1
|
Zhang H, Wang P, Wang J, Liu H, Chen X. Assessing the impact of Chlorantraniliprole (CAP) pesticide stress on oilseed rape (Brassia campestris L.): Residue dynamics, enzyme activities, and metabolite profiling. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105785. [PMID: 38582570 DOI: 10.1016/j.pestbp.2024.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 04/08/2024]
Abstract
This study investigates the effects of chlorantraniliprole (CAP) pesticide stress on oilseed rape through comprehensive pot experiments. Assessing CAP residue variations in soil and oilseed rape (Brassia campestris L.), enzyme activities (POD, CPR, GST), and differential metabolites, we unveil significant findings. The average CAP residue levels were 18.38-13.70 mg/kg in unplanted soil, 9.94-6.30 mg/kg in planted soil, and 0-4.18 mg/kg in oilseed rape samples, respectively. Soil microbial influences and systemic pesticide translocation into oilseed rape contribute to CAP residue variations. Under the influence of CAP stress, oilseed rape displays escalated enzyme activities (POD, CPR, GST) and manifests 57 differential metabolites. Among these, 32 demonstrate considerable downregulation, mainly impacting amino acids and phenolic compounds, while 25 exhibit noteworthy overexpression, primarily affecting flavonoid compounds. This impact extends to 24 metabolic pathways, notably influencing amide biosynthesis, as well as arginine and proline metabolism. These findings underscore the discernible effects of CAP pesticide stress on oilseed rape.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Department of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Pingping Wang
- Key Laboratory of Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Department of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Jiangfei Wang
- Beijing Yunong High Quality Cultivation of Agricultural Products Company, Beijing 102206, China
| | - Huijun Liu
- Key Laboratory of Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Department of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China.
| | - Xiangning Chen
- Key Laboratory of Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Department of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
2
|
De Caroli M, Furini A, DalCorso G, Rojas M, Di Sansebastiano GP. Endomembrane Reorganization Induced by Heavy Metals. PLANTS (BASEL, SWITZERLAND) 2020; 9:E482. [PMID: 32283794 PMCID: PMC7238196 DOI: 10.3390/plants9040482] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022]
Abstract
Plant cells maintain plasmatic concentrations of essential heavy metal ions, such as iron, zinc, and copper, within the optimal functional range. To do so, several molecular mechanisms have to be committed to maintain concentrations of non-essential heavy metals and metalloids, such as cadmium, mercury and arsenic below their toxicity threshold levels. Compartmentalization is central to heavy metals homeostasis and secretory compartments, finely interconnected by traffic mechanisms, are determinant. Endomembrane reorganization can have unexpected effects on heavy metals tolerance altering in a complex way membrane permeability, storage, and detoxification ability beyond gene's expression regulation. The full understanding of endomembrane role is propaedeutic to the comprehension of translocation and hyper-accumulation mechanisms and their applicative employment. It is evident that further studies on dynamic localization of these and many more proteins may significantly contribute to the understanding of heavy metals tolerance mechanisms. The aim of this review is to provide an overview about the endomembrane alterations involved in heavy metals compartmentalization and tolerance in plants.
Collapse
Affiliation(s)
- Monica De Caroli
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (M.D.C.); (M.R.)
| | - Antonella Furini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.F.); (G.D.)
| | - Giovanni DalCorso
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.F.); (G.D.)
| | - Makarena Rojas
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (M.D.C.); (M.R.)
| | - Gian-Pietro Di Sansebastiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (M.D.C.); (M.R.)
| |
Collapse
|
3
|
Effects of Substrate-Binding Site Residues on the Biochemical Properties of a Tau Class Glutathione S-Transferase from Oryza sativa. Genes (Basel) 2019; 11:genes11010025. [PMID: 31878175 PMCID: PMC7017424 DOI: 10.3390/genes11010025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 01/16/2023] Open
Abstract
Glutathione S-transferases (GSTs)—an especially plant-specific tau class of GSTs—are key enzymes involved in biotic and abiotic stress responses. To improve the stress resistance of crops via the genetic modification of GSTs, we predicted the amino acids present in the GSH binding site (G-site) and hydrophobic substrate-binding site (H-site) of OsGSTU17, a tau class GST in rice. We then examined the enzyme activity, substrate specificity, enzyme kinetics and thermodynamic stability of the mutant enzymes. Our results showed that the hydrogen bonds between Lys42, Val56, Glu68, and Ser69 of the G-site and glutathione were essential for enzyme activity and thermal stability. The hydrophobic side chains of amino acids of the H-site contributed to enzyme activity toward 4-nitrobenzyl chloride but had an inhibitory effect on enzyme activity toward 1-chloro-2,4-dinitrobenzene and cumene hydroperoxide. Different amino acids of the H-site had different effects on enzyme activity toward a different substrate, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Moreover, Leu112 and Phe162 were found to inhibit the catalytic efficiency of OsGSTU17 to 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, while Pro16, Leu112, and Trp165 contributed to structural stability. The results of this research enhance the understanding of the relationship between the structure and function of tau class GSTs to improve the abiotic stress resistance of crops.
