 PMCID: PMC10413152 DOI: 10.1016/j.jbc.2023.105011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
The pentose phosphate pathway (PPP) is critical for anabolism and biomass production. Here we show that the essential function of PPP in yeast is the synthesis of phosphoribosyl pyrophosphate (PRPP) catalyzed by PRPP-synthetase. Using combinations of yeast mutants, we found that a mildly decreased synthesis of PRPP affects biomass production, resulting in reduced cell size, while a more severe decrease ends up affecting yeast doubling time. We establish that it is PRPP itself that is limiting in invalid PRPP-synthetase mutants and that the resulting metabolic and growth defect can be bypassed by proper supplementation of the medium with ribose-containing precursors or by the expression of bacterial or human PRPP-synthetase. In addition, using documented pathologic human hyperactive forms of PRPP-synthetase, we show that intracellular PRPP as well as its derived products can be increased in both human and yeast cells, and we describe the ensuing metabolic and physiological consequences. Finally, we found that PRPP consumption appears to take place "on demand" by the various PRPP-utilizing pathways, as shown by blocking or increasing the flux in specific PRPP-consuming metabolic routes. Overall, our work reveals important similarities between human and yeast for both synthesis and consumption of PRPP.
Collapse
Affiliation(s)
- Benoît Pinson
- Institut de Biochimie et Génétique Cellulaires, UMR 5095, CNRS - Université de Bordeaux, Bordeaux, France; Metabolic Analyse Service, TBMCore - Université de Bordeaux - CNRS UAR 3427 - INSERM US005, Bordeaux, France
| | - Michel Moenner
- Institut de Biochimie et Génétique Cellulaires, UMR 5095, CNRS - Université de Bordeaux, Bordeaux, France
| | - Christelle Saint-Marc
- Institut de Biochimie et Génétique Cellulaires, UMR 5095, CNRS - Université de Bordeaux, Bordeaux, France
| | - Alexandra Granger-Farbos
- Metabolic Analyse Service, TBMCore - Université de Bordeaux - CNRS UAR 3427 - INSERM US005, Bordeaux, France
| | - Bertrand Daignan-Fornier
- Institut de Biochimie et Génétique Cellulaires, UMR 5095, CNRS - Université de Bordeaux, Bordeaux, France.
| |
Collapse
|
4
|
Gevi F, Leo P, Cassaro A, Pacelli C, de Vera JPP, Rabbow E, Timperio AM, Onofri S. Metabolomic Profile of the Fungus Cryomyces antarcticus Under Simulated Martian and Space Conditions as Support for Life-Detection Missions on Mars. Front Microbiol 2022; 13:749396. [PMID: 35633719 PMCID: PMC9133366 DOI: 10.3389/fmicb.2022.749396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
The identification of traces of life beyond Earth (e.g., Mars, icy moons) is a challenging task because terrestrial chemical-based molecules may be destroyed by the harsh conditions experienced on extraterrestrial planetary surfaces. For this reason, studying the effects on biomolecules of extremophilic microorganisms through astrobiological ground-based space simulation experiments is significant to support the interpretation of the data that will be gained and collected during the ongoing and future space exploration missions. Here, the stability of the biomolecules of the cryptoendolithic black fungus Cryomyces antarcticus, grown on two Martian regolith analogues and on Antarctic sandstone, were analysed through a metabolomic approach, after its exposure to Science Verification Tests (SVTs) performed in the frame of the European Space Agency (ESA) Biology and Mars Experiment (BIOMEX) project. These tests are building a set of ground-based experiments performed before the space exposure aboard the International Space Station (ISS). The analysis aimed to investigate the effects of different mineral mixtures on fungal colonies and the stability of the biomolecules synthetised by the fungus under simulated Martian and space conditions. The identification of a specific group of molecules showing good stability after the treatments allow the creation of a molecular database that should support the analysis of future data sets that will be collected in the ongoing and next space exploration missions.
Collapse
Affiliation(s)
- Federica Gevi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Patrick Leo
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Venice, Italy
| | - Alessia Cassaro
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | | | | | - Elke Rabbow
- German Aerospace Centre, Institute of Aerospace Medicine (DLR), Cologne, Germany
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| |
Collapse
|
5
|
The Pentose Phosphate Pathway in Yeasts-More Than a Poor Cousin of Glycolysis. Biomolecules 2021; 11:biom11050725. [PMID: 34065948 PMCID: PMC8151747 DOI: 10.3390/biom11050725] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 01/14/2023] Open
Abstract
The pentose phosphate pathway (PPP) is a route that can work in parallel to glycolysis in glucose degradation in most living cells. It has a unidirectional oxidative part with glucose-6-phosphate dehydrogenase as a key enzyme generating NADPH, and a non-oxidative part involving the reversible transketolase and transaldolase reactions, which interchange PPP metabolites with glycolysis. While the oxidative branch is vital to cope with oxidative stress, the non-oxidative branch provides precursors for the synthesis of nucleic, fatty and aromatic amino acids. For glucose catabolism in the baker’s yeast Saccharomyces cerevisiae, where its components were first discovered and extensively studied, the PPP plays only a minor role. In contrast, PPP and glycolysis contribute almost equally to glucose degradation in other yeasts. We here summarize the data available for the PPP enzymes focusing on S. cerevisiae and Kluyveromyces lactis, and describe the phenotypes of gene deletions and the benefits of their overproduction and modification. Reference to other yeasts and to the importance of the PPP in their biotechnological and medical applications is briefly being included. We propose future studies on the PPP in K. lactis to be of special interest for basic science and as a host for the expression of human disease genes.
