1
|
Valencia-Lozano E, Herrera-Isidrón L, Flores-López JA, Recoder-Meléndez OS, Uribe-López B, Barraza A, Cabrera-Ponce JL. Exploring the Potential Role of Ribosomal Proteins to Enhance Potato Resilience in the Face of Changing Climatic Conditions. Genes (Basel) 2023; 14:1463. [PMID: 37510367 PMCID: PMC10379993 DOI: 10.3390/genes14071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Potatoes have emerged as a key non-grain crop for food security worldwide. However, the looming threat of climate change poses significant risks to this vital food source, particularly through the projected reduction in crop yields under warmer temperatures. To mitigate potential crises, the development of potato varieties through genome editing holds great promise. In this study, we performed a comprehensive transcriptomic analysis to investigate microtuber development and identified several differentially expressed genes, with a particular focus on ribosomal proteins-RPL11, RPL29, RPL40 and RPL17. Our results reveal, by protein-protein interaction (PPI) network analyses, performed with the highest confidence in the STRING database platform (v11.5), the critical involvement of these ribosomal proteins in microtuber development, and highlighted their interaction with PEBP family members as potential microtuber activators. The elucidation of the molecular biological mechanisms governing ribosomal proteins will help improve the resilience of potato crops in the face of today's changing climatic conditions.
Collapse
Affiliation(s)
- Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| | - Lisset Herrera-Isidrón
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Jorge Abraham Flores-López
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Osiel Salvador Recoder-Meléndez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Braulio Uribe-López
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Aarón Barraza
- CONACYT-Centro de Investigaciones Biológicas del Noreste, SC., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz CP 23096, Baja California Sur, Mexico
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|
2
|
Ciura J, Kruk J. Phytohormones as targets for improving plant productivity and stress tolerance. JOURNAL OF PLANT PHYSIOLOGY 2018; 229:32-40. [PMID: 30031159 DOI: 10.1016/j.jplph.2018.06.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/15/2018] [Accepted: 06/11/2018] [Indexed: 05/18/2023]
Abstract
In this review, we summarize the results of experiments that lead to altered levels of phytohormones in transgenic plants to improve plant productivity. The available data indicate that manipulating the level of phytohormones might also be a promising way to enhance the environmental stress tolerance of crop plants. In the regulation of the level of phytohormones, both biosynthesis and their catabolism pathways can be targeted for engineering purposes. Moreover, the signaling pathways of phytohormones should explored in this respect. In genetic modifications, conditional promoters must be developed to avoid undesired effects on growth. In order to find a practical application, the effects of genetic modifications should be further verified under field conditions and over a longer time scale.
Collapse
Affiliation(s)
- Joanna Ciura
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
3
|
Rahikainen M, Alegre S, Trotta A, Pascual J, Kangasjärvi S. Trans-methylation reactions in plants: focus on the activated methyl cycle. PHYSIOLOGIA PLANTARUM 2018; 162:162-176. [PMID: 28815615 DOI: 10.1111/ppl.12619] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/02/2017] [Accepted: 08/10/2017] [Indexed: 05/11/2023]
Abstract
Trans-methylation reactions are vital in basic metabolism, epigenetic regulation, RNA metabolism, and posttranslational control of protein function and therefore fundamental in determining the physiological processes in all living organisms. The plant kingdom is additionally characterized by the production of secondary metabolites that undergo specific hydroxylation, oxidation and methylation reactions to obtain a wide array of different chemical structures. Increasing research efforts have started to reveal the enzymatic pathways underlying the biosynthesis of complex metabolites in plants. Further engineering of these enzymatic machineries offers significant possibilities in the development of bio-based technologies, but necessitates deep understanding of their potential metabolic and regulatory interactions. Trans-methylation reactions are tightly coupled with the so-called activated methyl cycle (AMC), an essential metabolic circuit that maintains the trans-methylation capacity in all living cells. Tight regulation of the AMC is crucial in ensuring accurate trans-methylation reactions in different subcellular compartments, cell types, developmental stages and environmental conditions. This review addresses the organization and posttranslational regulation of the AMC and elaborates its critical role in determining metabolic regulation through modulation of methyl utilization in stress-exposed plants.
