1
|
Chen YJ, Jia LH, Han TH, Zhao ZH, Yang J, Xiao JP, Yang HJ, Yang K. Osteoporosis treatment: current drugs and future developments. Front Pharmacol 2024; 15:1456796. [PMID: 39188952 PMCID: PMC11345277 DOI: 10.3389/fphar.2024.1456796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Osteoporosis is a common systemic metabolic disease characterized by a decrease in bone density and bone mass, destruction of bone tissue microstructure, and increased bone fragility leading to fracture susceptibility. Pharmacological treatment of osteoporosis is the focus of current research, and anti-osteoporosis drugs usually play a role in inhibiting bone resorption, promoting bone formation, and having a dual role. However, most of the drugs have the disadvantages of single target and high toxic and side effects. There are many types of traditional Chinese medicines (TCM), from a wide range of sources and mostly plants. Herbal plants have unique advantages in regulating the relationship between osteoporosis and the immune system, acupuncture therapy has significant therapeutic effects in combination with medicine for osteoporosis. The target cells and specific molecular mechanisms of TCM in preventing and treating osteoporosis have not been fully elucidated. At present, there is a lack of comprehensive understanding of the pathological mechanism of the disease. Therefore, a better understanding of the pathological signaling pathways and key molecules involved in the pathogenesis of osteoporosis is crucial for the design of therapeutic targets and drug development. In this paper, we review the development and current status of anti-osteoporosis drugs currently in clinical application and under development to provide relevant basis and reference for drug prevention and treatment of osteoporosis, with the aim of promoting pharmacological research and new drug development.
Collapse
Affiliation(s)
- Ya-jing Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Li-hua Jia
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing, China
| | - Jun-ping Xiao
- Jiangxi Prozin Pharmaceutical Co., Ltd., Jiangxi, China
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
2
|
Zhao G. Multi-Residue Detection of Eight Glucocorticoids by Nano-Au/Fluticasone Propionate Electrochemical Immunosensor. Molecules 2023; 28:6619. [PMID: 37764395 PMCID: PMC10534488 DOI: 10.3390/molecules28186619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Based on an indirect competitive method, a novel nano-Au/fluticasone propionate electrochemical immunosensor was successfully fabricated by combining the nanoscale effect, superior conductivity of nano-Au, stable Au-S chemical bond as well as strong interaction between glucocorticoid and the receptor, which was used to simultaneously detect eight kinds of glucocorticoids. The modified immunosensors' electrochemical properties were explored by means of a cyclic voltammetry (CV) method and electrochemical impedance spectroscopy (EIS) measurements. Two factors (glucocorticoid receptor concentration, incubation time) were studied in order to obtain the optimal results. The immunosensor presents attractive electrochemical performance with a wide linear range (between 0.1 and 1500 ng⋅mL-1) and low detection limit (between 0.057 and 0.357 ng⋅mL-1), realizing the rapid multi-residue detection of a large class of glucocorticoids. Two glucocorticoids (hydrocortisone, triamcinolone) were detected in actual skincare samples, which obtained satisfactory detection results.
Collapse
Affiliation(s)
- Guozheng Zhao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, College of Food Science, Shanxi Normal University, Taiyuan 030031, China;
- Modern College of Humanities and Sciences of Shanxi Normal University, Linfen 041000, China
| |
Collapse
|
3
|
Vorrius B, Qiao Z, Ge J, Chen Q. Smart Strategies to Overcome Drug Delivery Challenges in the Musculoskeletal System. Pharmaceuticals (Basel) 2023; 16:967. [PMID: 37513879 PMCID: PMC10383421 DOI: 10.3390/ph16070967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
The musculoskeletal system (MSKS) is composed of specialized connective tissues including bone, muscle, cartilage, tendon, ligament, and their subtypes. The primary function of the MSKS is to provide protection, structure, mobility, and mechanical properties to the body. In the process of fulfilling these functions, the MSKS is subject to wear and tear during aging and after injury and requires subsequent repair. MSKS diseases are a growing burden due to the increasing population age. The World Health Organization estimates that 1.71 billon people suffer from MSKS diseases worldwide. MSKS diseases usually involve various dysfunctions in bones, muscles, and joints, which often result in pain, disability, and a decrease in quality of life. The most common MSKS diseases are osteoporosis (loss of bone), osteoarthritis (loss of cartilage), and sarcopenia (loss of skeletal muscle). Because of the disease burden and the need for treatment, regenerative drug therapies for MSKS disorders are increasingly in demand. However, the difficulty of effective drug delivery in the MSKS has become a bottleneck for developing MSKS therapeutics. The abundance of extracellular matrix and its small pore size in the MSKS present a formidable barrier to drug delivery. Differences of vascularity among various MSKS tissues pose complications for drug delivery. Novel strategies are necessary to achieve successful drug delivery in different tissues composing the MSKS. Those considerations include the route of administration, mechanics of surrounding fluids, and biomolecular interactions, such as the size and charge of the particles and targeting motifs. This review focuses on recent advances in challenges to deliver drugs to each tissue of the MSKS, current strategies of drug delivery, and future ideas of how to overcome drug delivery challenges in the MSKS.
