1
|
Sanzo P, Agostino M, Fidler W, Lawrence-Dewar J, Pearson E, Zerpa C, Niccoli S, Lees SJ. Shockwave therapy and fibromyalgia and its effect on pain, blood markers, imaging, and participant experience - a multidisciplinary randomized controlled trial. Physiother Theory Pract 2025; 41:99-114. [PMID: 38384123 DOI: 10.1080/09593985.2024.2321503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Patients with fibromyalgia experience chronic, widespread pain. It remains a misunderstood disorder with multimodal treatments providing mixed results. OBJECTIVES To examine the effects of radial shockwave therapy (RSWT) compared to placebo on pain, pain catastrophizing, psychological indices, blood markers, and neuroimaging. Study-related experiences were also explored qualitatively. METHODS Quantitative sensory testing (QST), Visual Analog Scale (VAS), Beighton Scoring Screen (BSS), Pain Catastrophizing Scale (PCS), blood biomarker (Interleukin (IL)-6 and IL-10), and brain fMRI were measured pre- and post-treatment along with a post-treatment survey. The RSWT group received five treatments (one week apart over five-week period) to the three most painful areas (500 shocks at 1.5 bar and 15 Hz, then 1000 shocks at 2 bar and 8 Hz, and finally 500 shocks at 1.5 bar and 15 Hz) versus sham treatment for the placebo group. RESULTS There were no statistically significant differences in the BSS for hypermobility (p = .21; d = .74), PCS (p = .70; d = .22), VAS (p = .17-.61; d = .20-.83) scores, QST for skin temperature and stimuli (p = .14-.65; d = .25-.88), and for the pressure pain threshold (p = .71-.93; d = .05-.21). The VAS scores had clinically significant changes (MCID greater than 13.90) with improved pain scores in the RSWT group. Neuroimaging scans revealed no cortical thickness changes. Post-treatment surveys revealed pain and symptom improvements and offered hope to individuals. CONCLUSION RSWT was implemented safely, without any negative treatment effects reported, and acted as a pain modulator to reduce sensitivity. CLINICAL TRIALS REGISTRATION ClinicalTrials.gov identification number NCT02760212.
Collapse
Affiliation(s)
- Paolo Sanzo
- Faculty of Health and the Behavioral Sciences, Kinesiology Department, Lakehead University, Thunder Bay, Canada
- Medical Sciences, NOSM University - Thunder Bay Campus, Thunder Bay, Canada
| | - Martina Agostino
- Faculty of Health and the Behavioral Sciences, Kinesiology Department, Lakehead University, Thunder Bay, Canada
| | - Wesley Fidler
- Medical Sciences, NOSM University - Thunder Bay Campus, Thunder Bay, Canada
| | - Jane Lawrence-Dewar
- Faculty of Health and the Behavioral Sciences, Kinesiology Department, Lakehead University, Thunder Bay, Canada
| | - Erin Pearson
- Faculty of Health and the Behavioral Sciences, Kinesiology Department, Lakehead University, Thunder Bay, Canada
| | - Carlos Zerpa
- Faculty of Health and the Behavioral Sciences, Kinesiology Department, Lakehead University, Thunder Bay, Canada
| | - Sarah Niccoli
- Medical Sciences, NOSM University - Thunder Bay Campus, Thunder Bay, Canada
| | - Simon J Lees
- Medical Sciences, NOSM University - Thunder Bay Campus, Thunder Bay, Canada
| |
Collapse
|
2
|
Erbacher C, Vaknine-Treidel S, Madrer N, Weinbender S, Evdokimov D, Unterecker S, Moshitzky G, Sommer C, Greenberg DS, Soreq H, Üçeyler N. Altered blood and keratinocyte microRNA/transfer RNA fragment profiles related to fibromyalgia syndrome and its severity. Pain 2024:00006396-990000000-00784. [PMID: 39679614 DOI: 10.1097/j.pain.0000000000003499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024]
Abstract
ABSTRACT Fibromyalgia syndrome (FMS) is a debilitating widespread chronic pain condition of unclear pathophysiology. We studied small noncoding RNAs as potential classifiers and mediators of FMS. Blood and keratinocyte microRNAs (miRs) and transfer RNA fragments (tRFs) were profiled by small RNA-sequencing within a comprehensively phenotyped female cohort of 53 patients with FMS vs 34 healthy controls (hCOs) and 15 patients with major depression and chronic physical pain (disease controls). Small RNAs were quantified via RNA-sequencing and candidates validated via qRT-PCR. MicroRNAs and tRFs were tested for association with FMS symptoms and their potential regulatory roles. miR and tRF profiles were altered in FMS compared to hCO in whole blood (n = 69; n = 22) and keratinocytes (n = 41; n = 55). Receiver operating characteristic analysis of blood miR candidates hsa-miR-148a-3p and hsa-miR-182-5p, and tRF candidate tRF-21-WB8647O5D levels separated FMS from hCO. In blood, hsa-miR-182-5p and hsa-miR-576-5p upregulation was validated via qRT-PCR, showing even higher expression in disease control, while TRF-20-40KK5Y93 was selectively increased in FMS. MicroRNAs in blood and keratinocytes were associated with how widespread pain manifested in patients. Keratinocyte tRFs correlated with loss of skin innervation. In blood, altered small RNAs were linked to immune and RNA processes, whereas in keratinocytes, adhesion and epithelial functions were targeted. Modulated tRFs shared sequence motifs in patients with FMS, which may promote concerted pathway regulation. Our findings show miRs/tRFs as key small RNAs dysregulation in FMS pathophysiology and open new perspectives for FMS diagnostics, symptom monitoring, and clinical management.
Collapse
Affiliation(s)
- Christoph Erbacher
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Shani Vaknine-Treidel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nimrod Madrer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sofia Weinbender
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Dimitar Evdokimov
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Gilli Moshitzky
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - David S Greenberg
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Aboutaleb AS, Allam A, Zaky HS, Harras MF, Farag FSAA, Abdel-Sattar SA, El-Said NT, Ahmed HI, Abd El-Mordy FM. Novel insights into the molecular mechanisms underlying anti-nociceptive effect of myricitrin against reserpine-induced fibromyalgia model in rats: Implication of SIRT1 and miRNAs. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118623. [PMID: 39059685 DOI: 10.1016/j.jep.2024.118623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Manilkara zapota (L.) P. Royen, also termed sapodilla or chikoo, is a significant plant in ethnomedicine because of its long history of traditional medical applications. In diverse cultures, sapodilla is believed to protect against oxidative stress, inflammation, and some chronic diseases because of its high antioxidant content. The naturally occurring antioxidant myricitrin (MYR) flavonoid is primarily found in the leaves and other plant parts of sapodilla and it is well-known for having therapeutic qualities and possible health advantages. AIM OF THE STUDY To appraise the possible impact of MYR on a rat model of reserpine-induced fibromyalgia (FM) and explore its mechanism of action. MATERIALS AND METHODS Isolation and identification of MYR with more than 99% purity from Manilkara zapota leaves were primarily done and confirmed through chromatographic and spectrophotometric techniques. To develop FM model, reserpine (RSP) was injected daily (1 mg/kg, s.c.) for three successive days. Then, MYR (10 mg/kg, i.p.) and pregabalin (PGB, 30 mg/kg, p.o.) were given daily for another five days. Behavioral changes were assessed through open field test (OFT), hot plate test, and forced swimming test (FST). Further analyses of different brain parameters and signaling pathways were performed to assess monoamines levels, oxidative stress, inflammatory response, apoptotic changes as well as silent information regulator 1 (SIRT1) and micro RNAs (miRNAs) expressions. RESULTS From High-Performance Liquid Chromatography (HPLC) analysis, the methanol extract of sapodilla leaves contains 166.17 μg/ml of MYR. Results of behavioral tests showed a significant improvement in RSP-induced nociceptive stimulation, reduced locomotion and exploration and depressive-like behavior by MYR. Biochemical analyses showed that MYR significantly ameliorated the RSP-induced imbalance in brain monoamine neurotransmitters. In addition, MYR significantly attenuated oxidative stress elicited by RSP via up-regulating nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) protein expressions, enhancing superoxide dismutase (SOD) and catalase (CAT) activities, and reducing malondialdehyde (MDA) content in brain. The RSP-provoked inflammatory response was also diminished by MYR treatment as shown by a significant decreased NOD-like receptor protein 3 (NLRP3) inflammasome expression along with reduced levels of interleukin 1 beta (IL-1β) and nuclear factor-κB (NF-κB). Furthermore, the anti-apoptotic activity of MYR was demonstrated by a marked rise in Bcl-2-associated X protein (BAX)/B cell lymphoma-2 (Bcl-2) ratio by lowering Bcl-2 while increasing BAX levels. In addition, MYR treatment significantly boosted the expression of SIRT1 deacetylase in RSP-treated animals. Interestingly, molecular docking showed the ability of MYR to form a stable complex in the binding site of SIRT1. Regarding miRNAs, MYR effectively ameliorated RSP-induced changes in miR-320 and miR-107 gene expressions. CONCLUSION Our findings afford new insights into the anti-nociceptive profile of MYR in the RSP-induced FM model in rats. The underlying mechanisms involved direct binding and activation of SIRT1 to influence different signaling cascades, including Nrf2 and NF-κB/NLRP3 together with modulation of miRNAs. However, more in-depth studies are needed before proposing MYR as a new clinically relevant drug in the management of FM.
Collapse
Affiliation(s)
- Amany S Aboutaleb
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Albatoul Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Heba S Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Marwa F Harras
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Fatma Sayed Abdel-Aal Farag
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Somaia A Abdel-Sattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Nermin T El-Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hebatalla I Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Fatma Mohamed Abd El-Mordy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Hernandez NP, Rawls A, Chen J, Zhang X, Wang Y, Gao X, Parisien M, Karaky M, Meloto CB, Montagna F, Dang H, Pan Y, Zhao Y, McLean S, Linnstaedt S, Diatchenko L, Nackley AG. miR-374 family is a key regulator of chronic primary pain onset. Pain Rep 2024; 9:e1199. [PMID: 39430682 PMCID: PMC11487220 DOI: 10.1097/pr9.0000000000001199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Chronic primary pain conditions (CPPCs) are linked to catecholamine activation of peripheral adrenergic receptors. Yet, catecholamine-dependent epigenetic mechanisms, such as microRNA (miRNA) regulation of mRNA transcripts, remain largely unknown. Objectives We sought to identify RNA species correlated with case status in 3 pain cohorts, to validate RNAs found to be dysregulated in a mouse model of CPPC onset, and to directly test the role of adrenergic receptors in miRNA regulation. Furthermore, we tested antinociceptive effects of miR-374 overexpression. Methods We used RNA-seq and quantitative reverse transcription polymerase chain reaction to measure RNA expression in 3 pain cohorts. Next, we validated identified RNAs with quantitative reverse transcription polymerase chain reaction in a mouse model of CPPC onset, measuring expression in plasma, peripheral (adipose, muscle, dorsal root ganglia [DRG]), and central (spinal cord) tissues. Then, we stimulated adrenergic receptors in primary adipocyte and DRG cultures to directly test regulation of microRNAs by adrenergic signaling. Furthermore, we used in vitro calcium imaging to measure the antinociceptive effects of miR-374 overexpression. Results We found that one miRNA family, miR-374, was downregulated in the plasma of individuals with temporomandibular disorder, fibromyalgia syndrome, or widespread pain following a motor vehicle collision. miR-374 was also downregulated in plasma, white adipose tissue, and spinal cord from mice with multisite mechanical sensitivity. miR-374 downregulation in plasma and spinal cord was female specific. Norepinephrine stimulation of primary adipocytes, but not DRG, led to decreased miR-374 expression. Furthermore, we identified tissue-specific and sex-specific changes in the expression of predicted miR-374 mRNA targets, including known (HIF1A, NUMB, TGFBR2) and new (ATXN7, CRK-II) pain targets. Finally, we demonstrated that miR-374 overexpression in DRG neurons reduced capsaicin-induced nociceptor activity. Conclusions Downregulation of miR-374 occurs between adrenergic receptor activation and mechanical hypersensitivity, and its adipocyte source implicates adipose signaling in nociception. Further study of miR-374 may inform therapeutic strategies for the millions worldwide who experience CPPCs.
