1
|
Shen Y, Chen M, Hong J, Xiong W, Xiong H, Wu X, Hu L, Xiao Y. Identification and characterization of tsyl1, a thermosensitive chlorophyll-deficient mutant in rice (Oryza sativa). JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153782. [PMID: 35963041 DOI: 10.1016/j.jplph.2022.153782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast development and chlorophyll biosynthesis are affected by temperature. However, the underlying molecular mechanism of this phenomenon remains elusive. Here, we isolated and characterized a thermosensitive yellow-green leaf mutant named tsyl1 (thermosensitive yellow leaf 1) from an ethylmethylsulfone (EMS)-mutagenized pool of rice. The mutant exhibits a yellow-green leaf phenotype and decreased leaf chlorophyll contents throughout development. At the mature stage of the tsyl1 mutant, the plant height, tiller number, number of spikelets per panicle and 1000 seed weight were decreased significantly compared to those of wild-type plants, but the seed setting rate and panicle length were not. The mutant phenotype was controlled by a single recessive nuclear gene on the short arm of rice chromosome 11. Map-based cloning of TSYL1, followed by a complementation experiment, showed a G base deletion at the coding region of LOC_Os11g05552, leading to the yellow-green phenotype. The TSYL1 gene encodes a signal recognition particle 54 kDa (SRP54) protein that is conserved in all organisms. The expression of tsyl1 was induced by high temperature. Furthermore, the expression of chlorophyll biosynthesis- and chloroplast development-related genes was influenced in tsyl1 at different temperatures. These results indicated that the TSYL1 gene plays a key role in chlorophyll biosynthesis and is affected by temperature at the transcriptional level.
Collapse
Affiliation(s)
- Yumin Shen
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China; Nanchang Branch of Chinese National Center for Rice Improvement, Nanchang, Jiangxi, 330200, China; National Engineering Research Center of Rice, Nanchang, Jiangxi, 330200, China.
| | - Mingliang Chen
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| | - Jun Hong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wentao Xiong
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| | - Huanjin Xiong
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| | - Xiaoyan Wu
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| | - Lanxiang Hu
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| | - Yeqing Xiao
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| |
Collapse
|
2
|
Lin DZ, Pan QW, Wang XM, Chen Y, Pan XB, Dong YJ. Mutation of the rice AN1-type zinc-finger protein gene ASL4 causes chloroplast development defects and seedling lethality. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:95-103. [PMID: 34724300 DOI: 10.1111/plb.13334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/20/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Plant zinc-finger proteins play a crucial role in biosynthesis and plant development. However, it is not known whether certain zinc-finger proteins play a role in rice chloroplast development. In this study, a novel rice zinc-finger protein mutant asl4 (albino seedling lethality4), which exhibits an albino lethal phenotype at the seedling stage, was used. Chlorophyll fluorescence analysis and TEM were used to investigate features of the asl4 mutant. The genetic behaviour and function of ASL4 gene were then analysed thorough map-based cloning, transgenic complement and subcellular localization. The albino lethal phenotype was caused by a single nucleotide (G*) deletion mutation on the exon of the ASL4 (LOC_Os09g21710) gene. The ASL4 gene encoded a novel zinc-finger protein containing two ZnF-AN1 domains, which was localized to the nucleocytoplasm. The ASL4 transcripts were highly expressed in all leaves but relatively less in other tissues, suggesting its tissue-specific expression. The transcript levels of associated genes for Chl biosynthesis, photosynthesis and chloroplast development were severely suppressed in asl4 mutants. In conclusion, the absence of ASL4 function caused a defect in chloroplast development and seedling lethality. This is the first published report on the importance of the ZnF-AN1 type zinc-finger protein gene in chloroplast development in rice.