Collapse
Affiliation(s)
| | | | | | - Qian Chen
- Laboratory of Molecular Biology and Nanomedicine, Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI 02903, USA; (B.V.); (Z.Q.); (J.G.)
| |
Collapse
|
4
|
Belaya Z, Rozhinskaya L, Dedov I, Drapkina O, Fadeev V, Golounina O, Lesnyak O, Mamedova E, Melnichenko G, Petraikin A, Rodionova S, Skripnikova I, Tkacheva O, Toroptsova N, Yureneva S, Kanis JA. A summary of the Russian clinical guidelines on the diagnosis and treatment of osteoporosis. Osteoporos Int 2023; 34:429-447. [PMID: 36651943 DOI: 10.1007/s00198-022-06667-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023]
Abstract
UNLABELLED Key statements of the Russian clinical guidelines on the diagnosis and treatment of osteoporosis are summarized. They were developed by a task force representing the key Russian professional associations involved in the management of osteoporosis and approved by the Russian Ministry of Health. PURPOSE To summarize key statements of the Russian clinical practice guidelines for the diagnosis and treatment of osteoporosis. METHODS The Russian clinical guidelines on the diagnosis and treatment of osteoporosis were developed by a task force representing the key Russian professional associations involved in the management of osteoporosis: These comprised the Russian Association of Endocrinologists, the Russian Association for Osteoporosis, the Association of Rheumatologists of Russia, the Association of Orthopedic surgeons and Traumatologists of Russia, the Russian Association of Gynecologists-Endocrinologists, and the Russian Association of Gerontologists and Geriatrics. The guidelines are based on a systematic literature review and principles of evidence-based medicine and were compiled in accordance with the requirements for clinical recommendations developed by the Ministry of Health of the Russian Federation. RESULTS Key statements included in the Russian guidelines of osteoporosis approved by the Russian Ministry of Health in 2021 are summarized. The statements are graded based on levels of evidence and supported by short comments. The guidelines are focused on the current approach to screening, diagnosis, differential diagnosis, and treatment of osteoporosis. CONCLUSION These guidelines are a practical tool for general practitioners, as well as medical specialists, primarily endocrinologists, rheumatologists, orthopedic surgeons, and other physicians who are involved in the management of patients with osteoporosis.
Collapse
Affiliation(s)
- Zhanna Belaya
- Neuroendocrinology and Bone Diseases, Endocrinology Research Centre, Moscow, Russia.