Collapse
|
6
|
Gonzalez SN, Mills JJ, Maugeri D, Olaya C, Laguera BL, Enders JR, Sherman J, Rodriguez A, Pierce JG, Cazzulo JJ, D'Antonio EL. Design, synthesis, and evaluation of substrate - analogue inhibitors of Trypanosoma cruzi ribose 5-phosphate isomerase type B. Bioorg Med Chem Lett 2021; 32:127723. [PMID: 33249135 DOI: 10.1016/j.bmcl.2020.127723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022]
Abstract
Ribose 5-phosphate isomerase type B (RPI-B) is a key enzyme of the pentose phosphate pathway that catalyzes the isomerization of ribose 5-phosphate (R5P) and ribulose 5-phosphate (Ru5P). Trypanosoma cruzi RPI-B (TcRPI-B) appears to be a suitable drug-target mainly due to: (i) its essentiality (as previously shown in other trypanosomatids), (ii) it does not present a homologue in mammalian genomes sequenced thus far, and (iii) it participates in the production of NADPH and nucleotide/nucleic acid synthesis that are critical for parasite cell survival. In this survey, we report on the competitive inhibition of TcRPI-B by a substrate - analogue inhibitor, Compound B (Ki = 5.5 ± 0.1 μM), by the Dixon method. This compound has an iodoacetamide moiety that is susceptible to nucleophilic attack, particularly by the cysteine thiol group. Compound B was conceived to specifically target Cys-69, an important active site residue. By incubating TcRPI-B with Compound B, a trypsin digestion LC-MS/MS analysis revealed the identification of Compound B covalently bound to Cys-69. This inhibitor also exhibited notable in vitro trypanocidal activity against T. cruzi infective life-stages co-cultured in NIH-3T3 murine host cells (IC50 = 17.40 ± 1.055 μM). The study of Compound B served as a proof-of-concept so that next generation inhibitors can potentially be developed with a focus on using a prodrug group in replacement of the iodoacetamide moiety, thus representing an attractive starting point for the future treatment of Chagas' disease.
Collapse
Affiliation(s)
- Soledad Natalia Gonzalez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín - CONICET (IIBio-UNSAM), Avenida 25 de Mayo y Francia CP (1650), San Martín (Buenos Aires), Argentina
| | - Jonathan J Mills
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Box 8204, Raleigh, NC 27695, USA
| | - Dante Maugeri
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín - CONICET (IIBio-UNSAM), Avenida 25 de Mayo y Francia CP (1650), San Martín (Buenos Aires), Argentina
| | - Christopher Olaya
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Box 8204, Raleigh, NC 27695, USA
| | - Breana L Laguera
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA
| | - Jeffrey R Enders
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC 27695, USA
| | - Julian Sherman
- Department of Microbiology, New York University School of Medicine, 430 East 29(th) Street, New York, NY 10016, USA
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, 430 East 29(th) Street, New York, NY 10016, USA
| | - Joshua G Pierce
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Box 8204, Raleigh, NC 27695, USA
| | - Juan José Cazzulo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín - CONICET (IIBio-UNSAM), Avenida 25 de Mayo y Francia CP (1650), San Martín (Buenos Aires), Argentina
| | - Edward L D'Antonio
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA.
| |
Collapse
|
7
|
Sharma S, Arora A. Tracking strategic developments for conferring xylose utilization/fermentation by Saccharomyces cerevisiae. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01590-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
Purpose
Efficient ethanol production through lignocellulosic biomass hydrolysates could solve energy crisis as it is economically sustainable and ecofriendly. Saccharomyces cerevisiae is the work horse for lignocellulosic bioethanol production at industrial level. But its inability to ferment and utilize xylose limits the overall efficacy of the process.
Method
Data for the review was selected using different sources, such as Biofuels digest, Statista, International energy agency (IEA). Google scholar was used as a search engine to search literature for yeast metabolic engineering approaches. Keywords used were metabolic engineering of yeast for bioethanol production from lignocellulosic biomass.
Result
Through these approaches, interconnected pathways can be targeted randomly. Moreover, the improved strains genetic makeup can help us understand the mechanisms involved for this purpose.
Conclusion
This review discusses all possible approaches for metabolic engineering of yeast. These approaches may reveal unknown hidden mechanisms and construct ways for the researchers to produce novel and modified strains.
