1
|
Wasąg P, Suwińska A, Richert A, Lenartowska M, Lenartowski R. Plant-specific calreticulin is localized in the nuclei of highly specialized cells in the pistil-new observations for an old hypothesis. PROTOPLASMA 2024; 261:1171-1184. [PMID: 38849663 PMCID: PMC11511736 DOI: 10.1007/s00709-024-01961-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
One of the first cellular locations of the calreticulin (CRT) chaperone in eukaryotic cells, apart from its obvious localization in the endoplasmic reticulum (ER), was the cell nucleus (Opas et al. 1991). The presence of CRT has been detected inside the nucleus and in the nuclear envelope of animal and plant cells, and a putative nuclear localization signal (NLS) in the CRT amino acid sequence has been mapped in several animal and plant species. Over the last 30 years, other localization sites of this protein outside the ER and cell nucleus have also been discovered, suggesting that CRT is a multifunctional Ca2+-binding protein widely found in various cell types. In our previous studies focusing on plant developmental biology, we have demonstrated the presence of CRT inside and outside the ER in highly specialized plant cells, as well as the possibility of CRT localization in the cell nucleus. In this paper, we present a detailed analysis of immunocytochemical localization of CRT inside nuclei of the pistil transmission tract somatic cells before and after pollination. We show a similar pattern of the nuclear CRT localization in relation to exchangeable Ca2+ for two selected species of angiosperms, dicotyledonous Petunia and monocot Haemanthus, that differ in anatomical structure of the pistil and discuss the potential role of CRT in the cell nucleus.
Collapse
Affiliation(s)
- Piotr Wasąg
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| | - Anna Suwińska
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Anna Richert
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marta Lenartowska
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Robert Lenartowski
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
2
|
Rafińska K, Niedojadło K, Świdziński M, Bednarska-Kozakiewicz E. Distribution of exchangeable Ca 2+ during the process of Larix decidua Mill. pollination and germination. Sci Rep 2024; 14:5639. [PMID: 38454044 PMCID: PMC10920793 DOI: 10.1038/s41598-024-54903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
The involvement of Ca2+ ions in angiosperms sexual processes is well established, while in gymnosperms, such knowledge remains limited and is still a topic of discussion. In this study, we focused on Larix decidua, using Alizarin-red S staining and the pyroantimonate method to examine the tissue and subcellular distribution of free and loosely bound Ca2+ ions at different stages of the male gametophyte's development and its interaction with the ovule. Our findings show that in larch, both the germination of pollen grains and the growth of pollen tubes occur in an environment rich in Ca2+. These ions play a crucial role in the adhesion of the pollen grain to the stigmatic tip and its subsequent movement to the micropylar canal. There is a significant presence of free and loosely bound Ca2+ ions in both the fluid of the micropylar canal and the extracellular matrix of the nucellus. As the pollen tube extends through the nucellus, we observed a notable accumulation of Ca2+ ions just above the entry to the mature archegonium, a region likely crucial for the male gametophyte's directional growth. Meanwhile, the localized presence of free and loosely bound Ca2+ ions within the egg cell cytoplasm may inhibit the pollen tubes growth and rupture, playing an important role in fertilization.
Collapse
Affiliation(s)
- Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| | - Michał Świdziński
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
3
|
Rafińska K, Niedojadło K, Świdziński M, Niedojadło J, Bednarska-Kozakiewicz E. Spatial and Temporal Distribution of Arabinogalactan Proteins during Larix decidua Mill. Male Gametophyte and Ovule Interaction. Int J Mol Sci 2021; 22:ijms22094298. [PMID: 33919026 PMCID: PMC8122408 DOI: 10.3390/ijms22094298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
The role of ArabinoGalactan Proteins (AGPs) in the sexual reproduction of gymnosperms is not as well documented as that of angiosperms. In earlier studies, we demonstrated that AGPs play important roles during ovule differentiation in Larix decidua Mill. The presented results encouraged us to carry out further studies focused on the functions of these unique glycoproteins during pollen/pollen tube and ovule interactions in Larix. We identified and analyzed the localization of AGPs epitopes by JIM4, JIM8, JIM13 and LM2 antibodies (Abs) in male gametophytes and ovule tissue during pollination, the progamic phase, and after fertilization and in vitro growing pollen tubes. Our results indicated that (1) AGPs recognized by JIM4 Abs play an essential role in the interaction of male gametophytes and ovules because their appearance in ovule cells is induced by physical contact between reproductive partners; (2) after pollination, AGPs are secreted from the pollen cytoplasm into the pollen wall and contact the extracellular matrix of stigmatic tip cells followed by micropylar canal cells; (3) AGPs synthesized in nucellus cells before pollen grain germination are secreted during pollen tube growth into the extracellular matrix, where they can directly interact with male gametophytes; (4) in vitro cultured pollen tube AGPs labeled with LM2 Abs participate in the germination of pollen grain, while AGPs recognized by JIM8 Abs are essential for pollen tube tip growth.