| | - Liudmila Rozhinskaya
- Neuroendocrinology and Bone Diseases, Endocrinology Research Centre, Moscow, Russia
| | - Ivan Dedov
- Neuroendocrinology and Bone Diseases, Endocrinology Research Centre, Moscow, Russia
| | - Oksana Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Valentin Fadeev
- Department of Endocrinology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Olga Golounina
- Department of Endocrinology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Olga Lesnyak
- Family Medicine Department-Western State Medical University Named After I.I. Mechnikov, St. Petersburg, Russia
| | - Elizaveta Mamedova
- Neuroendocrinology and Bone Diseases, Endocrinology Research Centre, Moscow, Russia
| | - Galina Melnichenko
- Neuroendocrinology and Bone Diseases, Endocrinology Research Centre, Moscow, Russia
| | - Alexey Petraikin
- Department of Radiation Diagnostics, Research and Practical Clinical Center for Diagnostics, Telemedicine Technologies of Moscow Health Care Department, Moscow, Russia
| | - Svetlana Rodionova
- National Medical Research Center of Traumatology and Orthopedics named after. N.N. Priorov, Moscow, Russia
| | - Irina Skripnikova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Olga Tkacheva
- Russian National Research Medical University Named After N.I. Pirogov, Moscow, Russia
| | | | - Svetlana Yureneva
- Department of Gynecological Endocrinology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After V.I. Kulakov, Moscow, Russia
| | - John A Kanis
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Center for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Abstract
Objective Denosumab, an anti-RANKL monoclonal antibody, was reported to improve bone mineral density (BMD) and reduce fracture risk, offering favorable efficacy against postmenopausal osteoporosis. However, some patients have experienced a reduced BMD despite denosumab therapy. Methods We performed an observational study to clarify the clinical efficacy of denosumab for osteoporosis in rheumatic disease patients. Serum levels of bone turnover markers and lumber BMD in 100 rheumatic disease patients were examined at baseline and 6 and 12 months after denosumab therapy. The independent influence of changes in the BMD was examined by multiple regression analyses adjusted for patient characteristics and bone turnover markers. Results As bone resorption markers, serum levels of N-telopeptide crosslinked of type I collagen (NTx) and tartrate-resistant acid phosphatase isoform 5b were statistically decreased after 12 months. As bone formation markers, serum levels of osteocalcin, procollagen type I N-terminal peptide, and bone alkaline phosphatase were significantly decreased after 12 months. The mean BMD was significantly increased after 12 months. However, in 10 patients, the BMD decreased. A multivariate analysis of factors related to BMD changes highlighted a young age, low prednisolone dosage, and reduction in NTx. Conclusions Denosumab increases the BMD to combat osteoporosis in rheumatic disease patients, and potential predictors of a better response to denosumab include a young age, reduction in bone turnover markers, and low-dose glucocorticoid use.
Collapse
Affiliation(s)
- Kaichi Kaneko
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Japan
| | - Kotaro Shikano
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Japan
| | - Mai Kawazoe
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Japan
| | - Shinichi Kawai
- Department of Inflammation and Pain Control Research, Toho University School of Medicine, Japan
| | - Toshihiro Nanki
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Japan
| |
Collapse
|
6
|
Coşkun Benlidayı İ. The Osteocyte as a Director of Bone Metabolism. Arch Rheumatol 2021; 36:617-619. [PMID: 35382360 PMCID: PMC8957769 DOI: 10.46497/archrheumatol.2021.8632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/28/2020] [Indexed: 11/21/2022] Open
Affiliation(s)
- İlke Coşkun Benlidayı
- Department of Physical Medicine and Rehabilitation, Çukurova University Faculty of Medicine, Adana, Turkey
| |
Collapse
|
7
|
Xu J, Li H, Qu Y, Zheng C, Wang B, Shen P, Xie Z, Wei K, Wang Y, Zhao J. Denosumab might prevent periprosthetic bone loss after total hip and knee arthroplasties: a review. ARTHROPLASTY 2021; 3:13. [PMID: 35236485 PMCID: PMC8796657 DOI: 10.1186/s42836-021-00068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
Total hip arthroplasty and total knee arthroplasty are extensively used for the treatment of the end-stage degenerative joint diseases. Currently, periprosthetic bone loss is still the major cause of aseptic loosening, resulting in implant failures. Previous literature introduced some widely accepted protocols for the prevention and treatment of periprosthetic bone loss, but no guideline has been proposed. Denosumab, a human monoclonal immunoglobulin G2 (IgG2) antibody, can inhibit bone resorption by binding to the receptor activator of nuclear factor kappa-B ligand (RANKL). This article reviews the present findings and evidence concerning the effect of denosumab on the periprosthetic bone loss after total hip arthroplasty and total knee arthroplasty. Overall, the current evidence suggests that denosumab is a promising agent for the treatment of periprosthetic bone loss.