Collapse
|
8
|
Ravishankar A, Cumming JR, Gallagher JEG. Mitochondrial metabolism is central for response and resistance of Saccharomyces cerevisiae to exposure to a glyphosate-based herbicide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114359. [PMID: 32443188 DOI: 10.1016/j.envpol.2020.114359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Glyphosate-based herbicides, the most extensively used herbicides in the world, are available in an enormous number of commercial formulations with varying additives and adjuvants. Here, we study the effects of one such formulation, Credit41, in two genetically diverse yeast strains. A quantitative trait loci (QTL) analysis between a sensitive laboratory strain and a resistant strain linked mitochondrial function to Credit41 resistance. Two genes encoding mitochondrial proteins identified through the QTL analysis were HFA1, a gene that encodes a mitochondrial acetyl CoA carboxylase, and AAC3, which encodes a mitochondrial inner membrane ATP/ADP translocator. Further analysis of previously studied whole-genome sequencing data showed that, although each strain uses varying routes to attain glyphosate resistance, most strains have duplications of mitochondrial genes. One of the most well-studied functions of the mitochondria is the assembly of Fe-S clusters. In the current study, the expression of iron transporters in the transcriptome increased in cells resistant to Credit41. The levels of iron within the cell also increased in cells exposed to Credit41 but not pure glyphosate. Hence, the additives in glyphosate-based herbicides have a significant contribution to the negative effects of these commercial formulations on biological systems.
Collapse
|
9
|
Investigation of Heterologously Expressed Glucose-6-Phosphate Dehydrogenase Genes in a Yeast zwf1 Deletion. Microorganisms 2020; 8:microorganisms8040546. [PMID: 32283834 PMCID: PMC7232176 DOI: 10.3390/microorganisms8040546] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme of the oxidative part of the pentose phosphate pathway and serves as the major source of NADPH for metabolic reactions and oxidative stress response in pro- and eukaryotic cells. We here report on a strain of the model yeast Saccharomyces cerevisiae which lacks the G6PD-encoding ZWF1 gene and displays distinct growth retardation on rich and synthetic media, as well as a strongly reduced chronological lifespan. This strain was used as a recipient to introduce plasmid-encoded heterologous G6PD genes, synthesized in the yeast codon usage and expressed under the control of the native PFK2 promotor. Complementation of the hypersensitivity of the zwf1 mutant towards hydrogen peroxide to different degrees was observed for the genes from humans (HsG6PD1), the milk yeast Kluyveromyces lactis (KlZWF1), the bacteria Escherichia coli (EcZWF1) and Leuconostoc mesenteroides (LmZWF1), as well as the genes encoding three different plant G6PD isoforms from Arabidopsis thaliana (AtG6PD1, AtG6PD5, AtG6PD6). The plastidic AtG6PD1 isoform retained its redox-sensitive activity when produced in the yeast as a cytosolic enzyme, demonstrating the suitability of this host for determination of its physiological properties. Mutations precluding the formation of a disulfide bridge in AtG6PD1 abolished its redox-sensitivity but improved its capacity to complement the yeast zwf1 deletion. Given the importance of G6PD in human diseases and plant growth, this heterologous expression system offers a broad range of applications.
Collapse
|
10
|
Uranukul B, Woolston BM, Fink GR, Stephanopoulos G. Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes. Metab Eng 2018; 51:20-31. [PMID: 30268818 DOI: 10.1016/j.ymben.2018.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
Monoethylene glycol (MEG) is an important commodity chemical with applications in numerous industrial processes, primarily in the manufacture of polyethylene terephthalate (PET) polyester used in packaging applications. In the drive towards a sustainable chemical industry, bio-based production of MEG from renewable biomass has attracted growing interest. Recent attempts for bio-based MEG production have investigated metabolic network modifications in Escherichia coli, specifically rewiring the xylose assimilation pathways for the synthesis of MEG. In the present study, we examined the suitability of Saccharomyces cerevisiae, a preferred organism for industrial applications, as platform for MEG biosynthesis. Based on combined genetic, biochemical and fermentation studies, we report evidence for the existence of an endogenous biosynthetic route for MEG production from D-xylose in S. cerevisiae which consists of phosphofructokinase and fructose-bisphosphate aldolase, the two key enzymes in the glycolytic pathway. Further metabolic engineering and process optimization yielded a strain capable of producing up to 4.0 g/L MEG, which is the highest titer reported in yeast to-date.
Collapse
Affiliation(s)
- Boonsom Uranukul
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Whitehead Institute for Biomedical Research, Cambridge, MA 02139, United States
| | - Benjamin M Woolston
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Gerald R Fink
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, United States
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
11
|
de V C Sinatti V, R Baptista LP, Alves-Ferreira M, Dardenne L, Hermínio Martins da Silva J, Guimarães AC. In silico identification of inhibitors of ribose 5-phosphate isomerase from Trypanosoma cruzi using ligand and structure based approaches. J Mol Graph Model 2017; 77:168-180. [PMID: 28865321 DOI: 10.1016/j.jmgm.2017.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/11/2017] [Accepted: 08/07/2017] [Indexed: 11/25/2022]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, affects approximately seven million people, mainly in Latin America, and causes about 7000 deaths annually. The available treatments are unsatisfactory and search for more effective drugs against this pathogen is critical. In this context, the ribose 5-phosphate isomerase (Rpi) enzyme is a potential drug target mainly due to its function in the pentose phosphate pathway and its essentiality (previously shown in other trypanosomatids). In this study, we propose novel potential inhibitors for the Rpi of T. cruzi (TcRpi) based on a computer-aided approach, including structure-based and ligand-based pharmacophore modeling. Along with a substructural and similarity search, the selected pharmacophore hypotheses were used to screen the purchasable subset of the ZINC Database, yielding 20,183 candidate compounds. These compounds were submitted to molecular docking studies in the TcRpi and Human Rpi (HsRpi) active sites in order to identify potential selective inhibitors for the T. cruzi enzyme. After the molecular docking and ADME-T (absorption, distribution, metabolism, excretion and toxicity)/PAINS (pan-assay interference compounds) screenings, 211 molecules were selected as potential TcRpi inhibitors. Out of these, three compounds - ZINC36975961, ZINC63480117, and ZINC43763931 - were submitted to molecular dynamics simulations and two of them - ZINC36975961 and ZINC43763931- had good performance and made interactions with important active site residues over all the simulation time. These compounds could be considered potential TcRpi inhibitors candidates and also may be used as leads for developing new TcRpi inhibitors.
