1
|
Genetic Transformation of Quercus ilex Somatic Embryos with a Gnk2-like Protein That Reveals a Putative Anti-Oomycete Action. PLANTS 2022; 11:plants11030304. [PMID: 35161285 PMCID: PMC8838351 DOI: 10.3390/plants11030304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
Holm oak is a key tree species in Mediterranean ecosystems, whose populations have been increasingly threatened by oak decline syndrome, a disease caused by the combined action of Phytophthora cinnamomi and abiotic stresses. The aim of the present study was to produce holm oak plants that overexpress the Ginkbilobin-2 homologous domain gene (Cast_Gnk2-like) that it is known to possess antifungal properties. Proembryogenic masses (PEMs) isolated from four embryogenic lines (Q8, E2, Q10-16 and E00) were used as target explants. PEMs were co-cultured for 5 days with Agrobacterium EHA105pGnk2 and then cultured on selective medium containing kanamycin (kan) and carbenicillin. After 14 weeks on selective medium, the transformation events were observed in somatic embryos of lines Q8 and E2 and a total of 4 transgenic lines were achieved. The presence of the Cast_Gnk2-like gene on transgenic embryos was verified by PCR, and the number of transgene copies and gene expression was estimated by qPCR. Transgenic plants were obtained from all transgenic lines after cold storage of the somatic embryos for 2 months and subsequent transfer to germination medium. In an in vitro tolerance assay with the pathogen P. cinnamomi, we observed that transgenic plants were able to survive longer than wild type.
Collapse
|
2
|
Campos G, Chialva C, Miras S, Lijavetzky D. New Technologies and Strategies for Grapevine Breeding Through Genetic Transformation. FRONTIERS IN PLANT SCIENCE 2021; 12:767522. [PMID: 34899790 PMCID: PMC8655788 DOI: 10.3389/fpls.2021.767522] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 05/09/2023]
Abstract
Grapevine, as other woody perennials, has been considered a recalcitrant crop to produce transgenic plants. Since the production of transgenic and/or edited plants requires the ability to regenerate plants from transformed tissues, this step is often the biggest bottleneck in the process. The objective of this work is to review the state of the art technologies and strategies for the improvement of grapevine transformation and regeneration, focusing on three aspects: (i) problems associated with grapevine transformation; (ii) genes that promote grapevine regeneration; and (iii) vehicles for gene delivery. Concerning the first aspect, it is well documented that one of the main factors explaining the low success rate in obtaining transgenic plants is the regeneration process. After transgenic integration into receptor cells, tissue culture is required to regenerate transgenic seedlings from transformed cells. This process is time consuming and often requires the addition of environmentally damaging reagents (antibiotics and herbicides) to the culture medium to select transgenic plants. On the other hand, the expression of genes such as the so-called developmental regulators (DR), which induce specific development programs, can be used to avoid traditional tissue culture methods. The ectopic expression of specific combinations of DR in somatic cells has the potential to induce de novo meristems in diverse crops, including grapevine. Successful genome editing by de novo reprogramming of plant meristems in somatic tissues has been reported. Moreover, it has been shown that the expression of certain transcription factors can increase the regeneration efficiency in wheat, citrus, and rice. Finally, recent reports showed the use of nanoparticles, such as carbon dots (CDs), as an attractive alternative to Agrobacterium- and biolistic-mediated plant genetic transformation. In this way, the use of antibiotics in culture media is avoided, overcoming the loss of viability of plant tissues and accelerating the regeneration processes. It has been shown that CDs can act as a vehicle to transport plasmids to plant cells in transient transformation in several crops without negative impacts on photosynthesis or growth. Based on these advances, it is possible to combine these new available strategies and technologies to overcome the regeneration problems of species such as grapevine and other crops considered as recalcitrant.