Collapse
Affiliation(s)
- Nathaniel P. Hernandez
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Ashleigh Rawls
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Jiegen Chen
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Xin Zhang
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Yaomin Wang
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Xianglong Gao
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Mohamad Karaky
- Alan Edwards Centre for Research on Pain, Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Carolina Beraldo Meloto
- Alan Edwards Centre for Research on Pain, Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Francesca Montagna
- Alan Edwards Centre for Research on Pain, Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Pan
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ying Zhao
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel McLean
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah Linnstaedt
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Andrea G. Nackley
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
5
|
Tsamou M, Kremers FAC, Samaritakis KA, Roggen EL. Identifying microRNAs Possibly Implicated in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Fibromyalgia: A Review. Int J Mol Sci 2024; 25:9551. [PMID: 39273498 PMCID: PMC11395538 DOI: 10.3390/ijms25179551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and fibromyalgia (FM) are chronic syndromes of unknown etiology, accompanied by numerous symptoms affecting neurological and physical conditions. Despite frequent revisions of the diagnostic criteria, clinical practice guidelines are often outdated, leading to underdiagnosis and ineffective treatment. Our aim was to identify microRNA (miRNA) biomarkers implicated in pathological mechanisms underlying these diseases. A comprehensive literature review using publicly accessible databases was conducted. Interesting miRNAs were extracted from relevant publications on ME/CFS and/or FM, and were then linked to pathophysiological processes possibly manifesting these chronic diseases. Dysregulated miRNAs in ME/CFS and FM may serve as promising biomarkers for these diseases. Key identified miRNAs, such as miR-29c, miR-99b, miR-128, miR-374b, and miR-766, were frequently mentioned for their roles in immune response, mitochondrial dysfunction, oxidative stress, and central sensitization, while miR-23a, miR-103, miR-152, and miR-320 were implicated in multiple crucial pathological processes for FM and/or ME/CFS. In summary, both ME/CFS and FM seem to share many dysregulated biological or molecular processes, which may contribute to their commonly shared symptoms. This miRNA-based approach offers new angles for discovering molecular markers urgently needed for early diagnosis or therapeutics to tackle the pathology of these medically unexplained chronic diseases.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), 6229 EV Maastricht, The Netherlands
| | | | | | - Erwin L Roggen
- ToxGenSolutions (TGS), 6229 EV Maastricht, The Netherlands
| |
Collapse
|
6
|
Philippe S, Delay M, Macian N, Morel V, Pickering ME. Common miRNAs of Osteoporosis and Fibromyalgia: A Review. Int J Mol Sci 2023; 24:13513. [PMID: 37686318 PMCID: PMC10488272 DOI: 10.3390/ijms241713513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
A significant clinical association between osteoporosis (OP) and fibromyalgia (FM) has been shown in the literature. Given the need for specific biomarkers to improve OP and FM management, common miRNAs might provide promising tracks for future prevention and treatment. The aim of this review is to identify miRNAs described in OP and FM, and dysregulated in the same direction in both pathologies. The PubMed database was searched until June 2023, with a clear mention of OP, FM, and miRNA expression. Clinical trials, case-control, and cross-sectional studies were included. Gray literature was not searched. Out of the 184 miRNAs found in our research, 23 are shared by OP and FM: 7 common miRNAs are dysregulated in the same direction for both pathologies (3 up-, 4 downregulated). The majority of these common miRNAs are involved in the Wnt pathway and the cholinergic system and a possible link has been highlighted. Further studies are needed to explore this relationship. Moreover, the harmonization of technical methods is necessary to confirm miRNAs shared between OP and FM.
Collapse
Affiliation(s)
- Soline Philippe
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
| | - Marine Delay
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
- Inserm 1107, Neuro-Dol, University Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Nicolas Macian
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
| | - Véronique Morel
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
| | - Marie-Eva Pickering
- Rheumatology Department, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
7
|
Berg F, Moser DA, Hagena V, Streit F, Mosch B, Kumsta R, Herpertz S, Diers M. MicroRNA-Related Polymorphism and Their Association with Fibromyalgia. Genes (Basel) 2023; 14:1312. [PMID: 37510217 PMCID: PMC10379154 DOI: 10.3390/genes14071312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs are tissue-specific expressed short RNAs that serve post-transcriptional gene regulation. A specific microRNA can bind to mRNAs of different genes and thereby suppress their protein production. In the context of the complex phenotype of fibromyalgia, we used the Axiom miRNA Target Site Genotyping Array to search genome-wide for DNA variations in microRNA genes, their regulatory regions, and in the 3'UTR of protein-coding genes. To identify disease-relevant DNA polymorphisms, a cohort of 176 female fibromyalgia patients was studied in comparison to a cohort of 162 healthy women. The association between 48,329 markers and fibromyalgia was investigated using logistic regression adjusted for population stratification. Results show that 29 markers had p-values < 1 × 10-3, and the strongest association was observed for rs758459 (p-value of 0.0001), located in the Neurogenin 1 gene which is targeted by hsa-miR-130a-3p. Furthermore, variant rs2295963 is predicted to affect binding of hsa-miR-1-3p. Both microRNAs were previously reported to be differentially expressed in fibromyalgia patients. Despite its limited statistical power, this study reports two microRNA-related polymorphisms which may play a functional role in the pathogenesis of fibromyalgia. For a better understanding of the disease pattern, further functional analyses on the biological significance of microRNAs and microRNA-related polymorphisms are required.
Collapse
Affiliation(s)
- Fabian Berg
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Dirk A Moser
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Verena Hagena
- Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr University Bochum, 448791 Bochum, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Benjamin Mosch
- Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr University Bochum, 448791 Bochum, Germany
| | - Robert Kumsta
- Department of Behavioural and Cognitive Sciences, Laboratory for Stress and Gene-Environment Interplay, University of Luxemburg, Porte des Sciences, L-4366 Esch-sur-Alzette, Luxembourg
| | - Stephan Herpertz
- Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr University Bochum, 448791 Bochum, Germany
| | - Martin Diers
- Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr University Bochum, 448791 Bochum, Germany
| |
Collapse
|
8
|
Ovrom EA, Mostert KA, Khakhkhar S, McKee DP, Yang P, Her YF. A Comprehensive Review of the Genetic and Epigenetic Contributions to the Development of Fibromyalgia. Biomedicines 2023; 11:1119. [PMID: 37189737 PMCID: PMC10135661 DOI: 10.3390/biomedicines11041119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
This narrative review summarizes the current knowledge of the genetic and epigenetic contributions to the development of fibromyalgia (FM). Although there is no single gene that results in the development of FM, this study reveals that certain polymorphisms in genes involved in the catecholaminergic pathway, the serotonergic pathway, pain processing, oxidative stress, and inflammation may influence susceptibility to FM and the severity of its symptoms. Furthermore, epigenetic changes at the DNA level may lead to the development of FM. Likewise, microRNAs may impact the expression of certain proteins that lead to the worsening of FM-associated symptoms.
Collapse
Affiliation(s)
- Erik A. Ovrom
- Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA;
| | - Karson A. Mostert
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Hospital, Rochester, MN 55905, USA
| | - Shivani Khakhkhar
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Daniel P. McKee
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Padao Yang
- Department of Psychiatry and Psychology, Mayo Clinic Hospital, Rochester, MN 55905, USA
| | - Yeng F. Her
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Hospital, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Wei L, Zhang X, Yao Y, Zheng W, Tian J. LncRNA HOTTIP impacts the proliferation and differentiation of fibroblast-like synoviocytes in ankylosing spondylitis through the microRNA-30b-3p/PGK1 axis. J Orthop Surg Res 2023; 18:237. [PMID: 36964567 PMCID: PMC10039568 DOI: 10.1186/s13018-023-03653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/26/2023] [Indexed: 03/26/2023] Open
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been reported to exert regulatory effects on biological processes. This study intended to assess the role of the lncRNA HOXA transcript at the distal tip (HOTTIP)/miR-30b-3p/phosphoglycerate kinase 1 (PGK1) axis in ankylosing spondylitis (AS). METHODS Levels of HOTTIP, miR-30b-3p and PGK1 in AS synovial tissues and cultured AS fibroblast-like synoviocytes (ASFLSs) were assessed. The ASFLSs were identified and, respectively, treated with altered expression of HOTTIP and miR-30b-3p, and then, the proliferation and differentiation of the ASFLSs were assessed. The AS mouse models were established by injection of proteoglycan and Freund's complete adjuvant and then were treated with altered expression of HOTTIP and miR-30b-3p, and the pathological changes and apoptosis of synoviocytes in mice' synovial tissues were measured. The relationship of HOTTIP, miR-30b-3p and PGK1 was verified. RESULTS HOTTIP and PGK1 were elevated, while miR-30b-3p was reduced in AS synovial tissues and ASFLSs. Elevated miR-30b-3p or inhibited HOTTIP restrained proliferation and differentiation of ASFLSs and also improved the pathological changes and promoted apoptosis of synoviocytes in mice's synovial tissues. PGK1 was a target of miR-30b-3p, and miR-30b-3p could directly bind to HOTTIP. Silencing miR-30b-3p or overexpressing PGK1 reversed the improvement of AS by knocking down HOTTIP or up-regulating miR-30b-3p. CONCLUSION Our study suggests that reduced HOTTIP ameliorates AS progression by suppressing the proliferation and differentiation of ASFLSs through the interaction of miR-30b-3p and PGK1.
Collapse
Affiliation(s)
- Li Wei
- Department of Orthopaedic Ward 1, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150000, Heilongjiang, China
| | - Xin Zhang
- Department of Orthopaedic Ward 1, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150000, Heilongjiang, China
| | - Yu Yao
- Department of Orthopaedic Ward 1, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150000, Heilongjiang, China
| | - Weizhuo Zheng
- Department of Orthopaedic Ward 1, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150000, Heilongjiang, China
| | - Jun Tian
- Department of Orthopaedic Ward 1, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150000, Heilongjiang, China.
| |
Collapse
|
10
|
Nepotchatykh E, Caraus I, Elremaly W, Leveau C, Elbakry M, Godbout C, Rostami-Afshari B, Petre D, Khatami N, Franco A, Moreau A. Circulating microRNA expression signatures accurately discriminate myalgic encephalomyelitis from fibromyalgia and comorbid conditions. Sci Rep 2023; 13:1896. [PMID: 36732593 PMCID: PMC9894933 DOI: 10.1038/s41598-023-28955-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and fibromyalgia (FM) are two chronic complex diseases with overlapping symptoms affecting multiple systems and organs over time. Due to the absence of validated biomarkers and similarity in symptoms, both disorders are misdiagnosed, and the comorbidity of the two is often unrecognized. Our study aimed to investigate the expression profiles of 11 circulating miRNAs previously associated with ME/CFS pathogenesis in FM patients and individuals with a comorbid diagnosis of FM associated with ME/CFS (ME/CFS + FM), and matched sedentary healthy controls. Whether these 11 circulating miRNAs expression can differentiate between the two disorders was also examined. Our results highlight differential circulating miRNAs expression signatures between ME/CFS, FM and ME/CFS + FM, which also correlate to symptom severity between ME/CFS and ME/CFS + FM groups. We provided a prediction model, by using a machine-learning approach based on 11 circulating miRNAs levels, which can be used to discriminate between patients suffering from ME/CFS, FM and ME/CFS + FM. These 11 miRNAs are proposed as potential biomarkers for discriminating ME/CFS from FM. The results of this study demonstrate that ME/CFS and FM are two distinct illnesses, and we highlight the comorbidity between the two conditions. Proper diagnosis of patients suffering from ME/CFS, FM or ME/CFS + FM is crucial to elucidate the pathophysiology of both diseases, determine preventive measures, and establish more effective treatments.