Collapse
Affiliation(s)
- Jianda Xu
- Department of Orthopaedics, Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China
| | - Huan Li
- Department of Arthroplasty, The First People's Hospital of Changzhou, Changzhou, 213003, China
| | - Yuxing Qu
- Department of Orthopaedics, Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China.
| | - Chong Zheng
- Department of Orthopaedics, Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China
| | - Bin Wang
- Department of Orthopaedics, Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China
| | - Pengfei Shen
- Department of Orthopaedics, Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China
| | - Zikang Xie
- Department of Orthopaedics, Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China
| | - Kang Wei
- Department of Orthopaedics, Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China
| | - Yan Wang
- Department of Orthopaedics, Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China
| | - Jianning Zhao
- Department of Orthopaedics, Jinling Hospital, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
8
|
El-Gazzar A, Högler W. Mechanisms of Bone Fragility: From Osteogenesis Imperfecta to Secondary Osteoporosis. Int J Mol Sci 2021; 22:ijms22020625. [PMID: 33435159 PMCID: PMC7826666 DOI: 10.3390/ijms22020625] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Bone material strength is determined by several factors, such as bone mass, matrix composition, mineralization, architecture and shape. From a clinical perspective, bone fragility is classified as primary (i.e., genetic and rare) or secondary (i.e., acquired and common) osteoporosis. Understanding the mechanism of rare genetic bone fragility disorders not only advances medical knowledge on rare diseases, it may open doors for drug development for more common disorders (i.e., postmenopausal osteoporosis). In this review, we highlight the main disease mechanisms underlying the development of human bone fragility associated with low bone mass known to date. The pathways we focus on are type I collagen processing, WNT-signaling, TGF-ß signaling, the RANKL-RANK system and the osteocyte mechanosensing pathway. We demonstrate how the discovery of most of these pathways has led to targeted, pathway-specific treatments.
Collapse
Affiliation(s)
| | - Wolfgang Högler
- Correspondence: ; Tel.: +43-(0)5-7680-84-22001; Fax: +43-(0)5-7680-84-22004
| |
Collapse
|
9
|
Bar M, Ott SM, Lewiecki EM, Sarafoglou K, Wu JY, Thompson MJ, Vaux JJ, Dean DR, Saag KG, Hashmi SK, Inamoto Y, Dholaria BR, Kharfan-Dabaja MA, Nagler A, Rodriguez C, Hamilton BK, Shah N, Flowers MED, Savani BN, Carpenter PA. Bone Health Management After Hematopoietic Cell Transplantation: An Expert Panel Opinion from the American Society for Transplantation and Cellular Therapy. Biol Blood Marrow Transplant 2020; 26:1784-1802. [PMID: 32653624 DOI: 10.1016/j.bbmt.2020.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/14/2022]
Abstract
Bone health disturbances commonly occur after hematopoietic cell transplantation (HCT) with loss of bone mineral density (BMD) and avascular necrosis (AVN) foremost among them. BMD loss is related to pretransplantation chemotherapy and radiation exposure and immunosuppressive therapy for graft-versus-host-disease (GVHD) and results from deficiencies in growth or gonadal hormones, disturbances in calcium and vitamin D homeostasis, as well as osteoblast and osteoclast dysfunction. Although the pathophysiology of AVN remains unclear, high-dose glucocorticoid exposure is the most frequent association. Various societal treatment guidelines for osteoporosis exist, but the focus is mainly on menopausal-associated osteoporosis. HCT survivors comprise a distinct population with unique comorbidities, making general approaches to bone health management inappropriate in some cases. To address a core set of 16 frequently asked questions (FAQs) relevant to bone health in HCT, the American Society of Transplant and Cellular Therapy Committee on Practice Guidelines convened a panel of experts in HCT, adult and pediatric endocrinology, orthopedics, and oral medicine. Owing to a lack of relevant prospective controlled clinical trials that specifically address bone health in HCT, the answers to the FAQs rely on evidence derived from retrospective HCT studies, results extrapolated from prospective studies in non-HCT settings, relevant societal guidelines, and expert panel opinion. Given the heterogenous comorbidities and needs of individual HCT recipients, answers to FAQs in this article should be considered general recommendations, with good medical practice and judgment ultimately dictating care of individual patients. Readers are referred to the Supplementary Material for answers to additional FAQs that did not make the core set.