Collapse
Affiliation(s)
| | | | | | - Diego Lijavetzky
- Instituto de Biología Agrícola de Mendoza (IBAM, CONICET-UNCuyo), Almirante Brown 500, M5528AHB. Chacras de Coria, Mendoza, Argentina
| |
Collapse
|
3
|
Li MY, Jiao YT, Wang YT, Zhang N, Wang BB, Liu RQ, Yin X, Xu Y, Liu GT. CRISPR/Cas9-mediated VvPR4b editing decreases downy mildew resistance in grapevine ( Vitis vinifera L.). HORTICULTURE RESEARCH 2020; 7:149. [PMID: 32922821 PMCID: PMC7458914 DOI: 10.1038/s41438-020-00371-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 05/04/2023]
Abstract
Downy mildew of grapevine (Vitis vinifera L.), caused by the oomycete pathogen Plasmopara viticola, is one of the most serious concerns for grape production worldwide. It has been widely reported that the pathogenesis-related 4 (PR4) protein plays important roles in plant resistance to diseases. However, little is known about the role of PR4 in the defense of grapevine against P. viticola. In this study, we engineered loss-of-function mutations in the VvPR4b gene from the cultivar "Thompson Seedless" using the CRISPR/Cas9 system and evaluated the consequences for downy mildew resistance. Sequencing results showed that deletions were the main type of mutation introduced and that no off-target events occurred. Infection assays using leaf discs showed that, compared to wild-type plants, the VvPR4b knockout lines had increased susceptibility to P. viticola. This was accompanied by reduced accumulation of reactive oxygen species around stomata. Measurement of the relative genomic abundance of P. viticola in VvPR4b knockout lines also demonstrated that the mutants had increased susceptibility to the pathogen. Our results confirm that VvPR4b plays an active role in the defense of grapevine against downy mildew.
Collapse
Affiliation(s)
- Meng-Yuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yun-Tong Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yu-Ting Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Na Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Bian-Bian Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Rui-Qi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Guo-Tian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
| |
Collapse
|
4
|
Gladfelter HJ, Wilde HD. Development of embryogenic dogwood cultures and the regeneration of plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:53-56. [PMID: 31275050 PMCID: PMC6566010 DOI: 10.5511/plantbiotechnology.18.1221a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Somatic embryogenesis in flowering dogwood (Cornus florida) has been achieved, but not the regeneration of plants with active shoot growth. To improve plant regeneration, eight media treatments were tested for induction of somatic embryogenesis from immature zygotic embryos. Somatic embryogenesis was obtained on three media containing the plant growth regulators (PGRs) 0.1 mg l-1 picloram, 2.0 mg l-1 2,4-dichlorophenoxyacetic acid, or 0.1 mg l-1 indole-3-butyric acid (IBA). Somatic embryogenesis was also induced on Woody Plant Medium without PGRs. Overall, 92% of the somatic embryos examined converted into plants with active root and shoot growth. This is the first report of somatic embryo-derived plants of C. florida that have active shoot growth and that could be transferred to soil. Embryogenic suspensions were established from IBA-treated cultures that could serve as a target for C. florida bioengineering.
Collapse
Affiliation(s)
| | - H. Dayton Wilde
- Horticulture Department, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Genetic Modification of Grapevine Embryogenic Cultures. Methods Mol Biol 2018; 1864:191-201. [PMID: 30415338 DOI: 10.1007/978-1-4939-8778-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Precision breeding is an approach to grapevine genetic improvement that transfers only specific traits among sexually compatible species via the relatively stable mitotic cell division pathway in order to avoid the significant disruption imposed upon conventional breeding by meiosis. Factors enabling precision breeding include the availability of the Vitis genome sequence combined with highly optimized gene insertion and plant regeneration protocols. A protocol for the production of grapevine embryogenic cultures and their genetic transformation is described. Embryogenic cultures are produced from either leaf or floral explants. Somatic embryos at the cotyledonary stage of development are used for Agrobacterium-mediated transformation. Following co-cultivation with Agrobacterium containing the genes of interest, modified embryos are selected on the basis of anthocyanin pigmentation and antibiotic resistance. Somatic embryos are then germinated to produce modified plants that are hardened and transferred to a greenhouse. The presence of the genes of interest is confirmed by PCR.