Collapse
Affiliation(s)
- Evguenia Nepotchatykh
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Molecular Biology PhD Program, Faculty of Medicine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada.,Open Medicine Foundation ME/CFS Collaborative Center at CHU Sainte-Justine/Université de Montréal, Montreal, Canada.,ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Iurie Caraus
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada.,Open Medicine Foundation ME/CFS Collaborative Center at CHU Sainte-Justine/Université de Montréal, Montreal, Canada.,ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Wesam Elremaly
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Open Medicine Foundation ME/CFS Collaborative Center at CHU Sainte-Justine/Université de Montréal, Montreal, Canada.,ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Corinne Leveau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada.,Open Medicine Foundation ME/CFS Collaborative Center at CHU Sainte-Justine/Université de Montréal, Montreal, Canada.,ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Mohamed Elbakry
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Open Medicine Foundation ME/CFS Collaborative Center at CHU Sainte-Justine/Université de Montréal, Montreal, Canada.,ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Christian Godbout
- Patient-Partner, ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Bita Rostami-Afshari
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada.,Open Medicine Foundation ME/CFS Collaborative Center at CHU Sainte-Justine/Université de Montréal, Montreal, Canada.,ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Diana Petre
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada.,Open Medicine Foundation ME/CFS Collaborative Center at CHU Sainte-Justine/Université de Montréal, Montreal, Canada.,ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Nasrin Khatami
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada
| | - Anita Franco
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.,Open Medicine Foundation ME/CFS Collaborative Center at CHU Sainte-Justine/Université de Montréal, Montreal, Canada.,ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Office 2.17.027, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada. .,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada. .,Open Medicine Foundation ME/CFS Collaborative Center at CHU Sainte-Justine/Université de Montréal, Montreal, Canada. .,ICanCME Research Network, Sainte-Justine University Hospital Research Center, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada. .,Department of Stomatology, Faculty of Dentistry, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
11
|
Hussein M, Fathy W, Abdelaleem EA, Nasser M, Yehia A, Elanwar R. The Impact of Micro RNA-320a Serum Level on Severity of Symptoms and Cerebral Processing of Pain in Patients with Fibromyalgia. PAIN MEDICINE (MALDEN, MASS.) 2022; 23:2061-2072. [PMID: 35587745 DOI: 10.1093/pm/pnac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES The aim of this work was to explore the expression of miR-320a level in fibromyalgia patients in comparison to healthy controls, and to clarify its impact on the severity of symptoms and the cerebral processing of pain assessed by middle latency somatosensory evoked potentials (SSEPs). DESIGN Case-control study. SETTING Rheumatology and Neurology outpatient clinics. SUBJECTS Seventy-four fibromyalgia patients and seventy-four normal healthy controls. METHODS The included patients were subjected to detailed history taking, assessment of severity of fibromyalgia symptoms using the Fibromyalgia Impact Questionnaire Revised (FIQR), assessment of pain intensity using the Neuropathic Pain Symptom Inventory (NPSI), measurement of the serum level of miR-320a in addition to of measurement peak latencies and amplitudes of middle latency SSEPs. RESULTS Fibromyalgia patients had significantly higher micro-RNA-320a levels (0.907 ± 0.022) in comparison to controls (0.874 ± 0.015) (P-value < .001). The mean values of micro-RNA-320a levels were significantly higher in fibromyalgia patients with insomnia, chronic fatigue syndrome, persistent depressive disorder, and primary headache disorder than those without (P-value = .024, <.001, .006, .036 respectively). There were statistically significant positive correlations between micro-RNA-320a levels, and disease duration, FIQR, and NPSI total scores (P-value <0.001, 0.003, 0.002 respectively). There were no statistically significant correlations between micro-RNA-320a levels and middle latency SSEPs. DISCUSSION Micro-RNA-320a level is significantly upregulated in fibromyalgia patient. It has a crucial impact on the severity of symptoms but not related to the cerebral processing of pain.
Collapse
Affiliation(s)
- Mona Hussein
- Department of Neurology, Beni-Suef University, Beni-Suef, Egypt
| | - Wael Fathy
- Department of Anaesthesia, Surgical ICU and Pain management, Beni-Suef University, Beni-Suef, Egypt
| | - Enas A Abdelaleem
- Department of Rheumatology and Rehabilitation, Beni-Suef University, Beni-Suef, Egypt
| | - Mona Nasser
- Department of Clinical and Chemical pathology, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed Yehia
- Department of Internal medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab Elanwar
- Neuro diagnostic research center, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
12
|
Kader L, Willits A, Young EE. Editorial: The Impact of Micro RNA-320a Serum Level on Severity of Symptoms and Cerebral Processing of Pain in Patients with Fibromyalgia. PAIN MEDICINE (MALDEN, MASS.) 2022; 23:1925-1927. [PMID: 35861419 PMCID: PMC9960029 DOI: 10.1093/pm/pnac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/14/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Leena Kader
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Adam Willits
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Erin E Young
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
13
|
Assessment of miR-103a-3p in leukocytes-No diagnostic benefit in combination with the blood-based biomarkers mesothelin and calretinin for malignant pleural mesothelioma diagnosis. PLoS One 2022; 17:e0275936. [PMID: 36240245 PMCID: PMC9565669 DOI: 10.1371/journal.pone.0275936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a cancer associated with asbestos exposure and its diagnosis is challenging due to the moderate sensitivities of the available methods. In this regard, miR-103a-3p was considered to increase the sensitivity of established biomarkers to detect MPM. Its behavior and diagnostic value in the Mexican population has not been previously evaluated. In 108 confirmed MPM cases and 218 controls, almost all formerly exposed to asbestos, we quantified miR-103-3a-3p levels in leukocytes using quantitative Real-Time PCR, together with mesothelin and calretinin measured in plasma by ELISA. Sensitivity and specificity of miR-103-3a-3p alone and in combination with mesothelin and calretinin were determined. Bivariate analysis was performed using Mann-Whitney U test and Spearman correlation. Non-conditional logistic regression models were used to calculate the area under curve (AUC), sensitivity, and specificity for the combination of biomarkers. Mesothelin and calretinin levels were higher among cases, remaining as well among males and participants ≤60 years old (only mesothelin). Significant differences for miR-103a-3p were observed between male cases and controls, whereas significant differences between cases and controls for mesothelin and calretinin were observed in men and women. At 95.5% specificity the individual sensitivity of miR-103a-3p was 4.4% in men, whereas the sensitivity of mesothelin and calretinin was 72.2% and 80.9%, respectively. Positive correlations for miR-103a-3p were observed with age, environmental asbestos exposure, years with diabetes mellitus, and glucose levels, while negative correlations were observed with years of occupational asbestos exposure, creatinine, erythrocytes, direct bilirubin, and leukocytes. The addition of miR-103a-3p to mesothelin and calretinin did not increase the diagnostic performance for MPM diagnosis. However, miR-103a-3p levels were correlated with several characteristics in the Mexican population.
Collapse
|
14
|
Sabina S, Panico A, Mincarone P, Leo CG, Garbarino S, Grassi T, Bagordo F, De Donno A, Scoditti E, Tumolo MR. Expression and Biological Functions of miRNAs in Chronic Pain: A Review on Human Studies. Int J Mol Sci 2022; 23:ijms23116016. [PMID: 35682695 PMCID: PMC9181121 DOI: 10.3390/ijms23116016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic pain is a major public health problem and an economic burden worldwide. However, its underlying pathological mechanisms remain unclear. MicroRNAs (miRNAs) are a class of small noncoding RNAs that post-transcriptionally regulate gene expression and serve key roles in physiological and pathological processes. This review aims to synthesize the human studies examining miRNA expression in the pathogenesis of chronic primary pain and chronic secondary pain. Additionally, to understand the potential pathophysiological impact of miRNAs in these conditions, an in silico analysis was performed to reveal the target genes and pathways involved in primary and secondary pain and their differential regulation in the different types of chronic pain. The findings, methodological issues and challenges of miRNA research in the pathophysiology of chronic pain are discussed. The available evidence suggests the potential role of miRNA in disease pathogenesis and possibly the pain process, eventually enabling this role to be exploited for pain monitoring and management.
Collapse
Affiliation(s)
- Saverio Sabina
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
| | - Alessandra Panico
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| | - Pierpaolo Mincarone
- Institute for Research on Population and Social Policies, National Research Council, c/o ex Osp. Di Summa, Piazza Di Summa, 72100 Brindisi, Italy;
| | - Carlo Giacomo Leo
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
| | - Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Tiziana Grassi
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| | - Francesco Bagordo
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via Edoardo Orabona, 70126 Bari, Italy;
| | - Antonella De Donno
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| | - Egeria Scoditti
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
- Correspondence: ; Tel.: +39-(08)-3229-8860
| | - Maria Rosaria Tumolo
- Institute of Clinical Physiology, National Research Council, Via Monteroni, 73100 Lecce, Italy; (S.S.); (C.G.L.); (M.R.T.)
- Department of Biological and Environmental Sciences and Technology, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.P.); (T.G.); (A.D.D.)
| |
Collapse
|
15
|
Distinct CholinomiR Blood Cell Signature as a Potential Modulator of the Cholinergic System in Women with Fibromyalgia Syndrome. Cells 2022; 11:cells11081276. [PMID: 35455956 PMCID: PMC9031252 DOI: 10.3390/cells11081276] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Fibromyalgia syndrome (FMS) is a heterogeneous chronic pain syndrome characterized by musculoskeletal pain and other key co-morbidities including fatigue and a depressed mood. FMS involves altered functioning of the central and peripheral nervous system (CNS, PNS) and immune system, but the specific molecular pathophysiology remains unclear. Anti-cholinergic treatment is effective in FMS patient subgroups, and cholinergic signaling is a strong modulator of CNS and PNS immune processes. Therefore, we used whole blood small RNA-sequencing of female FMS patients and healthy controls to profile microRNA regulators of cholinergic transcripts (CholinomiRs). We compared microRNA profiles with those from Parkinson’s disease (PD) patients with pain as disease controls. We validated the sequencing results with quantitative real-time PCR (qRT-PCR) and identified cholinergic targets. Further, we measured serum cholinesterase activity in FMS patients and healthy controls. Small RNA-sequencing revealed FMS-specific changes in 19 CholinomiRs compared to healthy controls and PD patients. qRT-PCR validated miR-182-5p upregulation, distinguishing FMS patients from healthy controls. mRNA targets of CholinomiRs bone morphogenic protein receptor 2 and interleukin 6 signal transducer were downregulated. Serum acetylcholinesterase levels and cholinesterase activity in FMS patients were unchanged. Our findings identified an FMS-specific CholinomiR signature in whole blood, modulating immune-related gene expression.
Collapse
|
16
|
Expression of Selected microRNAs in Migraine: A New Class of Possible Biomarkers of Disease? Processes (Basel) 2021. [DOI: 10.3390/pr9122199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Preliminary but convergent findings suggest a role for microRNAs (miRNAs) in the generation and maintenance of chronic pain and migraine. Initial observations showed that serum levels of miR-382-5p and miR-34a-5p expression were increased in serum during the migraine attack, with miR-382-5p increasing in the interictal phase as well. By contrast, miR-30a-5p levels were lower in migraine patients compared to healthy controls. Of note, antimigraine treatments proved to be capable of influencing the expression of these miRNAs. Altogether, these observations suggest that miRNAs may represent migraine biomarkers, but several points are yet to be elucidated. A major concern is that these miRNAs are altered in a broad spectrum of painful and non-painful conditions, and thus it is not possible to consider them as truly “migraine-specific” biomarkers. We feel that these miRNAs may represent useful tools to uncover and define different phenotypes across the migraine spectrum with different treatment susceptibilities and clinical features, although further studies are needed to confirm our hypothesis. In this narrative review we provide an update and a critical analysis of available data on miRNAs and migraines in order to propose possible interpretations. Our main objective is to stimulate research in an area that holds promise when it comes to providing reliable biomarkers for theoretical and practical scientific advances.
Collapse
|
17
|
Cámara MS, Martín Bujanda M, Mendioroz Iriarte M. Epigenetic changes in headache. NEUROLOGÍA (ENGLISH EDITION) 2021; 36:369-376. [PMID: 34714235 DOI: 10.1016/j.nrleng.2017.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 10/26/2022] Open
Abstract
INTRODUCTION Multiple factors, including both genetic and environmental mechanisms, appear to play a role in the aetiology of headache. An interesting area of study is the possible involvement of epigenetic mechanisms in headache development and the transformation to chronic headache, and the potential role of these factors as a therapeutic target. METHODS We performed a literature review of the involvement of different epigenetic mechanisms in headache, mainly using the Medline/PubMed database. To this end, we used the following English search terms: headache, migraine, epigenetics, DNA methylation, histones, non-coding RNA, and miRNA. RESULTS A total of 15 English-language publications related to the above terms were obtained. CONCLUSION There is limited but consistent evidence of the relationship between epigenetics and headache; it is therefore essential to continue research of epigenetic changes in headache. This may help to understand the pathophysiology of headache and even to identify candidate biomarkers and new, more effective, therapeutic targets.
Collapse
Affiliation(s)
- M S Cámara
- Servicio de Neurología, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, Spain
| | - M Martín Bujanda
- Servicio de Neurología, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, Spain
| | - M Mendioroz Iriarte
- Servicio de Neurología, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, Spain; Laboratorio de Neuroepigenética, Navarrabiomed, IdiSNA, Pamplona, Spain.
| |
Collapse
|
18
|
Akaslan E, Güvener O, Görür A, Çelikcan DH, Tamer L, Biçer A. The plasma microRNA levels and their relationship with the general health and functional status in female patients with fibromyalgia syndrome. Arch Rheumatol 2021; 36:482-492. [PMID: 35382374 PMCID: PMC8957758 DOI: 10.46497/archrheumatol.2022.8363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/26/2021] [Indexed: 11/03/2022] Open
Abstract
Objectives: The aim of this study was to identify the plasma level of micro-ribonucleic acid (microRNA) expressions and the relationship between plasma microRNA levels with the general health and functional status in female patients with fibromyalgia syndrome (FMS).