Collapse
Affiliation(s)
- Vanessa de V C Sinatti
- Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Av. Brasil 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil.
| | - Luiz Phillippe R Baptista
- Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Av. Brasil 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Marcelo Alves-Ferreira
- Fiocruz, Laboratório de Modelagem de Sistemas Biológicos, Centro de Desenvolvimento Tecnológico em Saúde, Av. Brasil 4036, Manguinhos, 21040-361, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Inovação em Doenças de Populações Negligenciadas, INCT-IDPN, CNPq, Brazil
| | - Laurent Dardenne
- Laboratório Nacional de Computação Científica, Grupo de Modelagem Molecular de Sistemas Biológicos, Av. Getúlio Vargas, 333, Quitandinha, 25651-075, Petrópolis, RJ, Brazil
| | | | - Ana Carolina Guimarães
- Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Av. Brasil 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Genetic improvement of xylose metabolism by enhancing the expression of pentose phosphate pathway genes in Saccharomyces cerevisiae IR-2 for high-temperature ethanol production. ACTA ACUST UNITED AC 2017; 44:879-891. [DOI: 10.1007/s10295-017-1912-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/29/2017] [Indexed: 11/26/2022]
Abstract
Abstract
The pentose phosphate pathway (PPP) plays an important role in the efficiency of xylose fermentation during cellulosic ethanol production. In simultaneous saccharification and co-fermentation (SSCF), the optimal temperature for cellulase hydrolysis of lignocellulose is much higher than that of fermentation. Successful use of SSCF requires optimization of the expression of PPP genes at elevated temperatures. This study examined the combinatorial expression of PPP genes at high temperature. The results revealed that over-expression of TAL1 and TKL1 in Saccharomyces cerevisiae (S. cerevisiae) at 30 °C and over-expression of all PPP genes at 36 °C resulted in the highest ethanol productivities. Furthermore, combinatorial over-expression of PPP genes derived from S. cerevisiae and a thermostable yeast Kluyveromyces marxianus allowed the strain to ferment xylose with ethanol productivity of 0.51 g/L/h, even at 38 °C. These results clearly demonstrate that xylose metabolism can be improved by the utilization of appropriate combinations of thermostable PPP genes in high-temperature production of ethanol.
Collapse
|
13
|
Shen MH, Song H, Li BZ, Yuan YJ. Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae. Biotechnol Lett 2014; 37:1031-6. [PMID: 25548118 DOI: 10.1007/s10529-014-1759-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/15/2014] [Indexed: 11/30/2022]
Abstract
Simultaneous co-utilization of xylose and glucose is a key issue in engineering microbes for cellulosic ethanol production. We coupled xylose utilization with glucose metabolism by deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) through pentose phosphate pathway flux. Simultaneous utilization of xylose and glucose then occurred in the engineered Saccharomyces cerevisiae strain with the xylose utilization pathway. Xylose consumption occurred at the beginning of glucose consumption by the engineered yeast without RPE1 in a mixed sugar fermentation. About 3.2 g xylose l(-1) was utilized simultaneously with consumption of 40.2 g glucose l(-1) under O2-limited conditions. In addition, an approximate ratio (~1:10) for xylose and glucose consumption was observed in the fermentation with different sugar concentration by the engineered strain without RPE1. Simultaneous utilization of xylose is realized by the coupling of glucose metabolism and xylose utilization through RPE1 deletion in xylose-utilizing S. cerevisiae.
Collapse
Affiliation(s)
- Ming-Hua Shen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China,
| | | | | | | |
Collapse
|
14
|
Moreno-García J, García-Martínez T, Moreno J, Mauricio JC. Proteins involved in flor yeast carbon metabolism under biofilm formation conditions. Food Microbiol 2014; 46:25-33. [PMID: 25475262 DOI: 10.1016/j.fm.2014.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
A lack of sugars during the production of biologically aged wines after fermentation of grape must causes flor yeasts to metabolize other carbon molecules formed during fermentation (ethanol and glycerol, mainly). In this work, a proteome analysis involving OFFGEL fractionation prior to LC/MS detection was used to elucidate the carbon metabolism of a flor yeast strain under biofilm formation conditions (BFC). The results were compared with those obtained under non-biofilm formation conditions (NBFC). Proteins associated to processes such as non-fermentable carbon uptake, the glyoxylate and TCA cycles, cellular respiration and inositol metabolism were detected at higher concentrations under BFC than under the reference conditions (NBFC). This study constitutes the first attempt at identifying the flor yeast proteins responsible for the peculiar sensory profile of biologically aged wines. A better metabolic knowledge of flor yeasts might facilitate the development of effective strategies for improved production of these special wines.