Collapse
Affiliation(s)
- Moona Rahikainen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Sara Alegre
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Andrea Trotta
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Jesús Pascual
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Saijaliisa Kangasjärvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Malhotra N, Sood H, Chauhan RS. Transcriptome-wide mining suggests conglomerate of genes associated with tuberous root growth and development in Aconitum heterophyllum Wall. 3 Biotech 2016; 6:152. [PMID: 28330224 PMCID: PMC4940232 DOI: 10.1007/s13205-016-0466-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/28/2016] [Indexed: 10/31/2022] Open
Abstract
Tuberous roots of Aconitum heterophyllum constitute storage organ for secondary metabolites, however, molecular components contributing to their formation are not known. The transcriptomes of A. heterophyllum were analyzed to identify possible genes associated with tuberous root development by taking clues from genes implicated in other plant species. Out of 18 genes, eight genes encoding GDP-mannose pyrophosphorylase (GMPase), SHAGGY, Expansin, RING-box protein 1 (RBX1), SRF receptor kinase (SRF), β-amylase, ADP-glucose pyrophosphorylase (AGPase) and Auxin responsive factor 2 (ARF2) showed higher transcript abundance in roots (13-171 folds) compared to shoots. Comparative expression analysis of those genes between tuberous root developmental stages showed 11-97 folds increase in transcripts in fully developed roots compared to young rootlets, thereby implying their association in biosynthesis, accumulation and storage of primary metabolites towards root biomass. Cluster analysis revealed a positive correlation with the gene expression data for different stages of tuberous root formation in A. heterophyllum. The outcome of this study can be useful in genetic improvement of A. heterophyllum for root biomass yield.
Collapse
|
5
|
Synthesis of a Cytokinin Linked by a Spacer to Dexamethasone and Biotin: Conjugates to Detect Cytokinin-Binding Proteins. Molecules 2016; 21:molecules21050576. [PMID: 27144549 PMCID: PMC6273812 DOI: 10.3390/molecules21050576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022] Open
Abstract
Yeast cells expressing cDNA libraries have provided two new approaches to facilitate further identification of cytokinin-binding proteins and receptors. These are the yeast three hybrid (Y3H) system and fluorescence activated cell sorting (FACS). The Y3H system requires a synthetic hybrid ligand comprising an “anchor” moiety (e.g., dexamethasone) linked to a cytokinin via a spacer. In the yeast nucleus, this ligand by binding connects two fusion proteins leading to a reporter gene activation and detection and characterisation of cytokinin binding proteins. Herein is reported the first synthesis of dexamethasone-cytokinin ligands with a spacer linkage. This was attached to the purine ring of 6-benzylaminopurine (BAP) at positions 2, 8 or 9. To achieve this, dexamethasone was modified by periodate oxidation yielding a carboxylic group used for conjugation to the spacer by amide formation. Biotinyl derivatives of cytokinins for FACS included those synthesised by reaction of an activated ester of biotin with 8-(10-amino-decylamino) derivatives of BAP and BAP 9-riboside. Properties of the conjugates and some biological situations where they could be applicable are discussed briefly.