Patients and methods: Thirty-five female patients (mean age: 42.0±11.8 years; range, 21 to 62 years) diagnosed as FMS and 35 sex-and age-matched healthy controls (mean age: 43.7±8.8 years; range, 21 to 56 years) were enrolled in the study. MicroRNA measurements of the participants in plasma were carried out by using the quantitative polymerase chain reaction (qPCR). A total of 11 plasma levels of microRNA expressions were examined in both groups. The general health and functional status of the patients and controls were assessed by the Fibromyalgia Impact Questionnaire (FIQ) and the Short Form-36 (SF-36) scale.
Results: No significant difference was observed between the plasma levels of microRNA expressions in patients with FMS and healthy controls. The plasma level of miR-320a expression was found to be negatively correlated with the total FIQ score in female patients with FMS (p=0.05, r=-0.34). Negative correlations were also detected between the plasma level of miR-320a and miR-320b expressions and the subscale score of SF-36 physical function in female patients with FMS (p=0.01, r=-0.43 and p=0.01, r=-0.43, respectively). A strong positive correlation was found between miR-142-3p and the subscale score of SF-36 mental symptom score in female patients with FMS (p<0.001, r=1.00).
Conclusion: The expression levels of microRNAs in plasma between female patients with FMS and controls were not significantly different. Only plasma levels of miR-320a, miR-320b, and miR-142-3p expressions were associated with the general health, functional status, and mental symptom score in female patients with FMS.
Collapse
Affiliation(s)
- Erbil Akaslan
- Department of Physical Medicine and Rehabilitation, Hatay State Hospital, Hatay, Turkey
| | - Orhan Güvener
- Department of Physical Medicine and Rehabilitation, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Ayşegül Görür
- Department of Medical Biochemistry, Mersin University Faculty of Medicine, Mersin, Turkey
| | | | - Lülüfer Tamer
- Department of Medical Biochemistry, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Ali Biçer
- Department of Physical Medicine and Rehabilitation, Mersin University Faculty of Medicine, Mersin, Turkey
| |
Collapse
|
19
|
Qureshi AG, Jha SK, Iskander J, Avanthika C, Jhaveri S, Patel VH, Rasagna Potini B, Talha Azam A. Diagnostic Challenges and Management of Fibromyalgia. Cureus 2021; 13:e18692. [PMID: 34786265 PMCID: PMC8580749 DOI: 10.7759/cureus.18692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization regards chronic pain to be a public health concern. In clinical medicine, fibromyalgia (FM) is the most prevalent chronic widespread pain disease. In terms of impairment, consumption of health and social resources, and impact on primary and speciality care systems, it has reached worrisome proportions. This disease is frequently managed by primary care providers. Because of its intricacy, fibromyalgia diagnosis and treatment can be difficult. Fibromyalgia is a controversial condition. It might appear ill-defined in comparison to other pain conditions, with no clear knowledge of pathophysiology and hence no particular targeted therapy. This invariably sparks debates and challenges. There is no obvious cut-off point that distinguishes FM from non-FM. The diagnosis of fibromyalgia has been complicated by several factors, including patients' health-seeking behaviour, symptom identification, and physician labelling of the disease. Fibromyalgia is currently considered a centralized pain condition, according to research that has improved our understanding of its etiopathology. A multidisciplinary strategy combining pharmacological and non-pharmacological therapies based on a biopsychosocial paradigm can result in effective therapy. Cultural and psychosocial variables appear to be a recent development in fibromyalgia, and they appear to have a larger influence on physician diagnosis than severe symptom levels in FM patients. Although physicians rely on FM criteria as the only way to classify FM patients in research and clinical settings, some crucial elements of the diagnostic challenge of fibromyalgia remain unsolved - invalidation, psychosocial variables, and diverse illness manifestation are some examples. Beyond the existing constructional scores, physicians' judgment gained in real communicative contexts with patients, appears to be the only dependable route for a more accurate diagnosis for fibromyalgia. We have performed an exhaustive review of the literature using the keywords "Fibromyalgia", "challenges" and "diagnosis" in PubMed and Google Scholar indexes up to September 2021. This article aims to examine the causes, diagnosis, and current treatment protocols of FM, as well as discuss some continuing debates and diagnostic challenges which physicians face in accurately diagnosing fibromyalgia.
Collapse
Affiliation(s)
- Aniqa G Qureshi
- Medicine and Surgery, Jinggangshan Medical University, Jian, CHN
| | - Saurav K Jha
- Internal Medicine, Kankai Hospital, Birtamode, NPL
| | - John Iskander
- Family Medicine, American University of Antigua, St. John's, ATG
| | - Chaithanya Avanthika
- Medicine and Surgery, Karnataka Institute of Medical Sciences, Hubli, IND
- Pediatrics, Karnataka Institute of Medical Sciences, Hubli, IND
| | - Sharan Jhaveri
- Medicine, Smt Nathiba Hargovandas Lakhmichand Municipal Medical College (NHLMMC), Ahmedabad, IND
| | - Vithi Hitendra Patel
- Family Medicine, GMERS Medical College and Hospital, Valsad, IND
- Internal Medicine, Gujarat Cancer Society Medical College and Research Center, Ahmedabad, IND
| | | | | |
Collapse
|
20
|
Yücel D. Downregulation of CSF-derived miRNAs miR-142-3p and miR-17-5p may be associated with post-dural puncture headache in pregnant women upon spinal anaesthesia. Braz J Anesthesiol 2021; 72:493-499. [PMID: 34563560 PMCID: PMC9373468 DOI: 10.1016/j.bjane.2021.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/19/2021] [Accepted: 08/28/2021] [Indexed: 11/15/2022] Open
Abstract
Background Postdural puncture headache (PDPH) develops due to puncture of the dura mater. The risk factors that influence PDPH incidence are Body Mass Index (BMI), sex, spinal needle type, history of headache, and loss of Cerebrospinal fluid (CSF) volume, yet there is no consensus on these risk factors. The pathophysiology of PDPH is poorly understood. The molecular pathways that may lead to PDPH are unknown. In this study, CSF – derived microRNAs (miRNAs) were investigated for their potential to predispose to PDPH in a population of pregnant women. Methods Pregnant women going under cesarean section via spinal anesthesia were included in the study with the criteria of the subjects presenting American Society of Anesthesiologists (ASA) physical status I. Patients were classified into two groups as with PDPH (n = 10) and without PDPH (n = 12) based on International Headache Society’s PDPH definition. CSF-derived microRNAs were investigated for their differential expression levels in PDPH patients compared with the healthy controls using microfluidic gene expression platform. Results Out of seventy-six miRNAs, two miRNAs, namely miR-142-3p and miR-17-5p, were significantly downregulated in PDPH patients (Mann-Whitney U test, p < 0,05). BMI and age did not influence PDPH occurrence. The mean visual analogue scale (VAS) of the PDPH patients was 6,8 out of 10. Conclusion We have shown that downregulation of miR-142-3p and miR-17-5p may predispose pregnant women to PDPH upon spinal anesthesia. However, which genes are targeted by miR-142-3p and miR-17-5p-mediated effect on PDPH remains to be elucidated.
Collapse
Affiliation(s)
- Duygu Yücel
- Erciyes University, Genome and Stem Cell Center (GenKok), Kayseri, Turkey.
| |
Collapse
|
21
|
Insights into the role of epigenetic mechanisms in migraine: the future perspective of disease management. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00366-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
22
|
Giordano R, Petersen KK, Santoro M, Pazzaglia C, Simonsen O, Valeriani M, Arendt-Nielsen L. Circulating long non-coding RNA signature in knee osteoarthritis patients with postoperative pain one-year after total knee replacement. Scand J Pain 2021; 21:823-830. [PMID: 34323060 DOI: 10.1515/sjpain-2021-0069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The incidence of chronic postoperative pain after total knee replacement (TKR) is approx. 20%, and hence preoperative risk factors are important to identify. Recent studies have indicated that preoperative inflammatory markers might hold prognostic information for the development of chronic postoperative pain. Long non-coding RNA (lncRNA) regulates the expression of genes related to e.g. inflammatory processes. The current study aimed to investigate the preoperative lncRNA signature as possible preoperative predictive markers for chronic postoperative pain following TKR. METHODS Serum samples, collected preoperatively from 20 knee osteoarthritis (KOA) patients, were analyzed for 84 validated circulatory lncRNA. Pain intensity was assessed using a visual analog scale (VAS) before and one-year after TKR. Differences for the lncRNA expression were analyzed between patients with chronic postoperative pain (VAS≥3) and those with a normal postoperative recovery (VAS<3). RESULTS LncRNA Myeloid Zinc Finger 1 Antisense RNA 1 (MZF1-AS1) (fold change -3.99; p-value: 0.038) (shown to be involved neuropathic pain) Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) (fold change -3.39; p-value: 0.044) (shown to be involved neuropathic pain); Patched 1 pseudogene (LOC100287846) (fold change -6.99; p-value: 0.029) (unknown in pain) were down-regulated preoperatively in the group with chronic postoperative pain compared to the group normal postoperative pain recovery. CONCLUSIONS These findings suggest, that TKR patients with chronic postoperative pain present preoperative downregulations of three specific lncRNA detectable at the systemic level. The presented study might give new insights into the complexity of chronic postoperative pain development and show how non-coding RNA plays a role in the underlying molecular mechanisms of pain.
Collapse
Affiliation(s)
- Rocco Giordano
- Department of Health Science and Technology, Faculty of Medicine, Center for Neuroplasticity and Pain (CNAP), SMI, Aalborg University, Aalborg, Denmark
| | - Kristian Kjær Petersen
- Department of Health Science and Technology, Faculty of Medicine, Center for Neuroplasticity and Pain (CNAP), SMI, Aalborg University, Aalborg, Denmark.,Department of Health Science and Technology, Faculty of Medicine, Center for Sensory-Motor Interaction (SMI), Aalborg University, Aalborg, Denmark
| | - Massimo Santoro
- Laboratory "Health and Environment" Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Costanza Pazzaglia
- Unit of High Intensity Neurorehabilitation, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ole Simonsen
- Orthopedic Surgery Research Unit, Aalborg University Hospital, Aalborg, Denmark
| | - Massimiliano Valeriani
- Department of Health Science and Technology, Faculty of Medicine, Center for Sensory-Motor Interaction (SMI), Aalborg University, Aalborg, Denmark.,Department of Neuroscience and Neurorehabilitation, Child Neurology Unit, Headache Center, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lars Arendt-Nielsen
- Department of Health Science and Technology, Faculty of Medicine, Center for Sensory-Motor Interaction (SMI), Aalborg University, Aalborg, Denmark
| |
Collapse
|
23
|
Giordano R, Petersen KK, Andersen HH, Lichota J, Valeriani M, Simonsen O, Arendt-Nielsen L. Preoperative serum circulating microRNAs as potential biomarkers for chronic postoperative pain after total knee replacement. Mol Pain 2021; 16:1744806920962925. [PMID: 33021154 PMCID: PMC7543153 DOI: 10.1177/1744806920962925] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Chronic postoperative pain affects approximately 20% of patients with knee
osteoarthritis after total knee replacement. Circulating microRNAs can be
found in serum and might act as biomarkers in a variety of diseases. The
current study aimed to investigate the preoperative expression of
circulating microRNAs as potential predictive biomarkers for the development
of chronic postoperative pain in the year following total knee
replacement. Methods Serum samples, collected preoperatively from 136 knee osteoarthritis
patients, were analyzed for 21 circulatory microRNAs. Pain intensity was
assessed using a visual analog scale before and one year after total knee
replacement. Patients were divided into a low-pain relief group (pain relief
percentage <30%) and a high-pain relief group (pain relief percentage
>30%) based on their pain relief one year after total knee replacement,
and differences in microRNAs expression were analyzed between the two
groups. Results We found that three microRNAs were preoperatively dysregulated in serum in
the low-pain relief group compared with the high-pain relief group.
MicroRNAs hsa-miR-146a-5p, -145-5p, and -130 b-3p exhibited fold changes of
1.50, 1.55, and 1.61, respectively, between the groups (all P
values < 0.05). Hsa-miR-146a-5p and preoperative pain intensity
correlated positively with postoperative pain relief (respectively,
R = 0.300, P = 0.006; R = 0.500, P < 0.001). Discussion This study showed that patients with a low postoperative pain relief present
a dysregulation of circulating microRNAs. Altered circulatory microRNAs
expression correlated with postoperative pain relief, indicating that
microRNAs can serve as predictive biomarkers of pain outcome after surgery
and hence may foster new strategies for preventing chronic postoperative
pain after total knee replacement (TKR).
