1
|
Yue F, Zheng F, Li Q, Mei J, Shu C, Qian W. Comparative Transcriptome Analysis Points to the Biological Processes of Hybrid Incompatibility between Brassica napus and B. oleracea. PLANTS (BASEL, SWITZERLAND) 2023; 12:2622. [PMID: 37514237 PMCID: PMC10384443 DOI: 10.3390/plants12142622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Improving Brassica napus via introgression of the genome components from its parental species, B. oleracea and B. rapa, is an important breeding strategy. Interspecific hybridization between B. napus and B. rapa is compatible with high rate of survival ovules, while the hybridization between B. napus and B. oleracea is incompatible with the high occurrence of embryo abortion. To understand the diverse embryo fate in the two interspecific hybridizations, here, the siliques of B. napus pollinated with B. oleracea (AE) and B. rapa (NE) were employed for transcriptome sequencing at 8 and 16 days after pollination. Compared to NE and the parental line of B. napus, more specific differentially expressed genes (DEGs) (1274 and 1698) were obtained in AE and the parental line of B. napus at 8 and 16 days after pollination (DAP). These numbers were 51 and 5.8 times higher than the number of specific DEGs in NE and parental line of B. napus at 8 and 16 DAP, respectively, suggesting more complex transcriptional changes in AE. Most of DEGs in the terms of cell growth and cell wall formation exhibited down-regulated expression patterns (96(down)/131(all) in AE8, 174(down)/235(all) in AE16), while most of DEGs in the processes of photosynthesis, photorespiration, peroxisome, oxidative stress, and systemic acquired resistance exhibited up-regulated expression patterns (222(up)/304(all) in AE8, 214(up)/287(all) in AE16). This is in accordance with a high level of reactive oxygen species (ROS) in the siliques of B. napus pollinated with B. oleracea. Our data suggest that the disorder of plant hormone metabolism, retardation of cell morphogenesis, and the accumulation of ROS may be associated with hybrid incompatibility between B. napus and B. oleracea.
Collapse
Affiliation(s)
- Fang Yue
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Fajing Zheng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Qinfei Li
- College of Horticulture and Landscape, Southwest University, Chongqing 400715, China
| | - Jiaqin Mei
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Chunlei Shu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Yang M, Yarra R, Zhang R, Zhou L, Jin L, Martin JJJ, Cao H. Transcriptome analysis of oil palm pistil during pollination and fertilization to unravel the role of phytohormone biosynthesis and signaling genes. Funct Integr Genomics 2022; 22:261-278. [PMID: 35229235 DOI: 10.1007/s10142-022-00834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
Abstract
Phytohormones play an important role in the pollination and fertilization of crops, but the regulatory mechanisms of oil palm pollination and fertilization are unclear. The purpose of this study is to explore the hormonal changes of oil palm pistils during flowering. We used RNA sequencing to evaluate differentially expressed genes (DEGs) in oil palm pistils at the pollination and non-pollination stages. In this study, we found that the hormone contents of oil palm pistil changed drastically after pollination. The transcriptome of the oil palm pistil without pollination and at 2 h, 4 h, 12 h, 24 h, and 48 h after pollination was comprehensively analyzed, and a large number of differential genes and metabolic pathways were explored. Based on the transcriptome data, it could be recognized that the changes of indoleacetic acid (IAA), zeatin riboside (ZR), and abscisic acid (ABA) during pollination were consistent with the changes in the corresponding gene transcripts. Differentially expressed genes during pollination and fertilization of oil palm were mainly related to energy metabolism and hormone signal transduction. It provides new insights to elucidate the interaction and regulation mechanisms of plant hormones before and after oil palm pollination, providing a theoretical basis and reference for the research on sexual reproduction of oil palm.
Collapse
Affiliation(s)
- Mengdi Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, 571339, People's Republic of China.,Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, People's Republic of China.,College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, People's Republic of China
| | - Rajesh Yarra
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, 571339, People's Republic of China.,Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, People's Republic of China
| | - Ruining Zhang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, 571339, People's Republic of China.,Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, People's Republic of China.,College of Horticulture, Hainan University, Haikou, Hainan, 570228, People's Republic of China
| | - Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, 571339, People's Republic of China.,Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, People's Republic of China
| | - Longfei Jin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, 571339, People's Republic of China.,Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, People's Republic of China
| | - Jerome Jeyakumar John Martin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, 571339, People's Republic of China.,Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, People's Republic of China
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, 571339, People's Republic of China. .,Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, People's Republic of China.