Collapse
|
6
|
Zhao T, Wang Z, Su L, Sun X, Cheng J, Zhang L, Karungo SK, Han Y, Li S, Xin H. An efficient method for transgenic callus induction from Vitis amurensis petiole. PLoS One 2017; 12:e0179730. [PMID: 28640905 PMCID: PMC5481001 DOI: 10.1371/journal.pone.0179730] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/02/2017] [Indexed: 11/18/2022] Open
Abstract
Transformation is the main platform for genetic improvement and gene function studies in plants. However, the established somatic embryo transformation system for grapevines is time-consuming and has low efficiency, which limits its utilization in functional genomics research. Vitis amurensis is a wild Vitis species with remarkable cold tolerance. The lack of an efficient genetic transformation system for it has significantly hindered the functional identification of cold stress related genes in the species. Herein, an efficient method was established to produce transformed calli of V. amurensis. Segments of petioles from micropropagated plantlets of V. amurensis exhibited better capacity to differentiate calli than leaf-discs and stem segments, and thus was chosen as target tissue for Agrobacterium-mediated transformation. Both neomycin phosphotransferase II (NPTII) and enhanced green fluorescent protein (eGFP) genes were used for simultaneous selection of transgenic calli based on kanamycin resistance and eGFP fluorescence. Several parameters affecting the transformation efficiency were optimized including the concentration of kanamycin, Agrobacterium stains, bacterial densities, infection treatments and co-cultivation time. The transgenic callus lines were verified by checking the integration of NPTII gene into calli genomes, the expression of eGFP gene and the fluorescence of eGFP. Up to 20% of the petiole segments produced transformed calli after 2 months of cultivation. This efficient transformation system will facilitate the functional analysis of agronomic characteristics and related genes not only in V. amurensis but also in other grapevine species.
Collapse
Affiliation(s)
- Tingting Zhao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Zemin Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Lingye Su
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiaoming Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Jun Cheng
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Langlang Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Sospeter Karanja Karungo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Shaohua Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| |
Collapse
|
7
|
Dhekney SA, Li ZT, Grant TNL, Gray DJ. Somatic Embryogenesis and Genetic Modification of Vitis. Methods Mol Biol 2016; 1359:263-77. [PMID: 26619866 DOI: 10.1007/978-1-4939-3061-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Grapevine embryogenic cultures are ideal target tissues for inserting desired traits of interest and improving existing cultivars via precision breeding (PB). PB is a new approach that, like conventional breeding, utilizes only DNA fragments obtained from sexually compatible grapevine plants. Embryogenic culture induction occurs by placing leaves or stamens and pistils on induction medium with a dark/light photoperiod cycle for 12-16 weeks. Resulting cultures produce sectors of embryogenic and non-embryogenic callus, which can be identified on the basis of callus morphology and color. Somatic embryo development occurs following transfer of embryogenic callus to development medium and cultures can be maintained for extended periods of time by transfer of the proliferating proembryonic masses to fresh medium at 4-6-week intervals. To demonstrate plant recovery via PB, somatic embryos at the mid-cotyledonary stage are cocultivated with Agrobacterium containing the desired gene of interest along with a, non-PB, enhanced green fluorescent protein/neomycin phosphotransferase II (egfp/nptII) fusion gene. Modified cultures are grown on proliferation and development medium to produce uniformly modified somatic embryos via secondary embryogenesis. Modified embryos identified on the basis of green fluorescence and kanamycin resistance are transferred to germination medium for plant development. The resulting plants are considered to prototype examples of the PB approach, since they contain egfp/nptII, a non-grapevine-derived fusion gene. Uniform green fluorescent protein (GFP) fluorescence can be observed in all tissues of regenerated plants.
Collapse
Affiliation(s)
- Sadanand A Dhekney
- Sheridan Research and Extension Center, University of Wyoming, 3401 Coffeen Avenue, Sheridan, WY, 82801, USA.
| | - Zhijian T Li
- Mid-Florida Research and Education Center, University of Florida/IFAS, 2725 Binion Road, Apopka, FL, 32703, USA
| | - Trudi N L Grant
- Mid-Florida Research and Education Center, University of Florida/IFAS, 2725 Binion Road, Apopka, FL, 32703, USA
| | - Dennis J Gray
- Mid-Florida Research and Education Center, University of Florida/IFAS, 2725 Binion Road, Apopka, FL, 32703, USA
| |
Collapse
|
8
|
Li ZT, Kim KH, Dhekney SA, Jasinski JR, Creech MR, Gray DJ. An optimized procedure for plant recovery from somatic embryos significantly facilitates the genetic improvement of Vitis. HORTICULTURE RESEARCH 2014; 1:14027. [PMID: 26504540 PMCID: PMC4596318 DOI: 10.1038/hortres.2014.27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 05/19/2023]
Abstract
Plant regeneration from grapevine (Vitis spp.) via somatic embryogenesis typically is poor. Recovery of plants from Vitis rotundifolia Michx. (muscadine grape) is particularly problematic due to extremely low efficiency, including extended culture durations required for embryo-plant conversion. Poor plant recovery is an obstacle to the selection of improved genetically modified lines. Somatic embryos (SEs) of V. rotundifolia cultivar Delicious (Del-HS) and Vitis vinifera L cultivar Thompson Seedless (TS) were used to identify culture media and conditions that promoted embryo differentiation and plant conversion; this resulted in a two-step culture system. In comparative culture experiments, C2D medium containing 6% sucrose was the most effective, among four distinct formulae tested, for inducing precocious SE germination and cell differentiation. This medium, further supplemented with 4 µM 6-benzylaminopurine (C2D4B), was subsequently determined to enhance post-germinative growth of SE. MS medium supplemented with 0.5 µM 1-naphthaleneacetic acid (MSN) was then utilized to stimulate root and shoot growth of germinated SE. An average of 35% and 80% 'Del-HS' and 'TS' SE, respectively, developed into plants. All plants developed robust root and shoot systems and exhibited excellent survival following transfer to soil. Over 150 plants of 'Del-HS' were regenerated and established within 2.5 months, which is a dramatic reduction from the 6- to 12-month time period previously required. Similarly, 88 'TS' plant lines were obtained within the same time period. Subsequently, seven out of eight Vitis cultivars exhibited significantly increased plant conversion percentages, demonstrating broad application of the two-step culture system to produce the large numbers of independent plant lines needed for selection of desired traits.