Collapse
Affiliation(s)
- Rocco Giordano
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Kristian Kjær Petersen
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Hjalte Holm Andersen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Jacek Lichota
- Laboratory of Metabolism Modifying Medicine, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Massimiliano Valeriani
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Child Neurology Unit, Department of Neuroscience and Neurorehabilitation, Headache Center, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Ole Simonsen
- Orthopedic Surgery Research Unit, Aalborg University Hospital, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
24
|
Zhang L, Wu R, Xu MJ, Sha J, Xu GY, Wu J, Zhang PA. MiRNA-107 contributes to inflammatory pain by down-regulating GLT-1 expression in rat spinal dorsal horn. Eur J Pain 2021; 25:1254-1263. [PMID: 33559250 DOI: 10.1002/ejp.1745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Inflammatory pain is a severe clinical problem that affects the quality of life in patients. However, the currently available treatments for inflammatory pain have limited effect and even causes severe side effects. The aim of this study was to investigate the roles of miRNA-107 and glutamate transporter 1 (GLT-1) in the inflammatory pain of rats induced by complete Freund's adjuvant (CFA). METHODS Paw withdrawal threshold (PWT) of rats was measured by von Frey Filaments. The expressions of miRNA-107 and GLT-1 in the lumbar spinal dorsal horn (L4-L6) were measured with real-time quantitative PCR and western blotting analysis. Fluorescent in situ hybridization and fluorescent-immunohistochemistry were employed to detect the expression of miRNA-107, GLT-1 and co-location of miRNA-107 with GLT-1. RESULTS Injection of CFA significantly reduced PWT of rats. The miRNA-107 expression level was obviously up-regulated while the GLT-1 expression level was decreased in the spinal dorsal horn of CFA rats. miRNA-107 and GLT-1 were co-expressed in the same cells of the spinal dorsal horn in CFA rats. Ceftriaxone, a selective activator of GLT-1, obviously increased the PWT of CFA rats. Furthermore, antagomir of miRNA-107 reversed the down-regulation of GLT-1 and alleviated CFA-induced mechanical allodynia of CFA rats. CONCLUSIONS These results suggest that an increase of miR-107 contributes to inflammatory pain through downregulating GLT-1 expression, implying a promising strategy for pain therapy. SIGNIFICANCE The currently available treatments for inflammatory pain has limited effect even causes severe side effects. MiRNAs may have important diagnostic and therapeutic potential in inflammatory pain. In present study, we show a potential spinal mechanism of allodynia in rat inflammatory pain model induced by CFA. Increased miR-107 contribute to inflammatory pain by targeting and downregulating GLT-1 expression, implying a promising strategy for inflammatory pain.
Collapse
Affiliation(s)
- Ling Zhang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Rui Wu
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China.,Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Mei-Jie Xu
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Jie Sha
- JingJiang People's Hospital, Jingjiang, China
| | - Guang-Yin Xu
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China.,Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jian Wu
- JingJiang People's Hospital, Jingjiang, China
| | - Ping-An Zhang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China.,Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
25
|
Elliott JM, Rueckeis CA, Pan Y, Parrish TB, Walton DM, Linnstaedt SD. microRNA let-7i-5p mediates the relationship between muscle fat infiltration and neck pain disability following motor vehicle collision: a preliminary study. Sci Rep 2021; 11:3140. [PMID: 33542428 PMCID: PMC7862492 DOI: 10.1038/s41598-021-82734-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
Persistent neck-pain disability (PNPD) is common following traumatic stress exposures such as motor vehicle collision (MVC). Substantial literature indicates that fat infiltration into neck muscle (MFI) is associated with post-MVC PNPD. However, little is known about the molecular mediators underlying this association. In the current study, we assessed whether microRNA expression signatures predict PNPD and whether microRNA mediate the relationship between neck MFI and PNPD. A nested cohort of 43 individuals from a longitudinal study of MVC survivors, who provided blood (PAXgene RNA) and underwent magnetic resonance imaging (MRI), were included in the current study. Peritraumatic microRNA expression levels were quantified via small RNA sequencing, neck MFI via MRI, and PNPD via the Neck Disability Index two-weeks, three-months, and twelve-months following MVC. Repeated measures regression models were used to assess the relationship between microRNA and PNPD and to perform mediation analyses. Seventeen microRNA predicted PNPD following MVC. One microRNA, let-7i-5p, mediated the relationship between neck MFI and PNPD. Peritraumatic blood-based microRNA expression levels predict PNPD following MVC and let-7i-5p might contribute to the underlying effects of neck MFI on persistent disability. In conclusion, additional studies are needed to validate this finding.
Collapse
Affiliation(s)
- James M Elliott
- Faculty of Medicine and Health, The Northern Sydney Local Health District, The Kolling Institute, The University of Sydney, St. Leonards, NSW, Australia
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cathleen A Rueckeis
- Institute for Trauma Recovery, University of North Carolina, Campus Box #7010, Chapel Hill, NC, 27599-7010, USA
| | - Yue Pan
- Institute for Trauma Recovery, University of North Carolina, Campus Box #7010, Chapel Hill, NC, 27599-7010, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Todd B Parrish
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David M Walton
- School of Physical Therapy, Western University, London, ON, Canada
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, University of North Carolina, Campus Box #7010, Chapel Hill, NC, 27599-7010, USA.
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
26
|
MicroRNA-19b predicts widespread pain and posttraumatic stress symptom risk in a sex-dependent manner following trauma exposure. Pain 2021; 161:47-60. [PMID: 31569141 DOI: 10.1097/j.pain.0000000000001709] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Posttraumatic widespread pain (PTWP) and posttraumatic stress symptoms (PTSS) are frequent comorbid sequelae of trauma that occur at different rates in women and men. We sought to identify microRNA (miRNA) that may contribute to sex-dependent differences in vulnerability to these outcomes. Monte Carlo simulations (x10,000) identified miRNA in which predicted targeting of PTWP or PTSS genes was most enriched. Expression of the leading candidate miRNA to target PTWP/PTSS-related genes, miR-19b, has been shown to be influenced by estrogen and stress exposure. We evaluated whether peritraumatic miR-19b blood expression levels predicted PTWP and PTSS development in women and men experiencing trauma of motor vehicle collision (n = 179) and in women experiencing sexual assault trauma (n = 74). A sex-dependent relationship was observed between miR-19b expression levels and both PTWP (β = -2.41, P = 0.034) and PTSS (β = -3.01, P = 0.008) development 6 months after motor vehicle collision. The relationship between miR-19b and PTSS (but not PTWP) was validated in sexual assault survivors (β = -0.91, P = 0.013). Sex-dependent expression of miR-19b was also observed in blood and nervous tissue from 2 relevant animal models. Furthermore, in support of increasing evidence indicating a role for the circadian rhythm (CR) in PTWP and PTSS pathogenesis, miR-19b targets were enriched in CR gene transcripts. Human cohort and in vitro analyses assessing miR-19b regulation of key CR transcripts, CLOCK and RORA, supported the potential importance of miR-19b to regulating the CR pathway. Together, these results highlight the potential role that sex-dependent expression of miR-19b might play in PTWP and PTSS development after trauma/stress exposure.
Collapse
|
27
|
Genetic Variation as a Possible Explanation for the Heterogeneity of Pain in Tendinopathy: What can we learn from other pain syndromes? CENTRAL EUROPEAN JOURNAL OF SPORT SCIENCES AND MEDICINE 2021. [DOI: 10.18276/cej.2021.4-06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Pawlina-Tyszko K, Oczkowicz M, Gurgul A, Szmatoła T, Bugno-Poniewierska M. MicroRNA profiling of the pig periaqueductal grey (PAG) region reveals candidates potentially related to sex-dependent differences. Biol Sex Differ 2020; 11:67. [PMID: 33451362 PMCID: PMC7809845 DOI: 10.1186/s13293-020-00343-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background MicroRNAs indirectly orchestrate myriads of essential biological processes. A wide diversity of miRNAs of the neurodevelopmental importance characterizes the brain tissue, which, however, exhibits region-specific miRNA profile differences. One of the most conservative regions of the brain is periaqueductal grey (PAG) playing vital roles in significant functions of this organ, also those observed to be sex-influenced. The domestic pig is an important livestock species but is also believed to be an excellent human model. This is of particular importance for neurological research because of the similarity of pig and human brains as well as difficult access to human samples. However, the pig PAG profile has not been characterized so far. Moreover, molecular bases of sex differences connected with brain functioning, including miRNA expression profiles, have not been fully deciphered yet. Methods Thus, in this study, we applied next-generation sequencing to characterize pig PAG expressed microRNAs. Furthermore, we performed differential expression analysis between females and males to identify changes of the miRNA profile and reveal candidates underlying sex-related differences. Results As a result, known brain-enriched, and new miRNAs which will expand the available profile, were identified. The downstream analysis revealed 38 miRNAs being differentially expressed (DE) between female and male samples. Subsequent pathway analysis showed that they enrich processes vital for neuron growth and functioning, such as long-term depression and axon guidance. Among the identified sex-influenced miRNAs were also those associated with the PAG physiology and diseases related to this region. Conclusions The obtained results broaden the knowledge on the porcine PAG miRNAome, along with its dynamism reflected in different isomiR signatures. Moreover, they indicate possible mechanisms associated with sex-influenced differences mediated via miRNAs in the PAG functioning. They also provide candidate miRNAs for further research concerning, i.e., sex-related bases of physiological and pathological processes occurring in the nervous system. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13293-020-00343-2.
Collapse
Affiliation(s)
- Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Kraków, Poland.
| | - Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Kraków, Poland
| | - Artur Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Kraków, Poland.,Center for Experimental and Innovative Medicine, University of Agriculture in Kraków, Rędzina 1c, 30-248, Kraków, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Kraków, Poland.,Center for Experimental and Innovative Medicine, University of Agriculture in Kraków, Rędzina 1c, 30-248, Kraków, Poland
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, al. Mickiewicza 24/28, 30-059, Kraków, Poland
| |
Collapse
|
29
|
Braun A, Evdokimov D, Frank J, Sommer C, Üçeyler N. MiR103a-3p and miR107 are related to adaptive coping in a cluster of fibromyalgia patients. PLoS One 2020; 15:e0239286. [PMID: 32941517 PMCID: PMC7498021 DOI: 10.1371/journal.pone.0239286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 09/03/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND MicroRNA (miRNA) mainly inhibit post-transcriptional gene expression of specific targets and may modulate disease severity. OBJECTIVE We aimed to identify miRNA signatures distinguishing patient clusters with fibromyalgia syndrome (FMS). SUBJECTS AND METHODS We previously determined four FMS patient clusters labelled "maladaptive", "adaptive", "vulnerable", and "resilient". Here, we cluster-wise assessed relative gene expression of miR103a-3p, miR107, miR130a-3p, and miR125a-5p in white blood cell (WBC) RNA of 31 FMS patients and 16 healthy controls. Sum scores of pain-, stress-, and resilience-related questionnaires were correlated with miRNA relative gene expression. A cluster-specific speculative model of a miRNA-mediated regulatory cycle was proposed, and its potential targets verified by the online tool "target scan human". RESULTS One-way ANOVA revealed lower gene expression of miR103a-3p, miR107, and miR130a-3p in FMS patients compared to controls (p < 0.05). Follow-up post-hoc tests indicated the highest peak of gene expression of miR103a-3p for the adaptive cluster (p < 0.05), i.e. in patients with low disability in all symptom categories. Gene expression of miR103a-3p correlated with FMS related disability and miR107 with the score "physical abuse" of the trauma questionnaire (p < 0.05). Target scan identified sucrose non-fermentable serine/threonine protein kinase, nuclear factor kappa-b, cyclin dependent kinase, and toll-like receptor 4 as genetic targets of the miR103a/107 miRNA family. CONCLUSION We show an association between upregulated gene expression of miR103a, tendentially of miR107, and adaptive coping in FMS patients. Validation of this pair of miRNA may enable to identify a somatic resilience factor in FMS.
Collapse
Affiliation(s)
- Alexandra Braun
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | | | - Johanna Frank
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
Polli A, Godderis L, Ghosh M, Ickmans K, Nijs J. Epigenetic and miRNA Expression Changes in People with Pain: A Systematic Review. THE JOURNAL OF PAIN 2020; 21:763-780. [DOI: 10.1016/j.jpain.2019.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/30/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
|
31
|
Cheema AK, Sarria L, Bekheit M, Collado F, Almenar‐Pérez E, Martín‐Martínez E, Alegre J, Castro‐Marrero J, Fletcher MA, Klimas NG, Oltra E, Nathanson L. Unravelling myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): Gender-specific changes in the microRNA expression profiling in ME/CFS. J Cell Mol Med 2020; 24:5865-5877. [PMID: 32291908 PMCID: PMC7214164 DOI: 10.1111/jcmm.15260] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem illness characterized by medically unexplained debilitating fatigue with suggested altered immunological state. Our study aimed to explore peripheral blood mononuclear cells (PBMCs) for microRNAs (miRNAs) expression in ME/CFS subjects under an exercise challenge. The findings highlight the immune response and inflammation links to differential miRNA expression in ME/CFS. The present study is particularly important in being the first to uncover the differences that exist in miRNA expression patterns in males and females with ME/CFS in response to exercise. This provides new evidence for the understanding of differential miRNA expression patterns and post-exertional malaise in ME/CFS. We also report miRNA expression pattern differences associating with the nutritional status in individuals with ME/CFS, highlighting the effect of subjects' metabolic state on molecular changes to be considered in clinical research within the NINDS/CDC ME/CFS Common Data Elements. The identification of gender-based miRNAs importantly provides new insights into gender-specific ME/CFS susceptibility and demands exploration of sex-suited ME/CFS therapeutics.
