Dam S, Thaysen-Andersen M, Stenkjær E, Lorentzen A, Roepstorff P, Packer NH, Stougaard J. Combined N-glycome and N-glycoproteome analysis of the Lotus japonicus seed globulin fraction shows conservation of protein structure and glycosylation in legumes.
J Proteome Res 2013;
12:3383-92. [PMID:
23799247 DOI:
10.1021/pr400224s]
[Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Legume food allergy, such as allergy toward peanuts and soybeans, is a health issue predicted to worsen as dietary advice recommends higher intake of legume-based foods. Lotus japonicus (Lotus) is an established legume plant model system for studies of symbiotic and pathogenic microbial interactions and, due to its well characterized genotype/phenotype and easily manipulated genome, may also be suitable for studies of legume food allergy. Here we present a comprehensive study of the Lotus N-glycoproteome. The global and site-specific N-glycan structures of Lotus seed globulins were analyzed using mass spectrometry-based glycomics and glycoproteomics techniques. In total, 19 N-glycan structures comprising high mannose (∼20%), pauci-mannosidic (∼40%), and complex forms (∼40%) were determined. The pauci-mannosidic and complex N-glycans contained high amounts of the typical plant determinants β-1,2-xylose and α-1,3-fucose. Two abundant Lotus seed N-glycoproteins were site-specifically profiled; a predicted lectin containing two fully occupied N-glycosylation sites carried predominantly pauci-mannosidic structures in different distributions. In contrast, Lotus convicilin storage protein 2 (LCP2) carried exclusively high mannose N-glycans similar to its homologue, Ara h 1, which is the major allergen in peanut. In silico investigation confirmed that peanut Ara h 1 and Lotus LCP2 are highly similar at the primary and higher protein structure levels. Hence, we suggest that Lotus has the potential to serve as a model system for studying the role of seed proteins and their glycosylation in food allergy.
Collapse