Collapse
Affiliation(s)
- Jaime Moreno-García
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba, Severo Ochoa Building, Ctra. N-IV-A km 396, 14014 Cordoba, Spain
| | - Teresa García-Martínez
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba, Severo Ochoa Building, Ctra. N-IV-A km 396, 14014 Cordoba, Spain
| | - Juan Moreno
- Department of Agricultural Chemistry, Agrifood Campus of International Excellence ceiA3, University of Cordoba, Marie Curie Building, Ctra. N-IV-A km 396, 14014 Cordoba, Spain
| | - Juan Carlos Mauricio
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba, Severo Ochoa Building, Ctra. N-IV-A km 396, 14014 Cordoba, Spain.
| |
Collapse
|
15
|
Trejo-Hernández A, Andrade-Domínguez A, Hernández M, Encarnación S. Interspecies competition triggers virulence and mutability in Candida albicans-Pseudomonas aeruginosa mixed biofilms. ISME JOURNAL 2014; 8:1974-88. [PMID: 24739628 DOI: 10.1038/ismej.2014.53] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 03/06/2014] [Accepted: 03/09/2014] [Indexed: 12/15/2022]
Abstract
Inter-kingdom and interspecies interactions are ubiquitous in nature and are important for the survival of species and ecological balance. The investigation of microbe-microbe interactions is essential for understanding the in vivo activities of commensal and pathogenic microorganisms. Candida albicans, a polymorphic fungus, and Pseudomonas aeruginosa, a Gram-negative bacterium, are two opportunistic pathogens that interact in various polymicrobial infections in humans. To determine how P. aeruginosa affects the physiology of C. albicans and vice versa, we compared the proteomes of each species in mixed biofilms versus single-species biofilms. In addition, extracellular proteins were analyzed. We observed that, in mixed biofilms, both species showed differential expression of virulence proteins, multidrug resistance-associated proteins, proteases and cell defense, stress and iron-regulated proteins. Furthermore, in mixed biofilms, both species displayed an increase in mutability compared with monospecific biofilms. This characteristic was correlated with the downregulation of enzymes conferring protection against DNA oxidation. In mixed biofilms, P. aeruginosa regulates its production of various molecules involved in quorum sensing and induces the production of virulence factors (pyoverdine, rhamnolipids and pyocyanin), which are major contributors to the ability of this bacterium to cause disease. Overall, our results indicate that interspecies competition between these opportunistic pathogens enhances the production of virulence factors and increases mutability and thus can alter the course of host-pathogen interactions in polymicrobial infections.
Collapse
Affiliation(s)
| | | | - Magdalena Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Sergio Encarnación
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| |
Collapse
|
16
|
Wang J, Yang W. Concerted proton transfer mechanism of Clostridium thermocellum ribose-5-phosphate isomerase. J Phys Chem B 2013; 117:9354-61. [PMID: 23875675 PMCID: PMC3772085 DOI: 10.1021/jp404948c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ribose-5-phosphate isomerase (Rpi) catalyzes the interconversion of D-ribose-5-phosphate and D-ribulose-5-phosphate and plays an essential role in the pentose phosphate pathway and the Calvin cycle of photosynthesis. RpiB, one of the two isoforms of Rpi, is also a potential drug target for some pathogenic bacteria. Clostridium thermocellum ribose-5-phosphate isomerase (CtRpi), belonging to the RpiB family, has recently been employed in the industrial production of rare sugars because of its fast reaction kinetics and narrow substrate specificity. It is known that this enzyme adopts a proton transfer mechanism. It was suggested that the deprotonated Cys65 attracts the proton at C2 of the substrate to initiate the isomerization reaction, and this step is the rate-limiting step. However the elaborate catalytic mechanism is still unclear. We have performed quantum mechanical/molecular mechanical simulations of this rate-limiting step of the reaction catalyzed by CtRpi with the substrate D-ribose. Our results demonstrate that the deprotonated Cys65 is not a stable reactant. Instead, our calculations revealed a concerted proton-transfer mechanism: Asp8, a highly conserved residue in the RpiB family, performs as the base to abstract the proton at Cys65 and Cys65 in turn abstracting the proton of the D-ribose simultaneously. Moreover, we found Thr67 cannot catalyze the proton transfer from O2 to O1 of the D-ribose alone. Water molecule(s) may assist this proton transfer with Thr67. Our findings lead to a clear understanding of the catalysis mechanism of the RpiB family and should guide experiments to increase the catalysis efficiency. This study also highlights the importance of initial protonation states of cysteines.