Collapse
|
6
|
Baute J, Herman D, Coppens F, De Block J, Slabbinck B, Dell'Acqua M, Pè ME, Maere S, Nelissen H, Inzé D. Correlation analysis of the transcriptome of growing leaves with mature leaf parameters in a maize RIL population. Genome Biol 2015; 16:168. [PMID: 26357925 PMCID: PMC4566308 DOI: 10.1186/s13059-015-0735-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/30/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND To sustain the global requirements for food and renewable resources, unraveling the molecular networks underlying plant growth is becoming pivotal. Although several approaches to identify genes and networks involved in final organ size have been proven successful, our understanding remains fragmentary. RESULTS Here, we assessed variation in 103 lines of the Zea mays B73xH99 RIL population for a set of final leaf size and whole shoot traits at the seedling stage, complemented with measurements capturing growth dynamics, and cellular measurements. Most traits correlated well with the size of the division zone, implying that the molecular basis of final leaf size is already defined in dividing cells of growing leaves. Therefore, we searched for association between the transcriptional variation in dividing cells of the growing leaf and final leaf size and seedling biomass, allowing us to identify genes and processes correlated with the specific traits. A number of these genes have a known function in leaf development. Additionally, we illustrated that two independent mechanisms contribute to final leaf size, maximal growth rate and the duration of growth. CONCLUSIONS Untangling complex traits such as leaf size by applying in-depth phenotyping allows us to define the relative contributions of the components and their mutual associations, facilitating dissection of the biological processes and regulatory networks underneath.
Collapse
Affiliation(s)
- Joke Baute
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Dorota Herman
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Frederik Coppens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Jolien De Block
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Bram Slabbinck
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Matteo Dell'Acqua
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Steven Maere
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Hilde Nelissen
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Dirk Inzé
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
7
|
Du Q, Wang L, Zhou D, Yang H, Gong C, Pan W, Zhang D. Allelic variation within the S-adenosyl-L-homocysteine hydrolase gene family is associated with wood properties in Chinese white poplar (Populus tomentosa). BMC Genet 2014; 15 Suppl 1:S4. [PMID: 25079429 PMCID: PMC4118623 DOI: 10.1186/1471-2156-15-s1-s4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background S-adenosyl-l-homocysteine hydrolase (SAHH) is the only eukaryotic enzyme capable of S-adenosyl-l-homocysteine (SAH) catabolism for the maintenance of cellular transmethylation potential. Recently, biochemical and genetic studies in herbaceous species have obtained important discoveries in the function of SAHH, and an extensive characterization of SAHH family in even one tree species is essential, but currently lacking. Results Here, we first identified the SAHH family from Populus tomentosa using molecular cloning method. Phylogenetic analyses of 28 SAHH proteins from dicotyledons, monocotyledons, and lower plants revealed that the sequences formed two monophyletic groups: the PtrSAHHA with PtoSAHHA and PtrSAHHB with PtoSAHHB. Examination of tissue-specific expression profiles of the PtoSAHH family revealed similar expression patterns; high levels of expression in xylem were found. Nucleotide diversity and linkage disequilibrium (LD) in the PtoSAHH family, sampled from P. tomentosa natural distribution, revealed that PtoSAHH harbors high single-nucleotide polymorphism (SNP) diversity (π=0.01059±0.00122 and 0.00930±0.00079,respectively) and low LD (r2 > 0.1, within 800 bp and 2,200 bp, respectively). Using an LD-linkage analysis approach, two noncoding SNPs (PtoSAHHB_1065 and PtoSAHHA_2203) and the corresponding haplotypes were found to significantly associate with α-cellulose content, and a nonsynonymous SNP (PtoSAHHB_410) within the SAHH signature motifs showed significant association with fiber length, with an average of 3.14% of the phenotypic variance explained. Conclusions The present study demonstrates that PtoSAHHs were split off prior to the divergence of interspecies in Populus, and SAHHs may play a key role promoting transmethylation reactions in the secondary cell walls biosynthesis in trees. Hence, our findings provide insights into SAHH function and evolution in woody species and also offer a theoretical basis for marker-aided selection breeding to improve the wood quality of Populus.
