1
|
Benigni G, Dimitrova P, Antonangeli F, Sanseviero E, Milanova V, Blom A, van Lent P, Morrone S, Santoni A, Bernardini G. CXCR3/CXCL10 Axis Regulates Neutrophil-NK Cell Cross-Talk Determining the Severity of Experimental Osteoarthritis. THE JOURNAL OF IMMUNOLOGY 2017; 198:2115-2124. [PMID: 28108560 DOI: 10.4049/jimmunol.1601359] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/21/2016] [Indexed: 01/15/2023]
Abstract
Several immune cell populations are involved in cartilage damage, bone erosion, and resorption processes during osteoarthritis. The purpose of this study was to investigate the role of NK cells in the pathogenesis of experimental osteoarthritis and whether and how neutrophils can regulate their synovial localization in the disease. Experimental osteoarthritis was elicited by intra-articular injection of collagenase in wild type and Cxcr3-/- 8-wk old mice. To follow osteoarthritis progression, cartilage damage, synovial thickening, and osteophyte formation were measured histologically. To characterize the inflammatory cells involved in osteoarthritis, synovial fluid was collected early after disease induction, and the cellular and cytokine content were quantified by flow cytometry and ELISA, respectively. We found that NK cells and neutrophils are among the first cells that accumulate in the synovium during osteoarthritis, both exerting a pathogenic role. Moreover, we uncovered a crucial role of the CXCL10/CXCR3 axis, with CXCL10 increasing in synovial fluids after injury and Cxcr3-/- mice being protected from disease development. Finally, in vivo depletion experiments showed that neutrophils are involved in an NK cell increase in the synovium, possibly by expressing CXCL10 in inflamed joints. Thus, neutrophils and NK cells act as important disease-promoting immune cells in experimental osteoarthritis and their functional interaction is promoted by the CXCL10/CXCR3 axis.
Collapse
Affiliation(s)
- Giorgia Benigni
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Petya Dimitrova
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Fabrizio Antonangeli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Emilio Sanseviero
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Viktoriya Milanova
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Arjen Blom
- Department of Rheumatology, Radboud University Medical Center, Nijmegen 86525, the Netherlands
| | - Peter van Lent
- Department of Rheumatology, Radboud University Medical Center, Nijmegen 86525, the Netherlands
| | - Stefania Morrone
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Angela Santoni
- Laboratory of Immunology and Molecular Immunopathology Institute Pasteur Italy-Cenci Bolognetti Foundation, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; and .,Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, 86077 Isernia, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, 86077 Isernia, Italy
| |
Collapse
|
2
|
TLR2 elicits IL-17-mediated RANKL expression, IL-17, and OPG production in neutrophils from arthritic mice. Mediators Inflamm 2014; 2014:643406. [PMID: 24757287 PMCID: PMC3976781 DOI: 10.1155/2014/643406] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/06/2014] [Indexed: 01/11/2023] Open
Abstract
We investigated the ability of neutrophils to express receptor activator of nuclear factor kappa-B ligand (RANKL), to secrete osteoprotegerin (OPG), and to produce IL-17. Arthritis was induced by intra-articular injection of zymosan, a ligand for Toll-like receptor 2 (TLR2). Frequencies of neutrophils in bone marrow (BM), blood and synovial fluid (SF), receptor expression, and cytokine production were evaluated by flow cytometry. 1A8 antibody (1A8 Ab) was used to deplete neutrophils in zymosan-injected SCID mice. IL-17, RANKL, and OPG amounts in SF, serum, or cell cultures were determined by ELISA. The development of arthritis was associated with increased secretion of IL-17, RANKL, and OPG in serum and SF, elevated frequencies of Ly6G+CD11b+ cells in BM, blood, and SF and upregulated RANKL expression. Both IL-17 and OPG were absent in serum and SF after neutrophil depletion; therefore we assume that they were released by neutrophils. In vitro blood Ly6G+CD11b+ cells from arthritic mice produced spontaneously IL-17, IFN-γ, and OPG and expressed RANKL. This phenotype was sustained by IL-17. TLR2 engagement increased IL-17 and IFN-γ production, potentiated IL-17-mediated RANKL expression, and inhibited OPG secretion. We conclude that TLR2 regulates the destructive potential of neutrophils and its targeting might limit joint alterations in arthritis.
Collapse
|