| |
Collapse
|
3
|
An X, Gao K, Chen Z, Li J, Yang X, Yang X, Zhou J, Guo T, Zhao T, Huang S, Miao D, Ullah Khan W, Rao P, Ye M, Lei B, Liao W, Wang J, Ji L, Li Y, Guo B, Siddig Mustafa N, Li S, Yun Q, Keller SR, Mao JF, Zhang RG, Strauss SH. High quality haplotype-resolved genome assemblies of Populus tomentosa Carr., a stabilized interspecific hybrid species widespread in Asia. Mol Ecol Resour 2021; 22:786-802. [PMID: 34549890 DOI: 10.1111/1755-0998.13507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022]
Abstract
Populus has a wide ecogeographical range spanning the Northern Hemisphere, and interspecific hybrids are common. Populus tomentosa Carr. is widely distributed and cultivated in the eastern region of Asia, where it plays multiple important roles in forestry, agriculture, conservation, and urban horticulture. Reference genomes are available for several Populus species, however, our goals were to produce a very high quality de novo chromosome-level genome assembly in P. tomentosa genome that could serve as a reference for evolutionary and ecological studies of hybrid speciation throughout the genus. Here, combining long-read sequencing and Hi-C scaffolding, we present a high-quality, haplotype-resolved genome assembly. The genome size was 740.2 Mb, with a contig N50 size of 5.47 Mb and a scaffold N50 size of 46.68 Mb, consisting of 38 chromosomes, as expected with the known diploid chromosome number (2n = 2x = 38). A total of 59,124 protein-coding genes were identified. Phylogenomic analyses revealed that P. tomentosa is comprised of two distinct subgenomes, which we deomonstrate is likely to have resulted from hybridization between Populus adenopoda as the female parent and Populus alba var. pyramidalis as the male parent, with an origin of approximately 3.93 Ma. Although highly colinear, significant structural variation was found between the two subgenomes. Our study provides a valuable resource for ecological genetics and forest biotechnology.
Collapse
Affiliation(s)
- Xinmin An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kai Gao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhong Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Juan Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiong Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaoyu Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jing Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ting Guo
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Tianyun Zhao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Sai Huang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Deyu Miao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wasif Ullah Khan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Pian Rao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Meixia Ye
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Bingqi Lei
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weihua Liao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jia Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lexiang Ji
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ying Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Bin Guo
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Shanxi Academy of Forestry, Taiyuan, China
| | - Nada Siddig Mustafa
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shanwen Li
- Shandong Academy of Forestry, Jinan, China
| | | | - Stephen R Keller
- Department of Plant Biology, University of Vermont, Burlington, Vermont, USA
| | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | | | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
4
|
Zhang F, Wang Z, Dong W, Sun C, Wang H, Song A, He L, Fang W, Chen F, Teng N. Transcriptomic and proteomic analysis reveals mechanisms of embryo abortion during chrysanthemum cross breeding. Sci Rep 2014; 4:6536. [PMID: 25288482 PMCID: PMC4187010 DOI: 10.1038/srep06536] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/26/2014] [Indexed: 12/25/2022] Open
Abstract
Embryo abortion is the main cause of failure in chrysanthemum cross breeding, and the genes and proteins associated with embryo abortion are poorly understood. Here, we applied RNA sequencing and isobaric tags for relative and absolute quantitation (iTRAQ) to analyse transcriptomic and proteomic profiles of normal and abortive embryos. More than 68,000 annotated unigenes and 700 proteins were obtained from normal and abortive embryos. Functional analysis showed that 140 differentially expressed genes (DEGs) and 41 differentially expressed proteins (DEPs) were involved in embryo abortion. Most DEGs and DEPs associated with cell death, protein degradation, reactive oxygen species scavenging, and stress-response transcriptional factors were significantly up-regulated in abortive embryos relative to normal embryos. In contrast, most genes and proteins related to cell division and expansion, the cytoskeleton, protein synthesis and energy metabolism were significantly down-regulated in abortive embryos. Furthermore, abortive embryos had the highest activity of three executioner caspase-like enzymes. These results indicate that embryo abortion may be related to programmed cell death and the senescence- or death-associated genes or proteins contribute to embryo abortion. This adds to our understanding of embryo abortion and will aid in the cross breeding of chrysanthemum and other crops in the future.
Collapse
Affiliation(s)
- Fengjiao Zhang
- 1] College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China [2] Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology &Equipment, Nanjing 210095, China
| | - Zhiquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Dong
- China Rural Technology Development Center, Beijing 100045, China
| | - Chunqing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lizhong He
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- 1] College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China [2] Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology &Equipment, Nanjing 210095, China
| | - Nianjun Teng
- 1] College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China [2] Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology &Equipment, Nanjing 210095, China
| |
Collapse
|