Collapse
|
8
|
Lee S, Doxey AC, McConkey BJ, Moffatt BA. Nuclear targeting of methyl-recycling enzymes in Arabidopsis thaliana is mediated by specific protein interactions. MOLECULAR PLANT 2012; 5:231-48. [PMID: 21976714 DOI: 10.1093/mp/ssr083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Numerous transmethylation reactions are required for normal plant growth and development. S-adenosylhomocysteine hydrolase (SAHH) and adenosine kinase (ADK) act coordinately to recycle the by-product of these reactions, S-adenosylhomocysteine (SAH) that would otherwise competitively inhibit methyltransferase (MT) activities. Here, we report on investigations to understand how the SAH produced in the nucleus is metabolized by SAHH and ADK. Localization analyses using green fluorescent fusion proteins demonstrated that both enzymes are capable of localizing to the cytoplasm and the nucleus, although no obvious nuclear localization signal was found in their sequences. Deletion analysis revealed that a 41-amino-acid segment of SAHH (Gly(150)-Lys(190)) is required for nuclear targeting of this enzyme. This segment is surface exposed, shows unique sequence conservation patterns in plant SAHHs, and possesses additional features of protein-protein interaction motifs. ADK and SAHH interact in Arabidopsis via this segment and also interact with an mRNA cap MT. We propose that the targeting of this complex is directed by the nuclear localization signal of the MT; other MTs may similarly target SAHH/ADK to other subcellular compartments to ensure uninterrupted transmethylation.
Collapse
Affiliation(s)
- Sanghyun Lee
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | | | | | |
Collapse
|
9
|
Zalabák D, Pospíšilová H, Šmehilová M, Mrízová K, Frébort I, Galuszka P. Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnol Adv 2011; 31:97-117. [PMID: 22198203 DOI: 10.1016/j.biotechadv.2011.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/02/2011] [Indexed: 01/02/2023]
Abstract
Cytokinins (CKs) are ubiquitous phytohormones that participate in development, morphogenesis and many physiological processes throughout plant kingdom. In higher plants, mutants and transgenic cells and tissues with altered activity of CK metabolic enzymes or perception machinery, have highlighted their crucial involvement in different agriculturally important traits, such as productivity, increased tolerance to various stresses and overall plant morphology. Furthermore, recent precise metabolomic analyses have elucidated the specific occurrence and distinct functions of different CK types in various plant species. Thus, smooth manipulation of active CK levels in a spatial and temporal way could be a very potent tool for plant biotechnology in the future. This review summarises recent advances in cytokinin research ranging from transgenic alteration of CK biosynthetic, degradation and glucosylation activities and CK perception to detailed elucidation of molecular processes, in which CKs work as a trigger in model plants. The first attempts to improve the quality of crop plants, focused on cereals are discussed, together with proposed mechanism of action of the responses involved.
Collapse
Affiliation(s)
- David Zalabák
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
10
|
Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F. Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 2011; 30:524-40. [PMID: 21959304 DOI: 10.1016/j.biotechadv.2011.09.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/23/2011] [Accepted: 09/12/2011] [Indexed: 11/29/2022]
Abstract
At present, environmental degradation and the consistently growing population are two main problems on the planet earth. Fulfilling the needs of this growing population is quite difficult from the limited arable land available on the globe. Although there are legal, social and political barriers to the utilization of biotechnology, advances in this field have substantially improved agriculture and human life to a great extent. One of the vital tools of biotechnology is genetic engineering (GE) which is used to modify plants, animals and microorganisms according to desired needs. In fact, genetic engineering facilitates the transfer of desired characteristics into other plants which is not possible through conventional plant breeding. A variety of crops have been engineered for enhanced resistance to a multitude of stresses such as herbicides, insecticides, viruses and a combination of biotic and abiotic stresses in different crops including rice, mustard, maize, potato, tomato, etc. Apart from the use of GE in agriculture, it is being extensively employed to modify the plants for enhanced production of vaccines, hormones, etc. Vaccines against certain diseases are certainly available in the market, but most of them are very costly. Developing countries cannot afford the disease control through such cost-intensive vaccines. Alternatively, efforts are being made to produce edible vaccines which are cheap and have many advantages over the commercialized vaccines. Transgenic plants generated for this purpose are capable of expressing recombinant proteins including viral and bacterial antigens and antibodies. Common food plants like banana, tomato, rice, carrot, etc. have been used to produce vaccines against certain diseases like hepatitis B, cholera, HIV, etc. Thus, the up- and down-regulation of desired genes which are used for the modification of plants have a marked role in the improvement of genetic crops. In this review, we have comprehensively discussed the role of genetic engineering in generating transgenic lines/cultivars of different crops with improved nutrient quality, biofuel production, enhanced production of vaccines and antibodies, increased resistance against insects, herbicides, diseases and abiotic stresses as well as the safety measures for their commercialization.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, A.S. College, 190008, University of Kashmir, Srinagar, India.