Collapse
Affiliation(s)
- Zhijian T Li
- Grape Biotechnology Core Laboratory, Mid-Florida Research and Education Center, University of Florida/IFAS, Apopka, FL 32703-8504, USA
| | - Kyung-Hee Kim
- Grape Biotechnology Core Laboratory, Mid-Florida Research and Education Center, University of Florida/IFAS, Apopka, FL 32703-8504, USA
| | - Sadanand A Dhekney
- Department of Plant Sciences, Sheridan Research and Extension Center, Sheridan, WY 82801, USA
| | - Jonathan R Jasinski
- Grape Biotechnology Core Laboratory, Mid-Florida Research and Education Center, University of Florida/IFAS, Apopka, FL 32703-8504, USA
| | - Matthew R Creech
- Grape Biotechnology Core Laboratory, Mid-Florida Research and Education Center, University of Florida/IFAS, Apopka, FL 32703-8504, USA
| | - Dennis J Gray
- Grape Biotechnology Core Laboratory, Mid-Florida Research and Education Center, University of Florida/IFAS, Apopka, FL 32703-8504, USA
| |
Collapse
|
9
|
Dhekney SA, Li ZT, Dutt M, Gray DJ. Initiation and transformation of grapevine embryogenic cultures. Methods Mol Biol 2012; 847:215-25. [PMID: 22351011 DOI: 10.1007/978-1-61779-558-9_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protocols for the production and transformation of grapevine embryogenic cultures are described. Embryogenic cultures are initiated from leaves or stamens and pistils and transformed with Agrobacterium containing an enhanced green fluorescent protein/neomycin phosphotransferase II (egfp/nptII) fusion gene. Cultures are transferred to induction medium in the dark for callus formation and proliferation. Resulting cultures are transferred to somatic embryo development medium to induce secondary embryogenesis and formation of transgenic somatic embryos. Transgenic embryos identified on the basis on GFP fluorescence and kanamycin resistance are transferred to germination medium to regenerate transgenic plants. The presence of transgenes in independent plant lines is confirmed by PCR.
Collapse
Affiliation(s)
- Sadanand A Dhekney
- Mid-Florida Research and Education Center, University of Florida/IFAS, Apopka, FL, USA
| | | | | | | |
Collapse
|
10
|
Ribas AF, Dechamp E, Champion A, Bertrand B, Combes MC, Verdeil JL, Lapeyre F, Lashermes P, Etienne H. Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures. BMC PLANT BIOLOGY 2011; 11:92. [PMID: 21595964 PMCID: PMC3111370 DOI: 10.1186/1471-2229-11-92] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 05/19/2011] [Indexed: 05/06/2023]
Abstract
BACKGROUND Following genome sequencing of crop plants, one of the main challenges today is determining the function of all the predicted genes. When gene validation approaches are used for woody species, the main obstacle is the low recovery rate of transgenic plants from elite or commercial cultivars. Embryogenic calli have frequently been the target tissue for transformation, but the difficulty in producing or maintaining embryogenic tissues is one of the main problems encountered in genetic transformation of many woody plants, including Coffea arabica. RESULTS We identified the conditions required for successful long-term proliferation of embryogenic cultures in C. arabica and designed a highly efficient and reliable Agrobacterium tumefaciens-mediated transformation method based on these conditions. The transformation protocol with LBA1119 harboring pBin 35S GFP was established by evaluating the effect of different parameters on transformation efficiency by GFP detection. Using embryogenic callus cultures, co-cultivation with LBA1119 OD600 = 0.6 for five days at 20 °C enabled reproducible transformation. The maintenance conditions for the embryogenic callus cultures, particularly a high auxin to cytokinin ratio, the age of the culture (optimum for 7-10 months of proliferation) and the use of a yellow callus phenotype, were the most important factors for achieving highly efficient transformation (> 90%). At the histological level, successful transformation was related to the number of proembryogenic masses present. All the selected plants were proved to be transformed by PCR and Southern blot hybridization. CONCLUSION Most progress in increasing transformation efficiency in coffee has been achieved by optimizing the production conditions of embryogenic cultures used as target tissues for transformation. This is the first time that a strong positive effect of the age of the culture on transformation efficiency was demonstrated. Our results make Agrobacterium-mediated transformation of embryogenic cultures a viable and useful tool both for coffee breeding and for the functional analysis of agronomically important genes.