Collapse
Affiliation(s)
- Merav Bar
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington.
| | - Susan M Ott
- Department of Medicine, University of Washington, Seattle, Washington
| | - E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, Albuquerque, New Mexico; Bone Health TeleECHO, UNM Health Sciences Center, Albuquerque, New Mexico
| | - Kyriakie Sarafoglou
- Department of Pediatrics, Divisions of Endocrinology and Genetics & Metabolism, University of Minnesota Medical School, Minneapolis, Minnesota; Department of Experimental & Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota
| | - Joy Y Wu
- Division of Endocrinology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Matthew J Thompson
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington
| | - Jonathan J Vaux
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington
| | - David R Dean
- Department of Oral Medicine, University of Washington School of Dentistry, Seattle, Washington
| | - Kenneth G Saag
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Shahrukh K Hashmi
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Yoshihiro Inamoto
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Bhagirathbhai R Dholaria
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mohamed A Kharfan-Dabaja
- Division of Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, Florida
| | - Arnon Nagler
- Bone Marrow Transplantation Department, Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Cesar Rodriguez
- Department of Internal Medicine Hematology and Oncology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Betty K Hamilton
- Blood and Marrow Transplant Program, Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - Nina Shah
- Division of Hematology-Oncology, University of California, San Francisco, California
| | - Mary E D Flowers
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Bipin N Savani
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paul A Carpenter
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
10
|
Aimaiti A, Wahafu T, Keremu A, Yicheng L, Li C. Strontium Ameliorates Glucocorticoid Inhibition of Osteogenesis Via the ERK Signaling Pathway. Biol Trace Elem Res 2020; 197:591-598. [PMID: 31832923 DOI: 10.1007/s12011-019-02009-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023]
Abstract
Glucocorticoid (GC) has been widely used in clinical work due to its anti-inflammatory and immune-inhibitory properties. However, long-term or high-dose administration is associated with side effects, such as GC-induced osteoporosis (GIOP), which causes great pain for and poses a heavy financial burden on patients. We sought to investigate the potential effects of strontium on GIOP and further explore its underlying mechanisms, including its reversal of the inhibitory effect of GC on osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs). We incubated BMSCs with Dexamethasone (DEX) in combination with or without strontium and then measured osteogenic and adipogenic gene expression levels by RT-qPCR and Western blot. We added a specific ERK signaling pathway inhibitor, U0126, to evaluate the involvement of that pathway. Strontium promoted osteogenic differentiation and matrix mineralization in DEX-treated BMSCs, accompanied by upregulation of RUNX2, Osx, ALP, BSP, COL1A1, and OCN. DEX blocked the expression of several osteogenesis-related marker genes by activating the ERK signaling pathway. U0126 attenuated the suppression of osteogenesis in DEX-treated BMSCs. These results suggested that strontium could enhance osteogenic differentiation and matrix mineralization by counteracting DEX's inhibitory effect on osteogenesis via the ERK signaling pathway. Therefore, strontium might be a promising therapeutic agent for GIOP.
Collapse
Affiliation(s)
- Abudousaimi Aimaiti
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, 830054, Xinjiang, China
| | - Tuerhongjiang Wahafu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, 830054, Xinjiang, China
| | - Ajimu Keremu
- Orthopedic Center, First People's Hospital of Kashgar, Kashgar, 844000, Xinjiang, China
| | - Li Yicheng
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, 830054, Xinjiang, China
| | - Cao Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
11
|
Ying X, Jin X, Wang P, He Y, Zhang H, Ren X, Chai S, Fu W, Zhao P, Chen C, Ma G, Liu H. Integrative Analysis for Elucidating Transcriptomics Landscapes of Glucocorticoid-Induced Osteoporosis. Front Cell Dev Biol 2020; 8:252. [PMID: 32373610 PMCID: PMC7176994 DOI: 10.3389/fcell.2020.00252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is the most common bone metabolic disease, characterized by bone mass loss and bone microstructure changes due to unbalanced bone conversion, which increases bone fragility and fracture risk. Glucocorticoids are clinically used to treat a variety of diseases, including inflammation, cancer and autoimmune diseases. However, excess glucocorticoids can cause osteoporosis. Herein we performed an integrated analysis of two glucocorticoid-related microarray datasets. The WGCNA analysis identified 3 and 4 glucocorticoid-related gene modules, respectively. Differential expression analysis revealed 1047 and 844 differentially expressed genes in the two datasets. After integrating differentially expressed glucocorticoid-related genes, we found that most of the robust differentially expressed genes were up-regulated. Through protein-protein interaction analysis, we obtained 158 glucocorticoid-related candidate genes. Enrichment analysis showed that these genes are significantly enriched in the osteoporosis related pathways. Our results provided new insights into glucocorticoid-induced osteoporosis and potential candidate markers of osteoporosis.