Collapse
Affiliation(s)
- D Z Lin
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Q W Pan
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - X M Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Y Chen
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - X B Pan
- Crop Institute, Taizhou Academy of Agricultural Sciences, Zhejiang Linhai, China
| | - Y J Dong
- College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai, China
- Institute of Genetics, Shanghai Normal University, Shanghai, China
| |
Collapse
|
3
|
Zhang Z, Tan M, Zhang Y, Jia Y, Zhu S, Wang J, Zhao J, Liao Y, Xiang Z. Integrative analyses of targeted metabolome and transcriptome of Isatidis Radix autotetraploids highlighted key polyploidization-responsive regulators. BMC Genomics 2021; 22:670. [PMID: 34535080 PMCID: PMC8449450 DOI: 10.1186/s12864-021-07980-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Background Isatidis Radix, the root of Isatis indigotica Fort. (Chinese woad) can produce a variety of efficacious compound with medicinal properties. The tetraploid I. indigotica plants exhibit superior phenotypic traits, such as greater yield, higher bioactive compounds accumulation and enhanced stress tolerance. In this study, a comparative transcriptomic and metabolomic study on Isatidis Radix autotetraploid and its progenitor was performed. Results Through the targeted metabolic profiling, 283 metabolites were identified in Isatidis Radix, and 70 polyploidization-altered metabolites were obtained. Moreover, the production of lignans was significantly increased post polyploidization, which implied that polyploidization-modulated changes in lignan biosynthesis. Regarding the transcriptomic shift, 2065 differentially expressed genes (DEGs) were identified as being polyploidy-responsive genes, and the polyploidization-altered DEGs were enriched in phenylpropanoid biosynthesis and plant hormone signal transduction. The further integrative analysis of polyploidy-responsive metabolome and transcriptome showed that 1584 DEGs were highly correlated with the 70 polyploidization-altered metabolites, and the transcriptional factors TFs-lignans network highlighted 10 polyploidy-altered TFs and 17 fluctuated phenylpropanoid pathway compounds. Conclusions These results collectively indicated that polyploidization contributed to the high content of active compounds in autotetraploid roots, and the gene–lignan pathway network analysis highlighted polyploidy–responsive key functional genes and regulators. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07980-w.
Collapse
Affiliation(s)
- Zixuan Zhang
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Mingpu Tan
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yingying Zhang
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yue Jia
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shuxian Zhu
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiang Wang
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiajing Zhao
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yueyue Liao
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zengxu Xiang
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
4
|
Yu HW, Lu ZH, Wang X, Liu D, He JX, Jiang XL, Ke LJ, Guo WW, Deng XX, Xu Q. Identification of a delayed leaf greening gene from a mutation of pummelo. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1165-1173. [PMID: 33009992 DOI: 10.1007/s11427-020-1790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/01/2020] [Indexed: 05/11/2023]
Abstract
Delayed greening of young leaves is an unusual phenomenon of plants in nature. Citrus are mostly evergreen tree species. Here, a natural mutant of "Guanxi" pummelo (Citrus maxima), which shows yellow leaves at the young stage, was characterized to identify the genes underlying the trait of delayed leaf greening in plants. A segregating population with this mutant as the seed parent and a normal genotype as the pollen parent was generated. Two DNA pools respectively from the leaves of segregating seedlings with extreme phenotypes of normal leaf greening and delayed leaf greening were collected for sequencing. Bulked segregant analysis (BSA) and InDel marker analysis demonstrated that the delayed leaf greening trait is governed by a 0.3 Mb candidate region on chromosome 6. Gene expression analysis further identified a key candidate gene (Citrus Delayed Greening gene 1, CDG1) in the 0.3 Mb region, which showed significantly differential expression between the genotypes with delayed and normal leaf greening phenotypes. There was a 67 bp InDel region difference in the CDG1 promoter and the InDel region contains a TATA-box element. Confocal laser-scanning microscopy revealed that the CDG1-GFP fusion protein signals were co-localized with the chloroplast signals in the protoplasts. Overexpression of CDG1 in tobacco and Arabidopsis led to the phenotype of delayed leaf greening. These results suggest that the CDG1 gene is involved in controlling the delayed leaf greening phenotype with important functions in chloroplast development.
