1
|
Carvalho BF, Gomez GVB, Carron J, Macedo LT, Gonçalves GM, Vazquez VDL, Serrano SV, Lourenço GJ, Lima CSP. TNFRSF1B Gene Variants in Clinicopathological Aspects and Prognosis of Patients with Cutaneous Melanoma. Int J Mol Sci 2024; 25:2868. [PMID: 38474115 DOI: 10.3390/ijms25052868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Regulatory T lymphocytes play a critical role in immune regulation and are involved in the aberrant cell elimination by facilitating tumor necrosis factor connection to the TNFR2 receptor, encoded by the TNFRSF1B polymorphic gene. We aimed to examine the effects of single nucleotide variants TNFRSF1B c.587T>G, c.*188A>G, c.*215C>T, and c.*922C>T on the clinicopathological characteristics and survival of cutaneous melanoma (CM) patients. Patients were genotyped using RT-PCR. TNFRSF1B levels were measured using qPCR. Luciferase reporter assay evaluated the interaction of miR-96 and miR-1271 with the 3'-UTR of TNFRSF1B. The c.587TT genotype was more common in patients younger than 54 years old than in older patients. Patients with c.*922CT or TT, c.587TG or GG + c.*922CT or TT genotypes, as well as those with the haplotype TATT, presented a higher risk of tumor progression and death due to the disease effects. Individuals with the c.*922TT genotype had a higher TNFRSF1B expression than those with the CC genotype. miR-1271 had less efficient binding with the 3'-UTR of the T allele when compared with the C allele of the SNV c.*922C>T. Our findings, for the first time, demonstrate that TNFRSF1B c.587T>G and c.*922C>T variants can serve as independent prognostic factors in CM patients.
Collapse
Affiliation(s)
- Bruna Fernandes Carvalho
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
| | - Gabriela Vilas Bôas Gomez
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
| | - Juliana Carron
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
| | - Ligia Traldi Macedo
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
- Department of Anesthesiology, Oncology, and Radiology, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
| | - Gisele Melo Gonçalves
- Melanoma and Sarcoma Surgery Department, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Vinicius de Lima Vazquez
- Melanoma and Sarcoma Surgery Department, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Sergio Vicente Serrano
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
| | - Carmen Silvia Passos Lima
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
- Department of Anesthesiology, Oncology, and Radiology, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
| |
Collapse
|
2
|
Moatti A, Cohen JL. The TNF-α/TNFR2 Pathway: Targeting a Brake to Release the Anti-tumor Immune Response. Front Cell Dev Biol 2021; 9:725473. [PMID: 34712661 PMCID: PMC8546260 DOI: 10.3389/fcell.2021.725473] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
Newly discovered anti-cancer immunotherapies, such as immune checkpoint inhibitors and chimeric antigen receptor T cells, focus on spurring the anti-tumor effector T cell (Teff) response. Although such strategies have already demonstrated a sustained beneficial effect in certain malignancies, a substantial proportion of treated patients does not respond. CD4+FOXP3+ regulatory T cells (Tregs), a suppressive subset of T cells, can impair anti-tumor responses and reduce the efficacy of currently available immunotherapies. An alternative view that has emerged over the last decade proposes to tackle this immune brake by targeting the suppressive action of Tregs on the anti-tumoral response. It was recently demonstrated that the tumor necrosis factor alpha (TNF-α) tumor necrosis factor receptor 2 (TNFR2) is critical for the phenotypic stabilization and suppressive function of human and mouse Tregs. The broad non-specific effects of TNF-α infusion in patients initially led clinicians to abandon this signaling pathway as first-line therapy against neoplasms. Previously unrecognized, TNFR2 has emerged recently as a legitimate target for anti-cancer immune checkpoint therapy. Considering the accumulation of pre-clinical data on the role of TNFR2 and clinical reports of TNFR2+ Tregs and tumor cells in cancer patients, it is now clear that a TNFR2-centered approach could be a viable strategy, once again making the TNF-α pathway a promising anti-cancer target. Here, we review the role of the TNFR2 signaling pathway in tolerance and the equilibrium of T cell responses and its connections with oncogenesis. We analyze recent discoveries concerning the targeting of TNFR2 in cancer, as well as the advantages, limitations, and perspectives of such a strategy.