Collapse
Affiliation(s)
- Jun Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Weitao Yang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
17
|
Pal A, Mukhopadhyay S, Bothra AK. Statistical analysis of pentose phosphate pathway genes from eubacteria and eukarya reveals translational selection as a major force in shaping codon usage pattern. Bioinformation 2013; 9:349-56. [PMID: 23750079 PMCID: PMC3669787 DOI: 10.6026/97320630009349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 11/23/2022] Open
Abstract
Comparative analysis of metabolic pathways among widely diverse species provides an excellent opportunity to extract information about the functional relation of organisms and pentose phosphate pathway exemplifies one such pathway. A comparative codon usage analysis of the pentose phosphate pathway genes of a diverse group of organisms representing different niches and the related factors affecting codon usage with special reference to the major forces influencing codon usage patterns was carried out. It was observed that organism specific codon usage bias percolates into vital metabolic pathway genes irrespective of their near universality. A clear distinction in the codon usage pattern of gram positive and gram negative bacteria, which is a major classification criterion for bacteria, in terms of pentose phosphate pathway was an important observation of this study. The codon utilization scheme in all the organisms indicates the presence of translation selection as a major force in shaping codon usage. Another key observation was the segregation of the H. sapiens genes as a separate cluster by correspondence analysis, which is primarily attributed to the different codon usage pattern in this genus along with its longer gene lengths. We have also analyzed the amino acid distribution comparison of transketolase protein primary structures among all the organisms and found that there is a certain degree of predictability in the composition profile except in A. fumigatus and H. sapiens, where few exceptions are prominent. In A. fumigatus, a human pathogen responsible for invasive aspergillosis, a significantly different codon usage pattern, which finally translated into its amino acid composition model portraying a unique profile in a key pentose phosphate pathway enzyme transketolase was observed.
Collapse
Affiliation(s)
- Ayon Pal
- Department of Botany, Raiganj College (University College) P.O.- Raiganj, Dist.- Uttar Dinajpur, PIN-733134, West Bengal, India
| | - Subhasis Mukhopadhyay
- Bioinformatics Centre, Department of Biophysics, Molecular Biology and Bioinformatics University of Calcutta, 92 APC Road, Kolkata-700009, West Bengal, India
| | - Asim Kumar Bothra
- Cheminformatics Bioinformatics Lab, Department of Chemistry, Raiganj College (University College) P.O.- Raiganj, Dist.- Uttar Dinajpur, PIN-733134, West Bengal, India
| |
Collapse
|
18
|
Kaur PK, Dinesh N, Soumya N, Babu NK, Singh S. Identification and characterization of a novel Ribose 5-phosphate isomerase B from Leishmania donovani. Biochem Biophys Res Commun 2012; 421:51-6. [PMID: 22483752 DOI: 10.1016/j.bbrc.2012.03.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 03/21/2012] [Indexed: 11/29/2022]
Abstract
Leishmaniasis is a group of tropical diseases caused by protozoan parasites of the genus Leishmania. Due to the emergence of resistance to the available antileishmanial drugs there is an immediate need to identify molecular targets on which to base future treatment strategies. Ribose 5-phosphate isomerase (Rpi; EC 5.3.1.6) is a key enzyme of the pentose phosphate pathway (PPP) which catalyses the reversible aldose-ketose isomerization between Ribose 5-phosphate (R5P) and Ribulose 5-phosphate (Ru5P). It exists in two isoforms A and B. These two are completely unrelated enzymes catalyzing the same reaction. Analysis of the Leishmania infantum genome revealed that though the RpiB gene is present, RpiA homologs are completely absent. An absence of RpiBs in the genomes of higher animals makes this enzyme a possible target for the chemotherapy of Leishmaniasis. In this paper, we report for the first time the presence of B isoform of the Rpi enzyme in Leishmania donovani (LdRpiB) by cloning and molecular characterization of the enzyme. An amplified L. donovani RpiB gene is 519 bp and encodes for a putative 172 amino acid protein with a molecular mass of ∼19 kDa. An ∼19 kDa protein with poly-His tag at the C-terminal end was obtained by heterologous expression of LdRpiB in Escherichia coli. The recombinant form of RpiB was obtained in soluble and active form. The LdRpiB exists as a dimer of dimers i.e. the tetramer form. The polyclonal antibody against Trypanosoma cruzi RpiB could detect a band of ∼19 kDa with the purified recombinant RpiB as well as native RpiB from the L. donovani promastigotes. Recombinant RpiB obeys the classical Michaelis-Menten kinetics utilizing R5P as the substrate with a K(m) value of 2.4±0.6 mM and K(cat) value of 30±5.2 s(-1). Our study confirms the presence of Ribose 5-phosphate isomerase B in L. donovani and provides functional characterization of RpiB for further validating it as a potential drug target.