| | | | | | | | | | | | | |
Collapse
|
11
|
Xie L, Yang C, Wang X. Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4495-506. [PMID: 21617247 PMCID: PMC3170551 DOI: 10.1093/jxb/err164] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 03/28/2011] [Accepted: 04/25/2011] [Indexed: 05/17/2023]
Abstract
The phytohormones, brassinosteroids (BRs), play important roles in regulating cell elongation and cell size, and BR-related mutants in Arabidopsis display significant dwarf phenotypes. Cellulose is a biopolymer which has a major contribution to cell wall formation during cell expansion and elongation. However, whether BRs regulate cellulose synthesis, and if so, what the underlying mechanism of cell elongation induced by BRs is, is unknown. The content of cellulose and the expression levels of the cellulose synthase genes (CESAs) was measured in BR-related mutants and their wild-type counterpart. The chromatin immunoprecipitation (CHIP) experiments and genetic analysis were used to demonstrate that BRs regulate CESA genes. It was found here that the BR-deficient or BR-perceptional mutants contain less cellulose than the wild type. The expression of CESA genes, especially those related to primary cell wall synthesis, was reduced in det2-1 and bri1-301, and was only inducible by BRs in the BR-deficient mutant det2-1. CHIP experiments show that the BR-activated transcription factor BES1 can associate with upstream elements of most CESA genes particularly those related with the primary cell wall. Furthermore, over-expression of the BR receptor BRI1 in CESA1, 3, and 6 mutants can only partially rescue the dwarf phenotypes. Our findings provide potential insights into the mechanism that BRs regulate cellulose synthesis to accomplish the cell elongation process in plant development.
Collapse
Affiliation(s)
- Liqiong Xie
- School of Life Science and Technology, Xian Jiaotong University, Xi'an 710049, Shanxi Province, People's Republic of China
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
- School of Life Science and Technology, Xinjiang University, Urumqi, 830046, Xinjiang Province, People's Republic of China
| | - Cangjing Yang
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Xuelu Wang
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Gonzalez N, Beemster GTS, Inzé D. David and Goliath: what can the tiny weed Arabidopsis teach us to improve biomass production in crops? CURRENT OPINION IN PLANT BIOLOGY 2009; 12:157-164. [PMID: 19119056 DOI: 10.1016/j.pbi.2008.11.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/12/2008] [Accepted: 11/15/2008] [Indexed: 05/26/2023]
Abstract
In the next decades, the world market for plant-derived products is expected to expand exponentially. Not only do we rely on plants to feed the growing world population, but plants will also play a pivotal role in providing a significant part of our increasing energy demands. Whereas in the 1960s the green revolution contributed to increase plant productivity, it is expected that biotechnological advances will further boost biomass production and plant yield. To do this effectively, it will be necessary to understand how the molecular machinery that determines yield parameters operates. Although of no direct economic significance, the model plant Arabidopsis can be used to find genes and regulatory networks controlling biomass production, which, in turn, can be applied for further growth improvement in other species including cereals.
Collapse
Affiliation(s)
- Nathalie Gonzalez
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, 9052 Gent, Belgium
| | | | | |
Collapse
|