Collapse
Affiliation(s)
- Audrey Moatti
- Université Paris-Est Créteil Val de Marne, INSERM, IMRB, Créteil, France.,AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Créteil, France
| | - José L Cohen
- Université Paris-Est Créteil Val de Marne, INSERM, IMRB, Créteil, France.,AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Créteil, France
| |
Collapse
|
3
|
Mikhaylenko DS, Nemtsova MV, Bure IV, Kuznetsova EB, Alekseeva EA, Tarasov VV, Lukashev AN, Beloukhova MI, Deviatkin AA, Zamyatnin AA. Genetic Polymorphisms Associated with Rheumatoid Arthritis Development and Antirheumatic Therapy Response. Int J Mol Sci 2020; 21:E4911. [PMID: 32664585 PMCID: PMC7402327 DOI: 10.3390/ijms21144911] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most common inflammatory arthropathy worldwide. Possible manifestations of RA can be represented by a wide variability of symptoms, clinical forms, and course options. This multifactorial disease is triggered by a genetic predisposition and environmental factors. Both clinical and genealogical studies have demonstrated disease case accumulation in families. Revealing the impact of candidate gene missense variants on the disease course elucidates understanding of RA molecular pathogenesis. A multivariate genomewide association study (GWAS) based analysis identified the genes and signalling pathways involved in the pathogenesis of the disease. However, these identified RA candidate gene variants only explain 30% of familial disease cases. The genetic causes for a significant proportion of familial RA have not been determined until now. Therefore, it is important to identify RA risk groups in different populations, as well as the possible prognostic value of some genetic variants for disease development, progression, and treatment. Our review has two purposes. First, to summarise the data on RA candidate genes and the increased disease risk associated with these alleles in various populations. Second, to describe how the genetic variants can be used in the selection of drugs for the treatment of RA.
Collapse
Affiliation(s)
- Dmitry S. Mikhaylenko
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (I.V.B.); (E.B.K.); (E.A.A.); (A.N.L.); (M.I.B.); (A.A.D.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115478 Moscow, Russia
| | - Marina V. Nemtsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (I.V.B.); (E.B.K.); (E.A.A.); (A.N.L.); (M.I.B.); (A.A.D.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115478 Moscow, Russia
| | - Irina V. Bure
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (I.V.B.); (E.B.K.); (E.A.A.); (A.N.L.); (M.I.B.); (A.A.D.)
| | - Ekaterina B. Kuznetsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (I.V.B.); (E.B.K.); (E.A.A.); (A.N.L.); (M.I.B.); (A.A.D.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115478 Moscow, Russia
| | - Ekaterina A. Alekseeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (I.V.B.); (E.B.K.); (E.A.A.); (A.N.L.); (M.I.B.); (A.A.D.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115478 Moscow, Russia
| | - Vadim V. Tarasov
- Department of Pharmacology and Pharmacy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Alexander N. Lukashev
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (I.V.B.); (E.B.K.); (E.A.A.); (A.N.L.); (M.I.B.); (A.A.D.)
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Marina I. Beloukhova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (I.V.B.); (E.B.K.); (E.A.A.); (A.N.L.); (M.I.B.); (A.A.D.)
| | - Andrei A. Deviatkin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (I.V.B.); (E.B.K.); (E.A.A.); (A.N.L.); (M.I.B.); (A.A.D.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (I.V.B.); (E.B.K.); (E.A.A.); (A.N.L.); (M.I.B.); (A.A.D.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
4
|
Raphael I, Gomez-Rivera F, Raphael RA, Robinson RR, Nalawade S, Forsthuber TG. TNFR2 limits proinflammatory astrocyte functions during EAE induced by pathogenic DR2b-restricted T cells. JCI Insight 2019; 4:132527. [PMID: 31852844 DOI: 10.1172/jci.insight.132527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neuroinflammatory disease where the underlying mechanisms driving disease progression have remained unresolved. HLA-DR2b (DRB1*15:01) is the most common genetic risk factor for MS. Additionally, TNF and its receptors TNFR1 and TNFR2 play key roles in MS and its preclinical animal model, experimental autoimmune encephalomyelitis (EAE). TNFR2 is believed to ameliorate CNS pathology by promoting remyelination and Treg function. Here, we show that transgenic mice expressing the human MHC class II (MHC-II) allele HLA-DR2b and lacking mouse MHC-II and TNFR2 molecules, herein called DR2bΔR2, developed progressive EAE, while disease was not progressive in DR2b littermates. Mechanistically, expression of the HLA-DR2b favored Th17 cell development, whereas T cell-independent TNFR2 expression was critical for restraining of an astrogliosis-induced proinflammatory milieu and Th17 cell responses, while promoting remyelination. Our data suggest the TNFR2 signaling pathway as a potentially novel mechanism for curtailing astrogliosis and promoting remyelination, thus providing new insights into mechanisms limiting progressive MS.
