1
|
Yu W, Yu M, Zhao R, Sheng J, Li Y, Shen L. Ethylene Perception Is Associated with Methyl-Jasmonate-Mediated Immune Response against Botrytis cinerea in Tomato Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6725-6735. [PMID: 31117506 DOI: 10.1021/acs.jafc.9b02135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Jasmonic acid (JA)- and ethylene-mediated signaling pathways are reported to have synergistic effects on inhibiting gray mold. The present study aimed to explain the role of ethylene perception in methyl jasmonate (MeJA)-mediated immune responses. Results showed that exogenous MeJA enhanced disease resistance, accompanied by the induction of endogenous JA biosynthesis and ethylene production, which led to the activation of the phenolic metabolism pathway. Blocking ethylene perception using 1-methylcyclopropene (1-MCP) either before or after MeJA treatment could differently weaken the disease responses induced by MeJA, including suppressing the induction of ethylene production and JA contents and reducing activities of lipoxygenase and allene oxide synthase compared to MeJA treatment alone. Consequently, MeJA-induced elevations in the total phenolic content and the activities of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, 4-coumarate:coenzyme A ligase, and peroxidase were impaired by 1-MCP. These results suggested that ethylene perception participated in MeJA-mediated immune responses in tomato fruit.
Collapse
Affiliation(s)
- Wenqing Yu
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , People's Republic of China
| | - Mengmeng Yu
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , People's Republic of China
| | - Ruirui Zhao
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , People's Republic of China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development , Renmin University of China , Beijing 100872 , People's Republic of China
| | - Yujing Li
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , People's Republic of China
| | - Lin Shen
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , People's Republic of China
| |
Collapse
|
2
|
Scotton DC, Azevedo MDS, Sestari I, Da Silva JS, Souza LA, Peres LEP, Leal GA, Figueira A. Expression of the Theobroma cacao Bax-inhibitor-1 gene in tomato reduces infection by the hemibiotrophic pathogen Moniliophthora perniciosa. MOLECULAR PLANT PATHOLOGY 2017; 18:1101-1112. [PMID: 27454588 PMCID: PMC6638249 DOI: 10.1111/mpp.12463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 05/26/2023]
Abstract
Programmed cell death (PCD) plays a key role in plant responses to pathogens, determining the success of infection depending on the pathogen lifestyle and on which participant of the interaction triggers cell death. The hemibiotrophic basidiomycete Moniliophthora perniciosa is the causal agent of witches' broom disease of Theobroma cacao L. (cacao), a serious constraint for production in South America and the Caribbean. It has been hypothesized that M. perniciosa pathogenesis involves PCD, initially as a plant defence mechanism, which is diverted by the fungus to induce necrosis during the dikaryotic phase of the mycelia. Here, we evaluated whether the expression of a cacao anti-apoptotic gene would affect the incidence and severity of M. perniciosa infection using the 'Micro-Tom' (MT) tomato as a model. The cacao Bax-inhibitor-1 (TcBI-1) gene, encoding a putative basal attenuator of PCD, was constitutively expressed in MT to evaluate function. Transformants expressing TcBI-1, when treated with tunicamycin, an inducer of endoplasmic reticulum stress, showed a decrease in cell peroxidation. When the same transformants were inoculated with the necrotrophic fungal pathogens Sclerotinia sclerotiorum, Sclerotium rolfsii and Botrytis cinerea, a significant reduction in infection severity was observed, confirming TcBI-1 function. After inoculation with M. perniciosa, TcBI-1 transformant lines showed a significant reduction in disease incidence compared with MT. The overexpression of TcBI-1 appears to affect the ability of germinating spores to penetrate susceptible tissues, restoring part of the non-host resistance in MT against the S-biotype of M. perniciosa.
