1
|
An C, Zhang M, Song Y, Yan Z, Zhou L, Gao Y, Li J. Evolutionary cues of gene fusion and fission in plants. PLANT CELL REPORTS 2024; 43:245. [PMID: 39342028 DOI: 10.1007/s00299-024-03331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
KEY MESSAGE Here, we systematically analyzed the potential fusion and fission events of neighboring genes in Arabidopsis genome and analyzed the influence on the protein targeting.
Collapse
Affiliation(s)
- Chuanjing An
- Institute of Sericulture, Chengde Medical University, Chengde, 067000, Hebei, China
- Department of Biological Science and Technology, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Mengyuan Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Yanru Song
- College of Veterinary Medicine, China Agriculture University, Beijing, 100193, China
| | - Zhengwen Yan
- Institute of Sericulture, Chengde Medical University, Chengde, 067000, Hebei, China
- Department of Biological Science and Technology, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Ling Zhou
- Institute of Sericulture, Chengde Medical University, Chengde, 067000, Hebei, China
- Department of Biological Science and Technology, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Yuefang Gao
- College of Horticulture, Northwest A&F University, Yangling, China.
| | - Jisheng Li
- Institute of Sericulture, Chengde Medical University, Chengde, 067000, Hebei, China.
- Department of Biological Science and Technology, Chengde Medical University, Chengde, 067000, Hebei, China.
| |
Collapse
|
2
|
Gassler T, Baumschabl M, Sallaberger J, Egermeier M, Mattanovich D. Adaptive laboratory evolution and reverse engineering enhances autotrophic growth in Pichia pastoris. Metab Eng 2021; 69:112-121. [PMID: 34800702 DOI: 10.1016/j.ymben.2021.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022]
Abstract
Synthetic biology offers several routes for CO2 conversion into biomass or bio-chemicals, helping to avoid unsustainable use of organic feedstocks, which negatively contribute to climate change. The use of well-known industrial organisms, such as the methylotrophic yeast Pichia pastoris (Komagataella phaffii), for the establishment of novel C1-based bioproduction platforms could wean biotechnology from feedstocks with alternative use in food production. Recently, the central carbon metabolism of P. pastoris was re-wired following a rational engineering approach, allowing the resulting strains to grow autotrophically with a μmax of 0.008 h-1, which was further improved to 0.018 h-1 by adaptive laboratory evolution. Using reverse genetic engineering of single-nucleotide (SNPs) polymorphisms occurring in the genes encoding for phosphoribulokinase and nicotinic acid mononucleotide adenylyltransferase after evolution, we verified their influence on the improved autotrophic phenotypes. The reverse engineered SNPs lead to lower enzyme activities in putative branching point reactions and in reactions involved in energy balancing. Beyond this, we show how further evolution facilitates peroxisomal import and increases growth under autotrophic conditions. The engineered P. pastoris strains are a basis for the development of a platform technology, which uses CO2 for production of value-added products, such as cellular biomass, technical enzymes and chemicals and which further avoids consumption of organic feedstocks with alternative use in food production. Further, the identification and verification of three pivotal steps may facilitate the integration of heterologous CBB cycles or similar pathways into heterotrophic organisms.
Collapse
Affiliation(s)
- Thomas Gassler
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria; Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
| | - Michael Baumschabl
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, Vienna, Austria.
| | - Jakob Sallaberger
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| | - Michael Egermeier
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| | - Diethard Mattanovich
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, Vienna, Austria.
| |
Collapse
|
3
|
An C, Gao Y. Essential Roles of the Linker Sequence Between Tetratricopeptide Repeat Motifs of Ethylene Overproduction 1 in Ethylene Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:657300. [PMID: 33936142 PMCID: PMC8081955 DOI: 10.3389/fpls.2021.657300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Ethylene Overproduction 1 (ETO1) is a negative regulator of ethylene biosynthesis. However, the regulation mechanism of ETO1 remains largely unclear. Here, a novel eto1 allele (eto1-16) was isolated with typical triple phenotypes due to an amino acid substitution of G480C in the uncharacterized linker sequence between the TPR1 and TPR2 motifs. Further genetic and biochemical experiments confirmed the eto1-16 mutation site. Sequence analysis revealed that G480 is conserved not only in two paralogs, EOL1 and EOL2, in Arabidopsis, but also in the homologous protein in other species. The glycine mutations (eto1-11, eto1-12, and eto1-16) do not influence the mRNA abundance of ETO1, which is reflected by the mRNA secondary structure similar to that of WT. According to the protein-protein interaction analysis, the abnormal root phenotype of eto1-16 might be caused by the disruption of the interaction with type 2 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACSs) proteins. Overall, these data suggest that the linker sequence between tetratricopeptide repeat (TPR) motifs and the glycine in TPR motifs or the linker region are essential for ETO1 to bind with downstream mediators, which strengthens our knowledge of ETO1 regulation in balancing ACSs.