Collapse
Affiliation(s)
- Alessandra F Ribas
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement - Département des Systèmes Biologiques (CIRAD-BIOS). UMR-RPB (CIRAD, IRD, Université Montpellier II), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Eveline Dechamp
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement - Département des Systèmes Biologiques (CIRAD-BIOS). UMR-RPB (CIRAD, IRD, Université Montpellier II), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Anthony Champion
- IRD - Institut de Recherche pour le Développement, UMR RPB (CIRAD, IRD, Université Montpellier II), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Benoît Bertrand
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement - Département des Systèmes Biologiques (CIRAD-BIOS). UMR-RPB (CIRAD, IRD, Université Montpellier II), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Marie-Christine Combes
- IRD - Institut de Recherche pour le Développement, UMR RPB (CIRAD, IRD, Université Montpellier II), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Jean-Luc Verdeil
- CIRAD-BIOS, MRI, UMR-DAP, Plant cell imaging platform (www.PHIV.cirad.fr), Avenue Agropolis, 34398 Montpellier, Cedex 5, France
| | - Fabienne Lapeyre
- CIRAD-BIOS, MRI, UMR-DAP, Plant cell imaging platform (www.PHIV.cirad.fr), Avenue Agropolis, 34398 Montpellier, Cedex 5, France
| | - Philippe Lashermes
- IRD - Institut de Recherche pour le Développement, UMR RPB (CIRAD, IRD, Université Montpellier II), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Hervé Etienne
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement - Département des Systèmes Biologiques (CIRAD-BIOS). UMR-RPB (CIRAD, IRD, Université Montpellier II), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| |
Collapse
|
11
|
Guan X, Zhao H, Xu Y, Wang Y. Transient expression of glyoxal oxidase from the Chinese wild grape Vitis pseudoreticulata can suppress powdery mildew in a susceptible genotype. PROTOPLASMA 2011; 248:415-23. [PMID: 20512385 DOI: 10.1007/s00709-010-0162-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/11/2010] [Indexed: 05/08/2023]
Abstract
Vitis pseudoreticulata glyoxal oxidase (VpGLOX) was previously isolated from the Chinese wild vine V. pseudoreticulata accession "Baihe-35-1" during a screen for genes that are upregulated in response to infection with grapevine powdery mildew (Erysiphe necator, PM). In the present study, a possible function of VpGLOX for defense against PM was investigated using Agrobacterium-mediated transient expression. After optimizing agro-infiltration, VpGLOX was transiently overexpressed in leaves of either PM-susceptible (accession "6-12-2") or PM-resistant (accession "6-12-6") plants. The efficiency of transfection was verified using a β-glucuronidase (GUS) reporter and was found to comprise most leaf areas regardless of the initial leaf position. Upon infection with E. necator, clear differences were observed with respect to hyphal development between agro-infiltrated leaves and control groups of both, the susceptible and the resistant, genotypes. The expression of VpGLOX was followed by real-time polymerase chain reaction in both genotypes. Whereas in the susceptible host ("6-12-2") expression was found to increase only in transfected leaves and remained transient, in the resistant host ("6-12-6"), a second peak appeared later in transfected leaves, probably representing the response of the endogenous VpGLOX. The data support the interpretation that VpGLOX is sufficient to confer resistance to E. necator.
Collapse
Affiliation(s)
- Xin Guan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | | | | | | |
Collapse
|
12
|
|
13
|
|