Collapse
Affiliation(s)
- Hui-Wen Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, Minnan Normal University, Zhangzhou, 363000, China
| | - Zhi-Hao Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xia Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Dan Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Xian He
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Lin Jiang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling-Jun Ke
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, Minnan Normal University, Zhangzhou, 363000, China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiu-Xin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Xiong E, Li Z, Zhang C, Zhang J, Liu Y, Peng T, Chen Z, Zhao Q. A study of leaf-senescence genes in rice based on a combination of genomics, proteomics and bioinformatics. Brief Bioinform 2020; 22:5998850. [PMID: 33257942 DOI: 10.1093/bib/bbaa305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Leaf senescence is a highly complex, genetically regulated and well-ordered process with multiple layers and pathways. Delaying leaf senescence would help increase grain yields in rice. Over the past 15 years, more than 100 rice leaf-senescence genes have been cloned, greatly improving the understanding of leaf senescence in rice. Systematically elucidating the molecular mechanisms underlying leaf senescence will provide breeders with new tools/options for improving many important agronomic traits. In this study, we summarized recent reports on 125 rice leaf-senescence genes, providing an overview of the research progress in this field by analyzing the subcellular localizations, molecular functions and the relationship of them. These data showed that chlorophyll synthesis and degradation, chloroplast development, abscisic acid pathway, jasmonic acid pathway, nitrogen assimilation and ROS play an important role in regulating the leaf senescence in rice. Furthermore, we predicted and analyzed the proteins that interact with leaf-senescence proteins and achieved a more profound understanding of the molecular principles underlying the regulatory mechanisms by which leaf senescence occurs, thus providing new insights for future investigations of leaf senescence in rice.
Collapse
Affiliation(s)
- Erhui Xiong
- College of Agriculture, Henan Agricultural University (HAU), China
| | - Zhiyong Li
- Academy for Advanced Interdisciplinary Studies, South University of Science and Technology, Shenzhen, China
| | - Chen Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | | | - Ye Liu
- College of Agriculture, HAU
| | | | | | | |
Collapse
|
6
|
Yue Y, Yin C, Guo R, Peng H, Yang Z, Liu G, Bao M, Hu H. An anther-specific gene PhGRP is regulated by PhMYC2 and causes male sterility when overexpressed in petunia anthers. PLANT CELL REPORTS 2017; 36:1401-1415. [PMID: 28597062 DOI: 10.1007/s00299-017-2163-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/01/2017] [Indexed: 05/20/2023]
Abstract
An anther-specific GRP gene, regulated by PhMYC2 , causes a significant reduction of male fertility when overexpressed in petunia, and its promoter is efficient in genetic engineering of male-sterile lines. Glycine-rich proteins (GRPs) play important roles in plant anther development; however, the underlying mechanisms and related regulatory networks are poorly understood. In this study, a novel glycine-rich family gene designated as PhGRP was isolated from Petunia hybrida 'Fantasy Red'. The qRT-PCR analysis showed that it expressed specifically in anthers, and its expression peaked earlier than those well-known tapetum-specific genes, such as TA29, and several genes with the classic cis-regulatory element 'anther-box' in petunia during its anther development. The male fertility was significantly reduced in PhGRP overexpression lines, due to the abnormal formation of pollen wall. The PhGRP promoter (pPhGRP) could drive the GUS genes expressing specifically in the anthers of the transgenic Arabidopsis plants, indicating that the anther-specific characteristic of this promoter was conserved. In addition, when pPhGRP was used to drive the expression of BARNASE, complete male-sterile petunia lines were created without changes in vegetative organs and floral parts other than anthers. Finally, when pPhGRP was used as the bait to screen a yeast-one-hybrid (Y1H) library, a transcription factor (PhMYC2) belonging to the bHLH family was successfully selected, and the binding between pPhGRP and PhMYC2 was validated both by Y1H and dual-luciferase reporter assay. Overall, these results suggest that PhGRP, which is a male fertility-related gene that expresses specifically in anthers, is regulated by PhMYC2 and whose promoter can be used as an effective tool in the creation of male-sterile lines.