Collapse
Affiliation(s)
- Xiaoxia Ying
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Xiyun Jin
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Pingping Wang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuzhu He
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Haomiao Zhang
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Xiang Ren
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Songling Chai
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Wenqi Fu
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Pengcheng Zhao
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Chen Chen
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Monajemi M, Fisk S, Pang YCF, Leung J, Menzies SC, Ben-Othman R, Cai B, Kollmann TR, Rozmus J, Sly LM. Malt1 deficient mice develop osteoporosis independent of osteoclast-intrinsic effects of Malt1 deficiency. J Leukoc Biol 2019; 106:863-877. [PMID: 31313375 DOI: 10.1002/jlb.5vma0219-054r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/13/2019] [Accepted: 06/23/2019] [Indexed: 11/09/2022] Open
Abstract
This study tested the hypothesis that mucosa associated lymphoid tissue 1 (Malt1) deficiency causes osteoporosis in mice by increasing osteoclastogenesis and osteoclast activity. A patient with combined immunodeficiency (CID) caused by MALT1 deficiency had low bone mineral density resulting in multiple low impact fractures that was corrected by hematopoietic stem cell transplant (HSCT). We have reported that Malt1 deficient Mϕs, another myeloid cell type, are hyper-responsive to inflammatory stimuli. Our objectives were to determine whether Malt1 deficient mice develop an osteoporosis-like phenotype and whether it was caused by Malt1 deficiency in osteoclasts. We found that Malt1 deficient mice had low bone volume by 12 weeks of age, which was primarily associated with reduced trabecular bone. Malt1 protein is expressed and active in osteoclasts and is induced by receptor activator of NF-κB ligand (RANKL) in preosteoclasts. Malt1 deficiency did not impact osteoclast differentiation or activity in vitro. However, Malt1 deficient (Malt1-/- ) mice had more osteoclasts in vivo and had lower levels of serum osteoprotegerin (OPG), an endogenous inhibitor of osteoclastogenesis. Inhibition of Malt1 activity in Mϕs induced MCSF production, required for osteoclastogenesis, and decreased OPG production in response to inflammatory stimuli. In vitro, MCSF increased and OPG inhibited osteoclastogenesis, but effects were not enhanced in Malt1 deficient osteoclasts. These data support the hypothesis that Malt1 deficient mice develop an osteoporotic phenotype with increased osteoclastogenesis in vivo, but suggest that this is caused by inflammation rather than an effect of Malt1 deficiency in osteoclasts.
Collapse
Affiliation(s)
- Mahdis Monajemi
- Department of Pediatrics, Division of Gastroenterology, the University of British Columbia, Vancouver, British Columbia, Canada
| | - Shera Fisk
- Department of Pediatrics, Division of Gastroenterology, the University of British Columbia, Vancouver, British Columbia, Canada
| | - Yvonne C F Pang
- Department of Pediatrics, Division of Gastroenterology, the University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica Leung
- Department of Pediatrics, Division of Gastroenterology, the University of British Columbia, Vancouver, British Columbia, Canada
| | - Susan C Menzies
- Department of Pediatrics, Division of Gastroenterology, the University of British Columbia, Vancouver, British Columbia, Canada
| | - Rym Ben-Othman
- Department of Pediatrics, Division of Infectious Diseases, the University of British Columbia, Vancouver, British Columbia, Canada
| | - Bing Cai
- Department of Pediatrics, Division of Infectious Diseases, the University of British Columbia, Vancouver, British Columbia, Canada
| | - Tobias R Kollmann
- Telethon Kids Institute, Perth Children's Hospital, the University of Western Australia, Nedlands, Western Australia, Australia
| | - Jacob Rozmus
- Division of Hematology and Oncology, BC Children's Hospital Research Institute, the University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura M Sly
- Department of Pediatrics, Division of Gastroenterology, the University of British Columbia, Vancouver, British Columbia, Canada.,Telethon Kids Institute, Perth Children's Hospital, the University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|