Collapse
Affiliation(s)
- Amanpreet K. Cheema
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of NutritionDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
| | - Leonor Sarria
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
| | - Mina Bekheit
- Halmos College of Natural Sciences and OceanographyNova Southeastern UniversityFort LauderdaleFLUSA
| | - Fanny Collado
- Department of Veterans AffairsMiami VA Healthcare System, Research ServiceMiamiFLUSA
- South Florida Veterans Affairs Foundation for Research and Education IncFort LauderdaleFLUSA
| | - Eloy Almenar‐Pérez
- Escuela de DoctoradoUniversidad Católica de Valencia San Vicente MártirValenciaSpain
| | | | - Jose Alegre
- Vall d'Hebron University HospitalVall d'Hebron Research InstituteUniversitat Autónoma de BarcelonaBarcelonaSpain
| | - Jesus Castro‐Marrero
- Vall d'Hebron University HospitalVall d'Hebron Research InstituteUniversitat Autónoma de BarcelonaBarcelonaSpain
| | - Mary A. Fletcher
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of Veterans AffairsMiami VA Healthcare System, Research ServiceMiamiFLUSA
- South Florida Veterans Affairs Foundation for Research and Education IncFort LauderdaleFLUSA
| | - Nancy G. Klimas
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of Veterans AffairsMiami VA Healthcare System, Research ServiceMiamiFLUSA
- South Florida Veterans Affairs Foundation for Research and Education IncFort LauderdaleFLUSA
| | - Elisa Oltra
- School of MedicineUniversidad Católica de Valencia San Vicente MártirValenciaSpain
| | - Lubov Nathanson
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of NutritionDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Halmos College of Natural Sciences and OceanographyNova Southeastern UniversityFort LauderdaleFLUSA
| |
Collapse
|
32
|
Ovejero T, Sadones O, Sánchez-Fito T, Almenar-Pérez E, Espejo JA, Martín-Martínez E, Nathanson L, Oltra E. Activation of Transposable Elements in Immune Cells of Fibromyalgia Patients. Int J Mol Sci 2020; 21:E1366. [PMID: 32085571 PMCID: PMC7072917 DOI: 10.3390/ijms21041366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Advancements in nucleic acid sequencing technology combined with an unprecedented availability of metadata have revealed that 45% of the human genome constituted by transposable elements (TEs) is not only transcriptionally active but also physiologically necessary. Dysregulation of TEs, including human retroviral endogenous sequences (HERVs) has been shown to associate with several neurologic and autoimmune diseases, including Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). However, no study has yet addressed whether abnormal expression of these sequences correlates with fibromyalgia (FM), a disease frequently comorbid with ME/CFS. The work presented here shows, for the first time, that, in fact, HERVs of the H, K and W types are overexpressed in immune cells of FM patients with or without comorbid ME/CFS. Patients with increased HERV expression (N = 14) presented increased levels of interferon (INF-β and INF-γ) but unchanged levels of TNF-α. The findings reported in this study could explain the flu-like symptoms FM patients present with in clinical practice, in the absence of concomitant infections. Future work aimed at identifying specific genomic loci differentially affected in FM and/or ME/CFS is warranted.
Collapse
Affiliation(s)
- Tamara Ovejero
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | | | - Teresa Sánchez-Fito
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46008 Valencia, Spain; (T.S.-F.); (E.A.-P.)
| | - Eloy Almenar-Pérez
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46008 Valencia, Spain; (T.S.-F.); (E.A.-P.)
| | - José Andrés Espejo
- School of Biotechnology, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | | | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Nova Southeastern University, Ft Lauderdale, FL 33314, USA;
| | - Elisa Oltra
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
33
|
欧阳 碧, 唐 朝, 侯 新, 陈 旦, 郭 曲, 翁 莹. [Trichostatin A suppresses up-regulation of histone deacetylase 4 and reverses differential expressions of miRNAs in the spinal cord of rats with chronic constrictive injury]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1421-1426. [PMID: 31907145 PMCID: PMC6942983 DOI: 10.12122/j.issn.1673-4254.2019.12.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To explore the analgesic mechanism of intrathecal trichostatin A (TSA) injection in a rat model of neuropathic pain induced by chronic constrictive injury (CCI). METHODS Male SD rats were randomized into sham operation+ DMSO group (group S), CCI +DMSO group (group C), CCI +10 μg TSA group (group T), and in the latter two groups, rat models of neuropathic pain were established induced by CCI. The rats were given intrathecal injections of 10 μL 5% DMSO or 10 μg TSA (in 5% DMSO) once a day on days 7 to 9 after CCI or sham operation. The rats were euthanized after behavioral tests on day 10, and the lumbar segment of the spinal cord was sampled to determine the expression of histone deacetylase 4 (HDAC4) protein and mRNA and detect the differentially expressed miRNAs using a miRNA chip. MiR-190b-5p and miR-142-3p were selected for validation of the results using RT-qPCR. RESULTS Compared with those in group S, the rats in group C showed significantly decreased paw withdrawal mechanical threshold (PWMT) from day 3 to day 10 after CCI (P < 0.05); intrathecal injection of TSA significantly reversed the reduction of PWMT following CCI (P < 0.05). Positive HDAC4 expression was detected mainly in the cytoplasm of the neurons in the gray matter of the spinal cord, and was obviously up-regulated after CCI (Ρ < 0.05). Intrathecal injection of TSA significantly suppressed CCI-induced up-regulation of HDAC4 at 10 days after the operation (P < 0.05). Compared with the miRNA profile in group S, miRNA profiling identified 83 differentially expressed miRNAs in group C (fold change ≥2 or ≤0.5, P < 0.05); TSA treatment reversed the expressions of 58 of the differentially expressed miRNAs following CCI, including 41 miRNAs that were decreased after CCI but up-regulated following TSA treatment. The results of real-time PCR validated the changes in the expressions of miR-190b-5p and miR-142-3p. CONCLUSIONS TSA suppresses CCI-induced up-regulation of HDAC4 and reverses differential expressions of miRNAs in the spinal cord of rats, which may contribute to the analgesic effect of TSA on neuropathic pain.
Collapse
Affiliation(s)
- 碧函 欧阳
- 中南大学湘雅医院 健康管理中心,湖南 长沙 410008Health Management Center, Xiangya Hospital of Central South University, Changsha 410008, China
| | - 朝辉 唐
- 中南大学湘雅医院 麻醉科,湖南 长沙 410008Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - 新冉 侯
- 中南大学湘雅医院 麻醉科,湖南 长沙 410008Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - 旦 陈
- 中南大学湘雅医院 麻醉科,湖南 长沙 410008Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - 曲练 郭
- 中南大学湘雅医院 麻醉科,湖南 长沙 410008Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - 莹琪 翁
- 中南大学湘雅医院 麻醉科,湖南 长沙 410008Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| |
Collapse
|
34
|
Stone D, Bogaardt H, Linnstaedt SD, Martin-Harris B, Smith AC, Walton DM, Ward E, Elliott JM. Whiplash-Associated Dysphagia: Considerations of Potential Incidence and Mechanisms. Dysphagia 2019; 35:403-413. [PMID: 31377863 DOI: 10.1007/s00455-019-10039-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/09/2019] [Accepted: 07/20/2019] [Indexed: 12/14/2022]
Abstract
Non-specific self-reports of dysphagia have been described in people with whiplash-associated disorders (WAD) following motor vehicle collision (MVC); however, incidence and mechanistic drivers remain poorly understood. Alterations in oropharyngeal dimensions on magnetic resonance imaging (MRI), along with heightened levels of stress, pain, and changes in stress-dependent microRNA expression (e.g., miR-320a) have been also associated with WAD, suggesting multi-factorial issues may underpin any potential swallowing changes. In this exploratory paper, we examine key biopsychosocial parameters in three patients with persistent WAD reporting swallowing change and three nominating full recovery after whiplash with no reported swallowing change. Parameters included (1) oropharyngeal volume with 3D MRI, (2) peritraumatic miR-320a expression, and (3) psychological distress. These factors were explored to highlight the complexity of patient presentation and propose future considerations in relation to a potential deglutition disorder following WAD. The three participants reporting changes in swallowing all had smaller oropharyngeal volumes at < 1 week and at 3 months post injury and lower levels of peritraumatic miR-320a. At 3 months post MVC, oropharyngeal volumes between groups indicated a large effect size (Hedge's g = 0.96). Higher levels of distress were reported at both time points for those with persistent symptomatology, including self-reported dysphagia, however, this was not featured in those nominating recovery. This paper considers current evidence for dysphagia as a potentially under-recognized feature of WAD and highlights the need for future, larger-scaled, multidimensional investigation into the incidence and mechanisms of whiplash-associated dysphagia.
Collapse
Affiliation(s)
- D Stone
- Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia.
- Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, Australia.
- Neuromuscular Imaging Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney, Australia.
- Speech Pathology Department, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.
| | - H Bogaardt
- Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia
| | - S D Linnstaedt
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - B Martin-Harris
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, School of Communication, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - A C Smith
- School of Physical Therapy, Regis University, Denver, CO, USA
| | - D M Walton
- School of Physical Therapy, Western University, London, ON, Canada
| | - E Ward
- School of Health and Rehabilitation Sciences, The University of Queensland and Centre for Functioning and Health Research (CFAHR), Metro South Hospital and Health Services, Brisbane, QLD, Australia
| | - J M Elliott
- Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia
- Neuromuscular Imaging Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney, Australia
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
35
|
Dayer CF, Luthi F, Le Carré J, Vuistiner P, Terrier P, Benaim C, Giacobino JP, Léger B. Differences in the miRNA signatures of chronic musculoskeletal pain patients from neuropathic or nociceptive origins. PLoS One 2019; 14:e0219311. [PMID: 31276478 PMCID: PMC6611606 DOI: 10.1371/journal.pone.0219311] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/20/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The quality of life for millions of people worldwide is affected by chronic pain. In addition to the effect of chronic pain on well-being, chronic pain has also been associated with poor health conditions and increased mortality. Due to its multifactorial origin, the classification of pain types remains challenging. MicroRNAs (miRNA) are small molecules that regulate gene expression. They are released into the bloodstream in a stable manner under normal and pathological conditions and have been described as potential biomarkers. In the present study, we aimed to investigate whether pain may induce an aberrant, specific dysregulation of miRNA expression, depending on the origin of the pain. METHODS AND FINDINGS To do so, we measured the expression changes of 184 circulating miRNAs (c-miRNAs) in the plasma samples of patients with different origins of chronic musculoskeletal pain. After statistical analyses, we identified seven c-miRNA candidates that were differentially expressed depending on the nociceptive or neuropathic origin of the pain. We then developed a two c-miRNA signature (hsa-miR-320a and hsa-miR-98-5p) that was able to correctly classify the pain type of 70% of the patients from the validation set. CONCLUSIONS In conclusion, circulating miRNAs are promising biomarkers to identify and characterize the chronic pain type and to further improve its clinical management.
Collapse
Affiliation(s)
- Camille Florine Dayer
- Institute for Research in Rehabilitation, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Medical Research, Clinique Romande de Réadaptation, Sion, Switzerland
| | - François Luthi
- Institute for Research in Rehabilitation, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Musculoskeletal Rehabilitation, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Physical Medicine and Rehabilitation, Orthopedic Hospital, University Hospital of Lausanne, Lausanne, Switzerland
| | - Joane Le Carré
- Institute for Research in Rehabilitation, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Medical Research, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Philippe Vuistiner
- Institute for Research in Rehabilitation, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Medical Research, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Philippe Terrier
- Institute for Research in Rehabilitation, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Medical Research, Clinique Romande de Réadaptation, Sion, Switzerland
- Haute Ecole Arc Santé, HES-SO University of Applied Sciences and Arts Western Switzerland, Neuchâtel, Switzerland
| | - Charles Benaim
- Department of Physical Medicine and Rehabilitation, Orthopedic Hospital, University Hospital of Lausanne, Lausanne, Switzerland
| | - Jean-Paul Giacobino
- Institute for Research in Rehabilitation, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Bertrand Léger
- Institute for Research in Rehabilitation, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Medical Research, Clinique Romande de Réadaptation, Sion, Switzerland
| |
Collapse
|
36
|
Abstract
Peripheral nerve injuries and diseases often lead to pain persisting beyond the resolution of damage, indicating an active disease-promoting process, which may result in chronic pain. This is regarded as a maladaptive mechanism resulting from neuroinflammation that originally serves to promote regeneration and healing. Knowledge on these physiological and pathophysiological processes has accumulated over the last few decades and has started to yield potential therapeutic targets. Key players are macrophages, T-lymphocytes, cytokines, and chemokines. In the spinal cord and brain, microglia and astrocytes are involved. Recently, data have been emerging on the regulation of these players. MicroRNAs and other noncoding RNAs have been discussed as potential master switches that may link nerve injury, pain, and inflammation. Clinical disorders most intensely studied in the context of neuroinflammation and pain are the complex regional pain syndrome, polyneuropathies, postherpetic neuralgia, and the fibromyalgia syndrome, in which recently a neuropathic component has been described. Research from several groups has shown an important role of both proinflammatory and anti-inflammatory cytokines in neuropathic and other chronic pain states in humans. There is ample evidence of an analgesic action of anti-inflammatory cytokines in animal models. The interplay of anti-inflammatory cytokines and the nociceptive system provides possibilities and challenges concerning treatment strategies based on this concept.