Collapse
Affiliation(s)
- Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, UPMC Children's Hospital, Pittsburgh, Pennsylvania, USA.,Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Francisco Gomez-Rivera
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Rebecca A Raphael
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Rachel R Robinson
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Saisha Nalawade
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
5
|
A New Venue of TNF Targeting. Int J Mol Sci 2018; 19:ijms19051442. [PMID: 29751683 PMCID: PMC5983675 DOI: 10.3390/ijms19051442] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
The first Food and Drug Administration-(FDA)-approved drugs were small, chemically-manufactured and highly active molecules with possible off-target effects, followed by protein-based medicines such as antibodies. Conventional antibodies bind a specific protein and are becoming increasingly important in the therapeutic landscape. A very prominent class of biologicals are the anti-tumor necrosis factor (TNF) drugs that are applied in several inflammatory diseases that are characterized by dysregulated TNF levels. Marketing of TNF inhibitors revolutionized the treatment of diseases such as Crohn’s disease. However, these inhibitors also have undesired effects, some of them directly associated with the inherent nature of this drug class, whereas others are linked with their mechanism of action, being pan-TNF inhibition. The effects of TNF can diverge at the level of TNF format or receptor, and we discuss the consequences of this in sepsis, autoimmunity and neurodegeneration. Recently, researchers tried to design drugs with reduced side effects. These include molecules with more specificity targeting one specific TNF format or receptor, or that neutralize TNF in specific cells. Alternatively, TNF-directed biologicals without the typical antibody structure are manufactured. Here, we review the complications related to the use of conventional TNF inhibitors, together with the anti-TNF alternatives and the benefits of selective approaches in different diseases.
Collapse
|
6
|
Genetic variants within the TNFRSF1B gene and susceptibility to rheumatoid arthritis and response to anti-TNF drugs: a multicenter study. Pharmacogenet Genomics 2018; 25:323-33. [PMID: 25850964 DOI: 10.1097/fpc.0000000000000140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Recent research suggests that genetic variants in the tumor necrosis factor receptor 2 (TNFRSF1B) gene may have an impact on susceptibility to rheumatoid arthritis (RA) and drug response. The present population-based case-control study was carried out to evaluate whether 5 tagging single-nucleotide polymorphisms (SNPs) within the TNFRSF1B gene are associated with the risk of RA and response to antitumor necrosis factor (TNF) drugs. METHODS The study population included 1412 RA patients and 1225 healthy controls. A subset of 596 anti-TNF-naive RA patients was selected to assess the association of TNFRSF1B SNPs and drug response according to the EULAR response criteria. RESULTS We found that carriers of the TNFRSF1Brs3397C allele had a significantly increased risk of developing RA (P=0.0006). Importantly, this association remained significant after correction for multiple testing. We also confirmed the lack of association of the TNFRSF1Brs1061622 SNP with the risk of RA in the single-SNP analysis (P=0.89), but also through well-powered meta-analyses (PDOM=0.67 and PREC=0.37, respectively). In addition, our study showed that carriers of the TNFRSF1Brs3397C/C, TNFRSF1Brs1061622G/G, and TNFRSF1Brs1061631A/A genotypes had an increased risk of having a worse response to anti-TNF drugs at the level of P less than 0.05 (P=0.014, 0.0085 and 0.028, respectively). We also observed that, according to a log-additive model, carriers of the TNFRSF1Brs3397C or TNFRSF1Brs1061622G alleles showed an increased risk of having worse response to anti-TNF medications (P=0.018 and 0.0059). However, the association of the TNFRSF1Brs1061622 SNP only reached marginal significance after correction for multiple testing according to a log-additive model (P=0.0059) and it was not confirmed through a meta-analysis (PDOM=0.12). CONCLUSION Our results suggest that the TNFRSF1Brs3397 variant may play a role in modulating the risk of RA, but does not provide strong evidence of an impact of TNFRSF1B variants in determining response to anti-TNF drugs.
Collapse
|
7
|
Cohen JL, Wood KJ. TNFR2: The new Treg switch? Oncoimmunology 2017; 7:e1373236. [PMID: 29296530 PMCID: PMC5739577 DOI: 10.1080/2162402x.2017.1373236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022] Open
Abstract
Three recent publications identified the TNF/TNR2 pathway as a new target to reduce graft-versus-host-disease through regulatory T cells activation or to potentially switch on a strong anti-leukemic effect through regulatory T cells blockade in allogeneic hematopoietic stem cell transplantation. This identified the TNF/TNR2 pathway as a swith and as a new target for immune checkpoint therapy to modulate the immune regulation in this clinical setting.