Collapse
Affiliation(s)
- Preet Kamal Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160 062, Punjab, India
| | | | | | | | | |
Collapse
|
19
|
Fanous A, Weiss W, Görg A, Jacob F, Parlar H. A proteome analysis of the cadmium and mercury response in Corynebacterium glutamicum. Proteomics 2008; 8:4976-86. [DOI: 10.1002/pmic.200800165] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 2005; 22:359-68. [PMID: 15806613 DOI: 10.1002/yea.1216] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A Saccharomyces cerevisiae screening strain was designed by combining multiple genetic modifications known to improve xylose utilization with the primary objective of enhancing xylose growth and fermentation in xylose isomerase (XI)-expressing strains. Strain TMB 3045 was obtained by expressing the XI gene from Thermus thermophilus in a strain in which the GRE3 gene coding for aldose reductase was deleted, and the genes encoding xylulokinase (XK) and the enzymes of the non-oxidative pentose phosphate pathway (PPP) [transaldolase (TAL), transketolase (TKL), ribose 5-phosphate ketol-isomerase (RKI) and ribulose 5-phosphate epimerase (RPE)] were overexpressed. A xylose-growing and fermenting strain (TMB 3050) was derived from TMB 3045 by repeated cultivation on xylose medium. Despite its low XI activity, TMB 3050 was capable of aerobic xylose growth and anaerobic ethanol production at 30 degrees C. The aerobic xylose growth rate reached 0.17 l/h when XI was replaced with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes expressed from a multicopy plasmid, demonstrating that the screening system was functional. Xylose growth had not previously been detected in strains in which the PPP genes were not overexpressed or when overexpressing the PPP genes but having XR and XDH genes chromosomally integrated. This demonstrates the necessity to simultaneously increase the conversion of xylose to xylulose and the metabolic steps downstream of xylulose for efficient xylose utilization in S. cerevisiae.
Collapse
Affiliation(s)
- Kaisa Karhumaa
- Department of Applied Microbiology, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | | | | |
Collapse
|
21
|
Kondo H, Nakamura Y, Dong YX, Nikawa JI, Sueda S. Pyridoxine biosynthesis in yeast: participation of ribose 5-phosphate ketol-isomerase. Biochem J 2004; 379:65-70. [PMID: 14690456 PMCID: PMC1224052 DOI: 10.1042/bj20031268] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 12/08/2003] [Accepted: 12/23/2003] [Indexed: 11/17/2022]
Abstract
To identify the genes involved in pyridoxine synthesis in yeast, auxotrophic mutants were prepared. After transformation with a yeast genomic library, a transformant (A22t1) was obtained from one of the auxotrophs, A22, which lost the pyridoxine auxotrophy. From an analysis of the plasmid harboured in A22t1, the RKI1 gene coding for ribose 5-phosphate ketol-isomerase and residing on chromosome no. 15 was identified as the responsible gene. This notion was confirmed by gene disruption and tetrad analysis on a diploid prepared from the wild-type and the auxotroph. The site of mutation on the RKI1 gene was identified as position 566 with a transition from guanine to adenine, resulting in amino acid substitution of Arg-189 with lysine. The enzymic activity of the Arg189-->Lys (R189K) mutant of ribose 5-phosphate ketolisomerase was 0.6% when compared with the wild-type enzyme. Loss of the structural integrity of the protein seems to be responsible for the greatly diminished activity, which eventually leads to a shortage of either ribose 5-phosphate or ribulose 5-phosphate as the starting or intermediary material for pyridoxine synthesis.
Collapse
Affiliation(s)
- Hiroki Kondo
- Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Kawazu 680-4, Iizuka 820-8502, Japan.
| | | | | | | | | |
Collapse
|
22
|
Carlson R, Fell D, Srienc F. Metabolic pathway analysis of a recombinant yeast for rational strain development. Biotechnol Bioeng 2002; 79:121-34. [PMID: 12115428 DOI: 10.1002/bit.10305] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Elementary mode analysis has been used to study a metabolic pathway model of a recombinant Saccharomyces cerevisiae system that was genetically engineered to produce the bacterial storage compound poly-beta-hydroxybutyrate (PHB). The model includes biochemical reactions from the intermediary metabolism and takes into account cellular compartmentalization as well as the reversibility/irreversibility of the reactions. The reaction network connects the production and/or consumption of eight external metabolites including glucose, acetate, glycerol, ethanol, PHB, CO(2), succinate, and adenosine triphosphate (ATP). Elementary mode analysis of the wild-type S. cerevisiae system reveals 241 unique reaction combinations that balance the eight external metabolites. When the recombinant PHB pathway is included, and when the reaction model is altered to simulate the experimental conditions when PHB accumulates, the analysis reveals 20 unique elementary modes. Of these 20 modes, 7 produce PHB with the optimal mode having a theoretical PHB carbon yield of 0.67. Elementary mode analysis was also used to analyze the possible effects of biochemical network modifications and altered culturing conditions. When the natively absent ATP citrate-lyase activity is added to the recombinant reaction network, the number of unique modes increases from 20 to 496, with 314 of these modes producing PHB. With this topological modification, the maximum theoretical PHB carbon yield increases from 0.67 to 0.83. Adding a transhydrogenase reaction to the model also improves the theoretical conversion of substrate into PHB. The recombinant system with the transhydrogenase reaction but without the ATP citrate-lyase reaction has an increase in PHB carbon yield from 0.67 to 0.71. When the model includes both the ATP citrate-lyase reaction and the transhydrogenase reaction, the maximum theoretical carbon yield increases to 0.84. The reaction model was also used to explore the possibility of producing PHB under anaerobic conditions. In the absence of oxygen, the recombinant reaction network possesses two elementary modes capable of producing PHB. Interestingly, both modes also produce ethanol. Elementary mode analysis provides a means of deconstructing complex metabolic networks into their basic functional units. This information can be used for analyzing existing pathways and for the rational design of further modifications that could improve the system's conversion of substrate into product.