Collapse
Affiliation(s)
- Chuanjing An
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yuefang Gao
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Costello R, Emms DM, Kelly S. Gene Duplication Accelerates the Pace of Protein Gain and Loss from Plant Organelles. Mol Biol Evol 2021; 37:969-981. [PMID: 31750917 PMCID: PMC7086175 DOI: 10.1093/molbev/msz275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Organelle biogenesis and function is dependent on the concerted action of both organellar-encoded (if present) and nuclear-encoded proteins. Differences between homologous organelles across the Plant Kingdom arise, in part, as a result of differences in the cohort of nuclear-encoded proteins that are targeted to them. However, neither the rate at which differences in protein targeting accumulate nor the evolutionary consequences of these changes are known. Using phylogenomic approaches coupled to ancestral state estimation, we show that the plant organellar proteome has diversified in proportion with molecular sequence evolution such that the proteomes of plant chloroplasts and mitochondria lose or gain on average 3.6 proteins per million years. We further demonstrate that changes in organellar protein targeting are associated with an increase in the rate of molecular sequence evolution and that such changes predominantly occur in genes with regulatory rather than metabolic functions. Finally, we show that gain and loss of protein target signals occurs at a higher rate following gene duplication, revealing that gene and genome duplication are a key facilitator of plant organelle evolution.
Collapse
Affiliation(s)
- Rona Costello
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - David M Emms
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Kechasov D, de Grahl I, Endries P, Reumann S. Evolutionary Maintenance of the PTS2 Protein Import Pathway in the Stramenopile Alga Nannochloropsis. Front Cell Dev Biol 2020; 8:593922. [PMID: 33330478 PMCID: PMC7710942 DOI: 10.3389/fcell.2020.593922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
The stramenopile alga Nannochloropsis evolved by secondary endosymbiosis of a red alga by a heterotrophic host cell and emerged as a promising organism for biotechnological applications, such as the production of polyunsaturated fatty acids and biodiesel. Peroxisomes play major roles in fatty acid metabolism but experimental analyses of peroxisome biogenesis and metabolism in Nannochloropsis are not reported yet. In fungi, animals, and land plants, soluble proteins of peroxisomes are targeted to the matrix by one of two peroxisome targeting signals (type 1, PTS1, or type 2, PTS2), which are generally conserved across kingdoms and allow the prediction of peroxisomal matrix proteins from nuclear genome sequences. Because diatoms lost the PTS2 pathway secondarily, we investigated its presence in the stramenopile sister group of diatoms, the Eustigmatophyceae, represented by Nannochloropsis. We detected a full-length gene of a putative PEX7 ortholog coding for the cytosolic receptor of PTS2 proteins and demonstrated its expression in Nannochloropsis gaditana. The search for predicted PTS2 cargo proteins in N. gaditana yielded several candidates. In vivo subcellular targeting analyses of representative fusion proteins in different plant expression systems demonstrated that two predicted PTS2 domains were indeed functional and sufficient to direct a reporter protein to peroxisomes. Peroxisome targeting of the predicted PTS2 cargo proteins was further confirmed in Nannochloropsis oceanica by confocal and transmission electron microscopy. Taken together, the results demonstrate for the first time that one group of stramenopile algae maintained the import pathway for PTS2 cargo proteins. To comprehensively map and model the metabolic capabilities of Nannochloropsis peroxisomes, in silico predictions needs to encompass both the PTS1 and the PTS2 matrix proteome.
Collapse
Affiliation(s)
- Dmitry Kechasov
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Imke de Grahl
- Plant Biochemistry and Infection Biology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Pierre Endries
- Plant Biochemistry and Infection Biology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Sigrun Reumann
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
- Plant Biochemistry and Infection Biology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
6
|
Freitag J, Stehlik T, Stiebler AC, Bölker M. The Obvious and the Hidden: Prediction and Function of Fungal Peroxisomal Matrix Proteins. Subcell Biochem 2018; 89:139-155. [PMID: 30378022 DOI: 10.1007/978-981-13-2233-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fungal peroxisomes are characterized by a number of specific biological functions. To understand the physiology and biochemistry of these organelles knowledge of the proteome content is crucial. Here, we address different strategies to predict peroxisomal proteins by bioinformatics approaches. These tools range from simple text searches to network based learning strategies. A complication of this analysis is the existence of cryptic peroxisomal proteins, which are overlooked in conventional bioinformatics queries. These include proteins where targeting information results from transcriptional and posttranscriptional alterations. But also proteins with low efficiency targeting motifs that are predominantly localized in the cytosol, and proteins lacking any canonical targeting information, can play important roles within peroxisomes. Many of these proteins are so far unpredictable. Detection and characterization of these cryptic peroxisomal proteins revealed the presence of novel peroxisomal enzymatic reaction networks in fungi.
Collapse
Affiliation(s)
- Johannes Freitag
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Thorsten Stehlik
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Alina C Stiebler
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Michael Bölker
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|