Collapse
Affiliation(s)
- José L Cohen
- Université Paris-Est, Unité mixte de recherche S955, Université Paris Est Créteil, Créteil, France; INSERM, U955, Equipe 21, Créteil, France; Assistance Publique Hôpitaux de Paris (APHP), Hôpital H. Mondor-A. Chenevier, Centre d'Investigation Clinique Biothérapie, Créteil, France
| | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
8
|
Zhai Q, Wang L, Zhao P, Li T. Role of citrullination modification catalyzed by peptidylarginine deiminase 4 in gene transcriptional regulation. Acta Biochim Biophys Sin (Shanghai) 2017; 49:567-572. [PMID: 28472221 DOI: 10.1093/abbs/gmx042] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022] Open
Abstract
Peptidylarginine deiminase 4 (PADI4), a new histone modification enzyme, which converts both arginine and monomethyl-arginine to citrulline, has gained massive attention in recent years as a potential regulator of gene transcription. Recent studies have shown that arginine residues R2, R8, R17, and R26 in the H3 tail and R3 in the H4 tail can be deiminated by PADI4. This kind of histone post-translational modification has the potential to antagonize histone methylation and coordinate with histone deacetylation to regulate gene transcription. PADI4 also deiminates non-histone proteins, such as p300, NPM1, ING4, RPS2, and DNMT3A. PADI4 has been shown to involve in cell apoptosis and differentiation. Moreover, PADI4 can interact with tumor suppressor p53 and regulate the transcriptional activity of p53. Dysregulation of PADI4 is implicated in a variety of diseases, including rheumatoid arthritis, tumor development, and multiple sclerosis. A wide variety of PADI4 inhibitors have been identified. Further understanding of PADI4 functions may lead to novel diagnostic and therapeutic approaches in these diseases. This review summarizes the recent progress in the study of the regulation mechanism of PADI4 on gene transcription and the major physiological functions of PADI4 in human diseases.
Collapse
Affiliation(s)
- Qiaoli Zhai
- Center of Translational Medicine, Central Hospital of Zibo, Shandong University, Zibo 255036, China
| | - Lianqing Wang
- Center of Translational Medicine, Central Hospital of Zibo, Shandong University, Zibo 255036, China
| | - Peiqing Zhao
- Center of Translational Medicine, Central Hospital of Zibo, Shandong University, Zibo 255036, China
| | - Tao Li
- Center of Translational Medicine, Central Hospital of Zibo, Shandong University, Zibo 255036, China
| |
Collapse
|
9
|
Yang XK, Liu J, Liu J, Liang Y, Xu WD, Leng RX, Pan HF, Ye DQ. Associations Between PADI4 Gene Polymorphisms and Rheumatoid Arthritis: An Updated Meta-analysis. Arch Med Res 2015; 46:317-25. [PMID: 26043831 DOI: 10.1016/j.arcmed.2015.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/26/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS Studies investigating the association between the peptidylarginine deiminase 4 (PADI4) gene polymorphisms and rheumatoid arthritis (RA) reported conflicting results. The aim of this meta-analysis was to assess the association between PADI4 gene polymorphisms and RA. METHODS A systematic literature search was conducted to identify relevant studies. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to estimate the strength of the association. RESULTS A total of 34 studies from 28 articles involving 19859 patients with RA and 25771 healthy controls were included. Significant association of PADI4-94G/A polymorphism and RA was observed (OR = 0.891, 95% CI = 0.833-0.954, p = 0.001) in the overall study population and in the Asian populations (OR = 0.824, 95% CI = 0.759-0.894, p = 0.000) respectively. For the -92C/G polymorphism, a significant association was observed (OR = 1.481, 95% CI = 1.166-1.882, p = 0.001) in Africans. For the -90C/T polymorphism, a significant association was observed (OR = 0.576, 95% CI = 0.381-0.872, p = 0.009) in the Latin American population. The pooled estimates for the other polymorphisms were not statistically significantly associated with RA (PADI4-104C/T, -89A/G, -96T/C). CONCLUSIONS This meta-analysis demonstrates that PADI4-94G/A polymorphism is associated with susceptibility to RA in the overall population and in the Asian population. The PADI4 -92C/G polymorphism confers susceptibility to RA in Africans and the PADI4-90C/T polymorphism was associated with RA in the Latin American population.
Collapse
Affiliation(s)
- Xiao-Ke Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Juan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Jie Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Yan Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Wang-Dong Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.
| |
Collapse
|