Collapse
Affiliation(s)
- Ross Carlson
- Department of Chemical Engineering and Materials Science, and BioTechnology Institute, University of Minnesota, 240 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota 55108, USA.
| | | | | |
Collapse
|
23
|
Johansson B, Hahn-Hägerdal B. Overproduction of pentose phosphate pathway enzymes using a new CRE-loxP expression vector for repeated genomic integration in Saccharomyces cerevisiae. Yeast 2002; 19:225-31. [PMID: 11816030 DOI: 10.1002/yea.833] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Two new vectors are described, the expression vector pB3 PGK and the CRE recombinase vector pCRE3. The pB3 PGK has a zeocin-selectable marker flanked by loxP sequences and an expression cassette consisting of the strong PGK1 promoter and the GCY1 terminator. The S. cerevisiae genes RKI1, RPE1, TAL1 and TKL1 were cloned in pB3 PGK and integrated in the locus of the respective gene, resulting in overexpression of the genes. S. cerevisiae TMB 3026, simultaneously overexpressing the RKI1, RPE1, TAL1 and TKL1 genes, was created by successive integrations and removal of the loxP-zeocin-loxP cassette using pCRE3. The 2mu-based pCRE3 carries the aureobasidin A, zeocin and URA3 markers. pCRE3 proved to be easily cured without active counter-selection. The zeocin marker is present on both the pB3 PGK and on pCRE3, so that screening for zeocin sensitivity indicates both chromosomal marker loss and loss of the pCRE3 vector. This feature saves time, since only one screening step is needed between successive chromosomal integrations. Marker recycling did not lead to increased zeocin resistance, indicating that the zeocin marker could be used for more than four rounds of transformation. The use of the CRE/loxP system proved to be a practical strategy to overexpress multiple genes without exhausting available markers.
Collapse
Affiliation(s)
- Björn Johansson
- Department of Applied Microbiology, Lund University, PO Box 124, 21 00 Lund, Sweden
| | | |
Collapse
|
24
|
Kopriva S, Koprivova A, Süss KH. Identification, cloning, and properties of cytosolic D-ribulose-5-phosphate 3-epimerase from higher plants. J Biol Chem 2000; 275:1294-9. [PMID: 10625676 DOI: 10.1074/jbc.275.2.1294] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant cells contain a complete oxidative pentose phosphate pathway in the chloroplasts, but an incomplete pathway was proposed to be present in the cytosol, with cytosolic (cyt) isoforms of ribulose-5-phosphate 3-epimerase (RPEase) and other non-oxidative branch enzymes being undetectable. Here we present for the first time the identification, cloning, and properties of a cyt-RPEase in rice (Oryza sativa) and presence of its homologues in other plant species. Recombinant cyt-RPEase is a homodimer of 24.3-kDa subunits such as in the case of the animal and yeast enzymes, whereas the chloroplast (chl) RPEase is a hexamer. Cytosolic and chloroplastic RPEases cannot be separated by anion exchange chromatography. Since plant cyt-RPEase is more closely related in its primary structure to homologous enzymes in animal and yeast cells than to the chloroplast RPEase, the plant nuclear genes coding for cytosolic and chloroplast RPEases were most likely derived from eubacteria and cyanobacteria, respectively. Accumulation of cyt-RPEase-mRNA and protein is high in root cells, lacking chl-RPEase, and lower in green tissue. These and other observations support the view that green and non-green plant cells possess a complete oxidative pentose phosphate pathway in the cytosol.
Collapse
Affiliation(s)
- S Kopriva
- Institute of Plant Physiology, Altenbergrain 21, 3013 Bern, Switzerland.
| | | | | |
Collapse
|
25
|
Favery B, Lecomte P, Gil N, Bechtold N, Bouchez D, Dalmasso A, Abad P. RPE, a plant gene involved in early developmental steps of nematode feeding cells. EMBO J 1998; 17:6799-811. [PMID: 9843485 PMCID: PMC1171027 DOI: 10.1093/emboj/17.23.6799] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sedentary plant-parasitic nematodes are able to induce the redifferentiation of root cells into multinucleate nematode feeding sites (NFSs). We have isolated by promoter trapping an Arabidopsis thaliana gene that is essential for the early steps of NFS formation induced by the root-knot nematode Meloidogyne incognita. Its pattern of expression is similar to that of key regulators of the cell cycle, but it is not observed with the cyst nematode. Later in NFS development, this gene is induced by both root-knot and cyst nematodes. It encodes a protein similar to the D-ribulose-5-phosphate 3-epimerase (RPE) (EC 5.1.3.1), a key enzyme in the reductive Calvin cycle and the oxidative pentose phosphate pathway (OPPP). Quantitative RT-PCR showed the accumulation of RPE transcripts in potato, as in Arabidopsis NFS. Homozygous rpe plants have a germination mutant phenotype that can be rescued in dwarf plants on sucrose-supplemented medium. During root development, this gene is expressed in the meristems and initiation sites of lateral roots. These results suggest that the genetic control of NFSs and the first stages of meristem formation share common steps and confirms the previous cytological observations which indicate that root cells undergo metabolic reprogramming when they turn into NFSs.
Collapse
Affiliation(s)
- B Favery
- INRA, Laboratoire de Biologie des Invertébrés, 123 bd F. Meilland, 06600 Antibes, France
| | | | | | | | | | | | | |
Collapse
|