Collapse
Affiliation(s)
- Yuanzheng Yue
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chaoqun Yin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Rui Guo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hao Peng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhaonan Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guofeng Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Huirong Hu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
7
|
Wu L, Wu J, Liu Y, Gong X, Xu J, Lin D, Dong Y. The Rice Pentatricopeptide Repeat Gene TCD10 is Needed for Chloroplast Development under Cold Stress. RICE (NEW YORK, N.Y.) 2016; 9:67. [PMID: 27910002 PMCID: PMC5133210 DOI: 10.1186/s12284-016-0134-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/15/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Chloroplast plays a vital role in plant development and growth. The pentatricopeptide repeat (PPR) gene family is one of the largest gene families in plants. In addition, cold stress affects a broad spectrum of cellular components, e.g. chloroplast, and metabolism in plants. However, the regulatory mechanism for rice PPR genes on chloroplast development still remains elusive under cold stress. RESULT In this paper, we characterized a new rice PPR gene mutant tcd10 (thermo-sensitive chlorophyll-deficient mutant 10) that exhibits the albino phenotype, malformed chloroplast and could not survive after the 5-leaf stage when grown at 20 °C, but does the normal phenotype at 32 °C. Map-based cloning, followed by RNA interference and CRISPR/Cas9 genome editing techniques, revealed that TCD10 encoding a novel PPR protein, mainly localized to the chloroplasts, with 27 PPR motifs, is responsible for the mutant phenotype. In addition, TCD10 is specific expression in tissues. The disruption of TCD10 resulted in an evidently reduced expression of chloroplast-associated genes under cold stress (20 °C), whereas they did recovered to normal levels at high temperature (32 °C). These results showed an important role of TCD10 for chloroplast development under cold stress. CONCLUSIONS The TCD10 encodes a novel rice PPR protein, mainly located in chloroplasts, which is important for chloroplast development, growth and the maintenance of photosynthetic electron transport and its disorder would lead to an aberrant chloroplast and abnormal expressions in these genes for chloroplast development and photosynthesis in rice under cold stress.
Collapse
Affiliation(s)
- Lanlan Wu
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jun Wu
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yanxia Liu
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaodi Gong
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Jianlong Xu
- The Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan Cun Street, Beijing, 100081, China
| | - Dongzhi Lin
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Yanjun Dong
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
8
|
Pogson BJ, Ganguly D, Albrecht-Borth V. Insights into chloroplast biogenesis and development. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1017-24. [PMID: 25667967 DOI: 10.1016/j.bbabio.2015.02.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/29/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022]
Abstract
In recent years many advances have been made to obtain insight into chloroplast biogenesis and development. In plants several plastids types exist such as the proplastid (which is the progenitor of all plastids), leucoplasts (group of colourless plastids important for storage including elaioplasts (lipids), amyloplasts (starch) or proteinoplasts (proteins)), chromoplasts (yellow to orange-coloured due to carotenoids, in flowers or in old leaves as gerontoplasts), and the green chloroplasts. Chloroplasts are indispensable for plant development; not only by performing photosynthesis and thus rendering the plant photoautotrophic, but also for biochemical processes (which in some instances can also take place in other plastids types), such as the synthesis of pigments, lipids, and plant hormones and sensing environmental stimuli. Although we understand many aspects of these processes there are gaps in our understanding of the establishment of functional chloroplasts and their regulation. Why is that so? Even though chloroplast function is comparable in all plants and most of the algae, ferns and moss, detailed analyses have revealed many differences, specifically with respect to its biogenesis. As an update to our prior review on the genetic analysis of chloroplast biogenesis and development [1] herein we will focus on recent advances in Angiosperms (monocotyledonous and dicotyledonous plants) that provide novel insights and highlight the challenges and prospects for unravelling the regulation of chloroplast biogenesis specifically during the establishment of the young plants. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
| | - Diep Ganguly
- Australian National University, Canberra, Australia
| | | |
Collapse
|