Collapse
|
37
|
Almenar-Pérez E, Sánchez-Fito T, Ovejero T, Nathanson L, Oltra E. Impact of Polypharmacy on Candidate Biomarker miRNomes for the Diagnosis of Fibromyalgia and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Striking Back on Treatments. Pharmaceutics 2019; 11:pharmaceutics11030126. [PMID: 30889846 PMCID: PMC6471415 DOI: 10.3390/pharmaceutics11030126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Fibromyalgia (FM) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are diseases of unknown etiology presenting complex and often overlapping symptomatology. Despite promising advances on the study of miRNomes of these diseases, no validated molecular diagnostic biomarker yet exists. Since FM and ME/CFS patient treatments commonly include polypharmacy, it is of concern that biomarker miRNAs are masked by drug interactions. Aiming at discriminating between drug-effects and true disease-associated differential miRNA expression, we evaluated the potential impact of commonly prescribed drugs on disease miRNomes, as reported by the literature. By using the web search tools SM2miR, Pharmaco-miR, and repoDB, we found a list of commonly prescribed drugs that impact FM and ME/CFS miRNomes and therefore could be interfering in the process of biomarker discovery. On another end, disease-associated miRNomes may incline a patient’s response to treatment and toxicity. Here, we explored treatments for diseases in general that could be affected by FM and ME/CFS miRNomes, finding a long list of them, including treatments for lymphoma, a type of cancer affecting ME/CFS patients at a higher rate than healthy population. We conclude that FM and ME/CFS miRNomes could help refine pharmacogenomic/pharmacoepigenomic analysis to elevate future personalized medicine and precision medicine programs in the clinic.
Collapse
Affiliation(s)
- Eloy Almenar-Pérez
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain.
| | - Teresa Sánchez-Fito
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain.
| | - Tamara Ovejero
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain.
| | - Lubov Nathanson
- Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Ft Lauderdale, FL 33314, USA.
- Institute for Neuro Immune Medicine, Nova Southeastern University, Ft Lauderdale, FL 33314, USA.
| | - Elisa Oltra
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain.
- Unidad Mixta CIPF-UCV, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.
| |
Collapse
|
38
|
D’Agnelli S, Arendt-Nielsen L, Gerra MC, Zatorri K, Boggiani L, Baciarello M, Bignami E. Fibromyalgia: Genetics and epigenetics insights may provide the basis for the development of diagnostic biomarkers. Mol Pain 2019; 15:1744806918819944. [PMID: 30486733 PMCID: PMC6322092 DOI: 10.1177/1744806918819944] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/03/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022] Open
Abstract
Fibromyalgia is a disease characterized by chronic widespread pain with additional symptoms, such as joint stiffness, fatigue, sleep disturbance, cognitive dysfunction, and depression. Currently, fibromyalgia diagnosis is based exclusively on a comprehensive clinical assessment, according to 2016 ACR criteria, but validated biological biomarkers associated with fibromyalgia have not yet been identified. Genome-wide association studies investigated genes potentially involved in fibromyalgia pathogenesis highlighting that genetic factors are possibly responsible for up to 50% of the disease susceptibility. Potential candidate genes found associated to fibromyalgia are SLC64A4, TRPV2, MYT1L, and NRXN3. Furthermore, a gene-environmental interaction has been proposed as triggering mechanism, through epigenetic alterations: In particular, fibromyalgia appears to be characterized by a hypomethylated DNA pattern, in genes implicated in stress response, DNA repair, autonomic system response, and subcortical neuronal abnormalities. Differences in the genome-wide expression profile of microRNAs were found among multiple tissues, indicating the involvement of distinct processes in fibromyalgia pathogenesis. Further studies should be dedicated to strength these preliminary findings, in larger multicenter cohorts, to identify reliable directions for biomarker research and clinical practice.
Collapse
Affiliation(s)
- Simona D’Agnelli
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Maria C Gerra
- Department of Health Science and Technology, Aalborg University, Denmark
| | - Katia Zatorri
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Lorenzo Boggiani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Baciarello
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elena Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
39
|
Unraveling the Molecular Determinants of Manual Therapy: An Approach to Integrative Therapeutics for the Treatment of Fibromyalgia and Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. Int J Mol Sci 2018; 19:ijms19092673. [PMID: 30205597 PMCID: PMC6164741 DOI: 10.3390/ijms19092673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 12/29/2022] Open
Abstract
Application of protocols without parameter standardization and appropriate controls has led manual therapy (MT) and other physiotherapy-based approaches to controversial outcomes. Thus, there is an urgency to carefully define standard protocols that elevate physiotherapy treatments to rigorous scientific demands. One way in which this can be achieved is by studying gene expression and physiological changes that associate to particular, parameter-controlled, treatments in animal models, and translating this knowledge to properly designed, objective, quantitatively-monitored clinical trials (CTs). Here, we propose a molecular physiotherapy approach (MPTA) requiring multidisciplinary teams, to uncover the scientific reasons behind the numerous reports that historically attribute health benefits to MT-treatments. The review focuses on the identification of MT-induced physiological and molecular responses that could be used for the treatment of fibromyalgia (FM) and chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). The systemic effects associated to mechanical-load responses are considered of particular relevance, as they suggest that defined, low-pain anatomic areas can be selected for MT treatment and yet yield overall benefits, an aspect that might result in it being essential to treat FM. Additionally, MT can provide muscle conditioning to sedentary patients without demanding strenuous physical effort, which is particularly detrimental for CFS/ME patients, placing MT as a real option for integrative medicine programs to improve FM and CFS/ME.
Collapse
|
40
|
A Functional riboSNitch in the 3' Untranslated Region of FKBP5 Alters MicroRNA-320a Binding Efficiency and Mediates Vulnerability to Chronic Post-Traumatic Pain. J Neurosci 2018; 38:8407-8420. [PMID: 30150364 DOI: 10.1523/jneurosci.3458-17.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 01/30/2023] Open
Abstract
Previous studies have shown that common variants of the gene coding for FK506-binding protein 51 (FKBP5), a critical regulator of glucocorticoid sensitivity, affect vulnerability to stress-related disorders. In a previous report, FKBP5 rs1360780 was identified as a functional variant because of its effect on gene methylation. Here we report evidence for a novel functional FKBP5 allele, rs3800373. This study assessed the association between rs3800373 and post-traumatic chronic pain in 1607 women and men from two ethnically diverse human cohorts. The molecular mechanism through which rs3800373 affects adverse outcomes was established via in silico, in vivo, and in vitro analyses. The rs3800373 minor allele predicted worse adverse outcomes after trauma exposure, such that individuals with the minor (risk) allele developed more severe post-traumatic chronic musculoskeletal pain. Among these individuals, peritraumatic circulating FKBP5 expression levels increased as cortisol and glucocorticoid receptor (NR3C1) mRNA levels increased, consistent with increased glucocorticoid resistance. Bioinformatic, in vitro, and mutational analyses indicate that the rs3800373 minor allele reduces the binding of a stress- and pain-associated microRNA, miR-320a, to FKBP5 via altering the FKBP5 mRNA 3'UTR secondary structure (i.e., is a riboSNitch). This results in relatively greater FKBP5 translation, unchecked by miR-320a. Overall, these results identify an important gene-miRNA interaction influencing chronic pain risk in vulnerable individuals and suggest that exogenous methods to achieve targeted reduction in poststress FKBP5 mRNA expression may constitute useful therapeutic strategies.SIGNIFICANCE STATEMENT FKBP5 is a critical regulator of the stress response. Previous studies have shown that dysregulation of the expression of this gene plays a role in the pathogenesis of chronic pain development as well as a number of comorbid neuropsychiatric disorders. In the current study, we identified a functional allele (rs3800373) in the 3'UTR of FKBP5 that influences vulnerability to chronic post-traumatic pain in two ethnic cohorts. Using multiple complementary experimental approaches, we show that the FKBP5 rs3800373 minor allele alters the secondary structure of FKBP5 mRNA, decreasing the binding of a stress- and pain-associated microRNA, miR-320a. This results in relatively greater FKBP5 translation, unchecked by miR-320a, increasing glucocorticoid resistance and increasing vulnerability to post-traumatic pain.
Collapse
|
41
|
Yavne Y, Amital D, Watad A, Tiosano S, Amital H. A systematic review of precipitating physical and psychological traumatic events in the development of fibromyalgia. Semin Arthritis Rheum 2018; 48:121-133. [DOI: 10.1016/j.semarthrit.2017.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/11/2017] [Accepted: 12/09/2017] [Indexed: 01/09/2023]
|
42
|
Abstract
To evaluate changes in DNA methylation profiles in patients with fibromyalgia (FM) compared to matched healthy controls (HCs). All individuals underwent full clinical and neurophysiological assessment by cortical excitability (CE) parameters measured by transcranial magnetic stimulation. DNA from the peripheral blood of patients with FM (n = 24) and HC (n = 24) were assessed using the Illumina-HumanMethylation450 BeadChips. We identified 1610 differentially methylated positions (DMPs) in patients with FM displaying a nonrandom distribution in regions of the genome. Sixty-nine percent of DMP in FM were hypomethylated compared to HC. Differentially methylated positions were enriched in 5 genomic regions (1p34; 6p21; 10q26; 17q25; 19q13). The functional characterization of 960 genes related to DMPs revealed an enrichment for MAPK signaling pathway (n = 18 genes), regulation of actin cytoskeleton (n = 15 genes), and focal adhesion (n = 13 genes). A gene-gene interaction network enrichment analysis revealed the participation of DNA repair pathways, mitochondria-related processes, and synaptic signaling. Even though DNA was extracted from peripheral blood, this set of genes was enriched for disorders such as schizophrenia, mood disorders, bulimia, hyperphagia, and obesity. Remarkably, the hierarchical clusterization based on the methylation levels of the 1610 DMPs showed an association with neurophysiological measurements of CE in FM and HC. Fibromyalgia has a hypomethylation DNA pattern, which is enriched in genes implicated in stress response and DNA repair/free radical clearance. These changes occurred parallel to changes in CE parameters. New epigenetic insights into the pathophysiology of FM may provide the basis for the development of biomarkers of this disorder.
Collapse
|
43
|
Ciregia F, Giacomelli C, Giusti L, Boldrini C, Piga I, Pepe P, Consensi A, Gori S, Lucacchini A, Mazzoni MR, Bazzichi L. Putative salivary biomarkers useful to differentiate patients with fibromyalgia. J Proteomics 2018; 190:44-54. [PMID: 29654921 DOI: 10.1016/j.jprot.2018.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/13/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022]
Abstract
Fibromyalgia (FM) is a chronic pain disorder characterized by widespread pain and associated with unspecific symptoms. So far, no laboratory tests have been validated. The aim of the present study was to investigate the presence in saliva of potential diagnostic and/or prognostic biomarkers which could be useful for the management of FM patients. Specifically, the salivary profile of FM patients was compared with those of healthy subjects, subjects suffering migraine (model of non-inflammatory chronic pain), and patients affected by rheumatoid arthritis (model of inflammatory chronic pain). For proteomics analysis 2-DE and SELDI-TOF-MS were applied. From 2-DE serotransferrin and alpha-enolase were found differentially expressed in FM. Hence, their expression was validated by ELISA together with phosphoglycerate-mutase-I and transaldolase, which were found in a previous work. Moreover, ROC curve was calculated by comparing FM patients versus control subjects (healthy plus migraine) to investigate the discriminative power of biomarkers. The best performance was obtained by combining alpha-enolase, phosphoglycerate-mutase-I and serotransferrin. On the other hand, none of the candidate proteins showed a statistical correlation with clinical features. Finally, preliminary SELDI analysis highlighted two peaks whose identification need to be validated. Overall, these results could be useful in supporting the clinical diagnosis of FM. SIGNIFICANCE: FM is one of the most common chronic pain condition which is associated with significant disability. The fibromyalgic pain is a peculiar characteristic of this disease and FM patients suffer from reduced quality of life, daily functioning and productivity. Considering the deep complexity of FM, the discovery of more objective markers is crucial for supporting clinical diagnosis. Therefore, the aim of the present study was the selection of biomarkers effectively associated with fibromyalgic pain which will enable clinicians to achieve an unambiguous diagnosis, and to improve approaches to patients' management. We defined a panel of 3 salivary proteins which could be one of the criteria to be taken into account. Consequently, the identification of disease salivary biomarkers could be helpful in detecting FM clusters and targeted treatment. Actually, our future perspective foresees to develop a simple, rapid and not invasive point-of-care testing which will be of use during the diagnostic process. In addition, the present results can offer a clue for shedding light upon the complex entity of such a disease like FM.