Collapse
Affiliation(s)
- Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland;
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.Ś.); (J.N.); (E.B.-K.)
- Correspondence:
| | - Michał Świdziński
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.Ś.); (J.N.); (E.B.-K.)
| | - Janusz Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.Ś.); (J.N.); (E.B.-K.)
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.Ś.); (J.N.); (E.B.-K.)
| |
Collapse
|
4
|
Barranco-Guzmán AM, González-Gutiérrez AG, Rout NP, Verdín J, Rodríguez-Garay B. Cytosolic calcium localization and dynamics during early endosperm development in the genus Agave (Asparagales, Asparagaceae). PROTOPLASMA 2019; 256:1079-1092. [PMID: 30923921 DOI: 10.1007/s00709-019-01366-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Calcium is a secondary messenger that regulates and coordinates the cellular responses to environmental cues. Despite calcium being a key player during fertilization in plants, little is known about its role during the development of the endosperm. For this reason, the distribution, abundance, and dynamics of cytosolic calcium during the first stages of endosperm development of Agave tequilana and Agave salmiana were analyzed. Cytosolic calcium and actin filaments detected in the embryo sacs of Agave tequilana and A. salmiana revealed that they play an important role during the division and nuclear migration of the endosperm. After fertilization, a relatively high concentration of cytosolic calcium was located in the primary nucleus of the endosperm, as well as around migrating nuclei during the development of the endosperm. Cytosolic calcium participates actively during the first mitosis of the endosperm mother cell and interacts with the actin filaments that generate the motor forces during the migration of the nuclei through the large cytoplasm of the central cell.
Collapse
Affiliation(s)
- Angel Martín Barranco-Guzmán
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan, 45019, Jalisco, Mexico
| | - Alejandra G González-Gutiérrez
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan, 45019, Jalisco, Mexico
| | - Nutan Prasad Rout
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan, 45019, Jalisco, Mexico
| | - Jorge Verdín
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan, 45019, Jalisco, Mexico
| | - Benjamín Rodríguez-Garay
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan, 45019, Jalisco, Mexico.
| |
Collapse
|
5
|
Wasąg P, Suwińska A, Zakrzewski P, Walczewski J, Lenartowski R, Lenartowska M. Calreticulin localizes to plant intra/extracellular peripheries of highly specialized cells involved in pollen-pistil interactions. PROTOPLASMA 2018; 255:57-67. [PMID: 28620697 PMCID: PMC5756280 DOI: 10.1007/s00709-017-1134-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/05/2017] [Indexed: 05/11/2023]
Abstract
Calcium (Ca2+) plays essential roles in generative reproduction of angiosperms, but the sites and mechanisms of Ca2+ storage and mobilization during pollen-pistil interactions have not been fully defined. Both external and internal Ca2+ stores are likely important during male gametophyte communication with the sporophytic and gametophytic cells within the pistil. Given that calreticulin (CRT), a Ca2+-buffering protein, is able to bind Ca2+ reversibly, it can serve as a mobile store of easily releasable Ca2+ (so called an exchangeable Ca2+) in eukaryotic cells. CRT has typical endoplasmic reticulum (ER) targeting and retention signals and resides primarily in the ER. However, localization of this protein outside the ER has also been revealed in both animal and plant cells, including Golgi/dictyosomes, nucleus, plasma membrane/cell surface, plasmodesmata, and even extracellular matrix. These findings indicate that CRT may function in a variety of different cell compartments and specialized structures. We have recently shown that CRT is highly expressed and accumulated in the ER of plant cells involved in pollen-pistil interactions in Petunia, and we proposed an essential role for CRT in intracellular Ca2+ storage and mobilization during the key reproductive events. Here, we demonstrate that both CRT and exchangeable Ca2+ are localized in the intra/extracellular peripheries of highly specialized plant cells, such as the pistil transmitting tract cells, pollen tubes, nucellus cells surrounding the embryo sac, and synergids. Based on our present results, we propose that extracellularly located CRT is also involved in Ca2+ storage and mobilization during sexual reproduction of angiosperms.
Collapse
Affiliation(s)
- Piotr Wasąg
- Laboratory of Isotope and Instrumental Analysis, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Anna Suwińska
- Laboratory of Developmental Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Przemysław Zakrzewski
- Laboratory of Developmental Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Jakub Walczewski
- Department of Plant Pathology, Plant Breeding and Acclimatization Institute, National Research Institute, Radzików, Poland
| | - Robert Lenartowski
- Laboratory of Isotope and Instrumental Analysis, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marta Lenartowska
- Laboratory of Developmental Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| |
Collapse
|