Collapse
Affiliation(s)
- Danielle Camargo Scotton
- Centro de Energia Nuclear na Agricultura, Universidade de São PauloPiracicabaSP13400‐970Brazil
- Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São PauloPiracicabaSP13418‐900Brazil
| | - Mariana Da Silva Azevedo
- Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São PauloPiracicabaSP13418‐900Brazil
| | - Ivan Sestari
- Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São PauloPiracicabaSP13418‐900Brazil
| | - Jamille Santos Da Silva
- Centro de Energia Nuclear na Agricultura, Universidade de São PauloPiracicabaSP13400‐970Brazil
- Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São PauloPiracicabaSP13418‐900Brazil
| | - Lucas Anjos Souza
- Centro de Energia Nuclear na Agricultura, Universidade de São PauloPiracicabaSP13400‐970Brazil
- Present address:
Instituto Federal GoianoCampus Rio Verde, Rio VerdeGO 75901-970Brazil
| | | | - Gildemberg Amorim Leal
- Centro de Estudos Agrários, Universidade Federal de AlagoasBR 104, Km 85 Norte, Rio LargoAL57100‐00Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São PauloPiracicabaSP13400‐970Brazil
| |
Collapse
|
3
|
Diniz I, Figueiredo A, Loureiro A, Batista D, Azinheira H, Várzea V, Pereira AP, Gichuru E, Moncada P, Guerra-Guimarães L, Oliveira H, Silva MDC. A first insight into the involvement of phytohormones pathways in coffee resistance and susceptibility to Colletotrichum kahawae. PLoS One 2017; 12:e0178159. [PMID: 28542545 PMCID: PMC5438148 DOI: 10.1371/journal.pone.0178159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/09/2017] [Indexed: 11/19/2022] Open
Abstract
Understanding the molecular mechanisms underlying coffee-pathogen interactions are of key importance to aid disease resistance breeding efforts. In this work the expression of genes involved in salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) pathways were studied in hypocotyls of two coffee varieties challenged with the hemibiotrophic fungus Colletotrichum kahawae, the causal agent of Coffee Berry Disease. Based on a cytological analysis, key time-points of the infection process were selected and qPCR was used to evaluate the expression of phytohormones biosynthesis, reception and responsive-related genes. The resistance to C. kahawae was characterized by restricted fungal growth associated with early accumulation of phenolic compounds in the cell walls and cytoplasmic contents, and deployment of hypersensitive reaction. Similar responses were detected in the susceptible variety, but in a significantly lower percentage of infection sites and with no apparent effect on disease development. Gene expression analysis suggests a more relevant involvement of JA and ET phytohormones than SA in this pathosystem. An earlier and stronger activation of the JA pathway observed in the resistant variety, when compared with the susceptible one, seems to be responsible for the successful activation of defense responses and inhibition of fungal growth. For the ET pathway, the down or non-regulation of ET receptors in the resistant variety, together with a moderate expression of the responsive-related gene ERF1, indicates that this phytohormone may be related with other functions besides the resistance response. However, in the susceptible variety, the stronger activation of ERF1 gene at the beginning of the necrotrophic phase, suggests the involvement of ET in tissue senescence. As far as we know, this is the first attempt to unveil the role of phytohormones in coffee-C. kahawae interactions, thus contributing to deepen our understanding on the complex mechanisms of plant signaling and defense.
Collapse
Affiliation(s)
- Inês Diniz
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Oeiras, Portugal
- Linking Landscape, Environment, Agricultural and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| | - Andreia Figueiredo
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Loureiro
- Linking Landscape, Environment, Agricultural and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
| | - Dora Batista
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Oeiras, Portugal
- Linking Landscape, Environment, Agricultural and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
- Computational Biology and Population Genomics Group—Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Helena Azinheira
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Oeiras, Portugal
- Linking Landscape, Environment, Agricultural and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
| | - Vítor Várzea
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Oeiras, Portugal
- Linking Landscape, Environment, Agricultural and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
| | - Ana Paula Pereira
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Oeiras, Portugal
| | - Elijah Gichuru
- Coffee Research Institute, Kenya Agricultural and Livestock Research Organization (KALRO), Ruiru, Kenya
| | - Pilar Moncada
- Centro Nacional de Investigaciones de Café (Cenicafé), Manizales, Colombia
| | - Leonor Guerra-Guimarães
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Oeiras, Portugal
- Linking Landscape, Environment, Agricultural and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
| | - Helena Oliveira
- Linking Landscape, Environment, Agricultural and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
| | - Maria do Céu Silva
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Oeiras, Portugal
- Linking Landscape, Environment, Agricultural and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|