Collapse
|
4
|
Yu M, Zheng L, Wang X, Wu M, Qi M, Fu W, Zhang Y. Comparative transcriptomic analysis of surf clams (Paphia undulate) infected with two strains of Vibrio spp. reveals the identity of key immune genes involved in host defense. BMC Genomics 2019; 20:988. [PMID: 31847806 PMCID: PMC6915886 DOI: 10.1186/s12864-019-6351-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Vibrio spp. is the major infection-producing marine bacteria in commercially important bivalve Paphia undulata. The host resistance is the major determining factor for the development of pathogenesis. To explore defense mechanisms, researchers have focused primarily on the study of differential expression of individual or specific groups of host immune genes during pathogen-challenge. RESULTS We compared the expression profile in the surf clams infected with avirulent V. alginolyticus and virulent V. parahaemolyticus to mark the possible molecular mechanisms of pathogenesis. Comparison of the differentially expressed genes between the two groups of Vibrio-infected clams revealed that the number of down-regulate genes in V. parahaemolyticus injected clams (1433) were significantly higher than the other group (169). Based on Gene Ontology classification, a large proportion of these down-regulate genes were found to be associated with cellular and molecular mechanisms for pathogen recognition, and immunity development thereby explaining the low survival rate for the V. parahaemolyticus-treated clams and suggesting a higher virulence of this bacterium towards the surf clams. Quantitative real-time PCR of 24 candidate genes related to immunity involving the JAK-STAT signaling pathway, complementary cascade, cytokine signaling pathway, oxidative stress, phagocytosis and apoptosis down regulated under V. parahaemolyticus infection, indicating compromised host defense. Furthermore, we could demonstrate a central role of JAK-STAT pathway in bacterial clearance. dsRNA mediated depletion of a clam STAT homolog gene results in dramatic increase in the infection by V. alginolyticus, a mildly pathogenic strain under control conditions. CONCLUSIONS The difference in gene expression profiles in surf clams treated with two Vibrio species with a differential pathogenicity to P. undulate and downstream molecular analysis could enlighten on the probable molecular mechanisms of the Vibrio pathogenesis and the virulence of V. parahaemolyticus in surf clams, which also benefits to develop new strategies for disease control in surf calm aquaculture.
Collapse
Affiliation(s)
- Mingjia Yu
- Department of Food Science, Foshan Polytechnic, Foshan, 528137, China
| | - Lin Zheng
- Department of Food Science, Foshan Polytechnic, Foshan, 528137, China
| | - Xiaobo Wang
- Department of Food Science, Foshan Polytechnic, Foshan, 528137, China
| | - Minfu Wu
- Department of Food Science, Foshan Polytechnic, Foshan, 528137, China
| | - Ming Qi
- Department of Food Science, Foshan Polytechnic, Foshan, 528137, China
| | - Wandong Fu
- Zhejiang Marine Development Research Institute, Zhoushan, 316100, People's Republic of China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China. .,Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Beijing, 100864, China.
| |
Collapse
|
5
|
Barozzi F, Papadia P, Stefano G, Renna L, Brandizzi F, Migoni D, Fanizzi FP, Piro G, Di Sansebastiano GP. Variation in Membrane Trafficking Linked to SNARE AtSYP51 Interaction With Aquaporin NIP1;1. FRONTIERS IN PLANT SCIENCE 2018; 9:1949. [PMID: 30687352 PMCID: PMC6334215 DOI: 10.3389/fpls.2018.01949] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/14/2018] [Indexed: 05/20/2023]
Abstract
SYP51 and 52 are the two members of the SYP5 Qc-SNARE gene family in Arabidopsis thaliana. These two proteins, besides their high level of sequence identity (85%), have shown to have differential functional specificity and possess a different interactome. Here we describe a unique and specific interaction of SYP51 with an ER aquaporin, AtNIP1;1 (also known as NLM1) indicated to be able to transport arsenite [As(III)] and previously localized on PM. In the present work we investigate in detail such localization in vivo and characterize the interaction with SYP51. We suggest that this interaction may reveal a new mechanism regulating tonoplast invagination and recycling. We propose this interaction to be part of a regulatory mechanism associated with direct membrane transport from ER to tonoplast and Golgi mediated vesicle trafficking. We also demonstrate that NIP1;1 is important for plant tolerance to arsenite but does not alter its uptake or translocation. To explain such phenomenon the hypothesis that SYP51/NIP1;1 interaction modifies ER and vacuole ability to accumulate arsenite is discussed.
Collapse
Affiliation(s)
- Fabrizio Barozzi
- Laboratory of Botany, DISTEBA (Diartimento di Scienze e Tecnologie Biologiche e Ambientali), University of Salento, Lecce, Italy
| | - Paride Papadia
- Laboratory of General and Inorganic Chemistry, DISTEBA (Dipartimento di Scienze e Tecnologie Biologiche e Ambientali), University of Salento, Lecce, Italy
- *Correspondence: Paride Papadia
| | - Giovanni Stefano
- MSU DOE-Plant Biology Lab, Michigan State University, East Lansing, MI, United States
| | - Luciana Renna
- MSU DOE-Plant Biology Lab, Michigan State University, East Lansing, MI, United States
| | - Federica Brandizzi
- MSU DOE-Plant Biology Lab, Michigan State University, East Lansing, MI, United States
| | - Danilo Migoni
- Laboratory of General and Inorganic Chemistry, DISTEBA (Dipartimento di Scienze e Tecnologie Biologiche e Ambientali), University of Salento, Lecce, Italy
| | - Francesco Paolo Fanizzi
- Laboratory of General and Inorganic Chemistry, DISTEBA (Dipartimento di Scienze e Tecnologie Biologiche e Ambientali), University of Salento, Lecce, Italy
| | - Gabriella Piro
- Laboratory of Botany, DISTEBA (Diartimento di Scienze e Tecnologie Biologiche e Ambientali), University of Salento, Lecce, Italy
| | - Gian-Pietro Di Sansebastiano
- Laboratory of Botany, DISTEBA (Diartimento di Scienze e Tecnologie Biologiche e Ambientali), University of Salento, Lecce, Italy
- Gian-Pietro Di Sansebastiano
| |
Collapse
|