Collapse
Affiliation(s)
- Federica Ciregia
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Camillo Giacomelli
- Rheumatology Operative Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Laura Giusti
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| | - Claudia Boldrini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Isabella Piga
- School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Pasquale Pepe
- Rheumatology Operative Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Arianna Consensi
- Rheumatology Operative Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Sara Gori
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | | | - Maria R Mazzoni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Laura Bazzichi
- Rheumatology Operative Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| |
Collapse
|
44
|
Abstract
INTRODUCTION Multiple factors, including both genetic and environmental mechanisms, appear to play a role in the aetiology of headache. An interesting area of study is the possible involvement of epigenetic mechanisms in headache development and the transformation to chronic headache, and the potential role of these factors as a therapeutic target. METHODS We performed a literature review of the involvement of different epigenetic mechanisms in headache, mainly using the Medline/PubMed database. To this end, we used the following English search terms: headache, migraine, epigenetics, DNA methylation, histones, non-coding RNA, and miRNA. RESULTS A total of 15 English-language publications related to the above terms were obtained. CONCLUSION There is limited but consistent evidence of the relationship between epigenetics and headache; it is therefore essential to continue research of epigenetic changes in headache. This may help to understand the pathophysiology of headache and even to identify candidate biomarkers and new, more effective, therapeutic targets.
Collapse
Affiliation(s)
- M S Cámara
- Servicio de Neurología, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, España
| | - M Martín Bujanda
- Servicio de Neurología, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, España
| | - M Mendioroz Iriarte
- Servicio de Neurología, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, España; Laboratorio de Neuroepigenética, Navarrabiomed, IdiSNA, Pamplona, España.
| |
Collapse
|
45
|
|
46
|
Increased cutaneous miR-let-7d expression correlates with small nerve fiber pathology in patients with fibromyalgia syndrome. Pain 2017; 157:2493-2503. [PMID: 27429177 DOI: 10.1097/j.pain.0000000000000668] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fibromyalgia syndrome (FMS) is a chronic widespread pain condition probably comprising subgroups with different underlying pathomechanisms. There is increasing evidence for small nerve fiber impairment in subgroups of patients with FMS. MicroRNAs (miRNAs) regulate molecular factors determining nerve de- and re-generation. We investigated whether systemic and cutaneous miRNA expression in patients with FMS is related to small nerve fiber pathology. We confirmed previous findings of disturbed small fiber function and reduced intraepidermal nerve fiber density in subgroups of patients with FMS. We found 51 aberrantly expressed miRNAs in white blood cells of patients with FMS, of which miR-let-7d correlated with reduced small nerve fiber density in patients with FMS. Furthermore, we demonstrated miR-let-7d and its downstream target insulin-like growth factor-1 receptor as being aberrantly expressed in skin of patients with FMS with small nerve fiber impairment. Our study gives further evidence of small nerve fiber pathology in FMS subgroups and provides a missing link in the pathomechanism that may lead to small fiber loss in subgroups of patients with FMS.
Collapse
|
47
|
Abstract
Although debate on the concept of fibromyalgia (FM) has been vigorous ever since the classification criteria were first published, FM is now better understood and has become recognized as a disorder. Recently, FM has come to be considered a major health problem, affecting 1% to 5% of the general population. As familial aggregations have been observed among some FM patients, genetic research on FM is logical. In fact, genome-wide association studies and linkage analysis, and studies on candidate genes, have uncovered associations between certain genetic factors and FM. Genetic susceptibility is now considered to influence the etiology of FM. At the same time, novel genetic techniques, such as microRNA analysis, have been used in attempts to improve our understanding of the genetic predisposition to FM. In this article, we review recent advances in, and continuing challenges to, the identification of genes contributing to the development of, and symptom severity in, FM.
Collapse
Affiliation(s)
- Dong-Jin Park
- Department of Rheumatology, Chonnam National University Hospital, Gwangju, Korea
| | - Shin-Seok Lee
- Department of Rheumatology, Chonnam National University Hospital, Gwangju, Korea
- Correspondence to Shin-Seok Lee, M.D. Department of Rheumatology, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea Tel: +82-62-220-6591 Fax: +82-62-225-8578 E-mail:
| |
Collapse
|
48
|
Yang D, Yang Q, Wei X, Liu Y, Ma D, Li J, Wan Y, Luo Y. The role of miR-190a-5p contributes to diabetic neuropathic pain via targeting SLC17A6. J Pain Res 2017; 10:2395-2403. [PMID: 29042815 PMCID: PMC5634391 DOI: 10.2147/jpr.s133755] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Introduction MicroRNAs play a key role in neuropathic pain. In a previous study, miR-190a-5p was significantly downregulated in diabetic neuropathic pain (DNP). However, the role and pathological mechanism of miR-190a-5p in DNP still remain unclear. Materials and methods DNP model was established. The paw withdrawal thresholds were measured to assess the mechanical nociceptive response. Dual-luciferase reporter assay was used to confirm the target gene of microRNA. The expressions of microRNA, gene, and protein were detected by the quantitative real-time polymerase chain reaction or Western blot. The levels of IL-1β and IL-6 were detected with the enzyme-linked immuno sorbent assay. Results Compared with the control sample, the expression of miR-190a-5p was decreased and SLC17A6 was increased in the spinal tissue from those developing DNP. The bioinformatics and luciferase reporter assay demonstrated that SLC17A6 is a direct target of miR-190a-5p. Up-regulation of miR-190a-5p and inhibition of SLC17A6 could significantly weaken the painful behavior and reduce IL-1β and IL-6 level in DNP. Conclusion miR-190a-5p is involved in DNP via targeting SLC17A6, and miR-190a-5p and SLC17A6 may be the therapeutic targets of this disease.
Collapse
Affiliation(s)
- Di Yang
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Qinyan Yang
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Xinchuan Wei
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yang Liu
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Ding Ma
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Jiaceng Li
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yongling Wan
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yao Luo
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
49
|
Yang L, Li Y, Wang X, Liu Y, Yang L. MicroRNA‑320a inhibition decreases insulin‑induced KGN cell proliferation and apoptosis by targeting PCGF1. Mol Med Rep 2017; 16:5706-5712. [PMID: 28849208 DOI: 10.3892/mmr.2017.7270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 05/22/2017] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are widely involved in regulation of cellular processes of polycystic ovary syndrome (PCOS). However, the function of miR‑320a in PCOS remains unclear. The present study aimed to explore the effect of miR‑320a on PCOS cell proliferation and apoptosis following treatment with insulin, and to clarify the underlying mechanism. PCOS tissues and corresponding normal tissues were collected from 16 female patients with PCOS. KGN cells were pre‑treated with insulin, and KGN cells were transfected with ASO‑miR‑320a, miR‑320a mimics and polycomb group ring finger 1 (PCGF1) overexpression plasmids. Expressions of miR‑320a and PCGF1 were detected using the reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Dual‑Luciferase reporter assays were performed to investigate the target gene of miR‑320a. MTS, colony formation and flow cytometry assays were performed to determine cell viability, colony formation, and apoptosis, respectively. Furthermore, mRNA and protein expression levels of B‑cell lymphoma 2 apoptosis regulator (Bcl‑2) and Bcl‑2 associated protein X apoptosis regulator (Bax) were examined using RT‑qPCR and western blotting. The results demonstrated that miR‑320a expression was significantly increased in PCOS tissues compared with normal tissues. Moreover, miR‑320a was upregulated in insulin‑induced cells in a dose‑dependent manner. Inhibition of miR‑320a suppressed insulin‑induced cell viability and colony formation, and promoted apoptosis. Luciferase reporter assays demonstrated that PCGF1 was a target of miR‑320a. Additionally, PCGF1 overexpression inhibited cell viability and colony formation and promoted apoptosis. Additionally, the mRNA and protein levels of Bcl‑2 were inhibited by miR‑320a suppression and PCGF1 overexpression, while Bax expression was promoted by them in insulin‑induced cells. The results of the present study demonstrated that miR‑320a inhibition decreased insulin‑induced KGN cell proliferation and apoptosis by targeting PCGF1. These data indicated that miR‑320a may serve as a potential diagnostic biomarker for PCOS.
Collapse
Affiliation(s)
- Lei Yang
- Department of Obstetrics and Gynecology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yan Li
- Department of Obstetrics and Gynecology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaojing Wang
- Department of Obstetrics and Gynecology Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Yuling Liu
- Department of Obstetrics and Gynecology Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Lingzhu Yang
- Department of Obstetrics and Gynecology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
50
|
Feinberg T, Sambamoorthi U, Lilly C, Innes KK. Potential Mediators between Fibromyalgia and C-Reactive protein: Results from a Large U.S. Community Survey. BMC Musculoskelet Disord 2017; 18:294. [PMID: 28687081 PMCID: PMC5501008 DOI: 10.1186/s12891-017-1641-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 06/27/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fibromyalgia, a potentially debilitating chronic pain syndrome of unknown etiology, may be characterized by inflammation. In this study, we investigated the relation of FMS to serum C-reactive protein (CRP) in a large population of adults (18+) and investigated the influence of other factors on this relationship, including BMI, comorbidities, as well as mood and sleep disturbance. METHODS Participants were 52,535 Ohio Valley residents (Fibromyalgia n = 1125). All participants completed a comprehensive health survey (2005-2006) part of the C8 Health Project; serum levels of CRP were obtained, as was history of Fibromyalgia physician diagnosis. Logistic and linear regressions were used for this cross-sectional analysis. RESULTS Mean CRP was higher among participants reporting Fibromyalgia than those without (5.54 ± 9.8 vs.3.75 ± 7.2 mg/L, p < .0001)). CRP level showed a strong, positive association with FMS (unadjusted odds ratio (OR) for highest vs. lowest quartile = 2.5 (CI 2.1,3.0;p for trend < .0001)); adjustment for demographic and lifestyle factors attenuated but did not eliminate this association (AOR for highest vs. lowest quartile = 1.4 (CI 1.1,1.6;p for trend < .0001)). Further addition of body mass index (BMI) and comorbidities to the model markedly weakened this relationship (AORs, respectively, for highest vs lowest CRP quartile = 1.2 (CI 1.0,1.4) and 1.1 (CI 0.9,1.3). In contrast, inclusion of mood and sleep impairment only modestly reduced the adjusted risk estimate (AORs for highest vs. lowest quartile = 1.3 (CI 1.1,1.5) for each)). CONCLUSIONS Findings from this large cross-sectional study indicate a significant positive cross-sectional association of Fibromyalgia to serum C-reactive protein may be explained, in part, by BMI and comorbidity. Prospective research is needed to confirm this, and clarify the potential mediating influence of obesity and comorbid conditions on this relationship.
Collapse
Affiliation(s)
- Termeh Feinberg
- Department of Family and Community Medicine, Center for Integrative Medicine, University of Maryland School of Medicine, 520 W. Lombard St., East Hall, Baltimore, MD 21201-1603 USA
- Department of Epidemiology, West Virginia University School of Public Health, P.O. Box 9190, Morgantown, WV 26506-9190 USA
| | - Usha Sambamoorthi
- Department of Pharmaceutical Systems and Policy, West Virginia University School of Pharmacy, P.O. Box 9500, Morgantown, WV 26506-9500 USA
| | - Christa Lilly
- Department of Biostatistics, West Virginia University School of Public Health, P.O. Box 9190, Morgantown, WV 26506-9190 USA
| | - Kim Karen Innes
- Department of Epidemiology, West Virginia University School of Public Health, P.O. Box 9190, Morgantown, WV 26506-9190 USA
- Center for the Study of Complementary and Alternative Therapies, University of Virginia Health System, P.O. Box 800782, McLeod Hall, Charlottesville, VA 22908-0782 USA
| |
Collapse
|