1
|
Zhang J, Zou L, Wang L, Zhang D, Shen A, Lei Y, Chao M, Xu X, Xue Z, Huang Z. Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max). BMC Genomics 2025; 26:73. [PMID: 39863853 PMCID: PMC11762097 DOI: 10.1186/s12864-025-11270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied. RESULTS In this study, we identified 77 Sec14 genes in the soybean genome that were unevenly distributed across 19 chromosomes. Based on the classification method used for Arabidopsis Sec14 members, GmSec14s can be categorized into three classes: GmPITP1 to GmPITP37, GmSFH1 to GmSFH25, and GmPATL1 to GmPATL15. Structural analysis of the GmSec14 genes revealed that the SFH subfamily contained more introns than the other subfamilies. A total of 10 conserved protein motifs were detected within GmSec14 proteins, with each subfamily possessing unique motifs. Two tandem duplications and 73 segmental duplications were identified among the GmSec14 genes. Additionally, a large number of cis-acting elements, particularly those related to plant hormones, were abundant in the promoter regions of the GmSec14 genes. Tissue expression analysis of the GmSec14 genes indicated that they exhibited distinct tissue-specific expression patterns. In response to salt stress, multiple genes were found to be either upregulated or downregulated. In contrast, the majority of genes were downregulated under drought stress conditions. Notably, 12 GmSec14 genes exhibited significant alterations in expression following salt or drought stress, suggesting a potential role for these genes in stress response mechanisms. Furthermore, the protein interaction network and miRNA regulation associated with GmSec14s were predicted to elucidate the potential functions of GmSec14 members. CONCLUSIONS This study provides a systematic and comprehensive examination of the Sec14 gene family in soybean, which will facilitate further functional research into their roles in response to salt and drought tolerance.
Collapse
Affiliation(s)
- Jinyu Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Liying Zou
- Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Li Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Dongchao Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ao Shen
- Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yongqi Lei
- Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Maoni Chao
- Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xinjuan Xu
- Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Zhiwei Xue
- Anyang Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhongwen Huang
- Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Pei M, Xie X, Peng B, Chen X, Chen Y, Li Y, Wang Z, Lu G. Identification and Expression Analysis of Phosphatidylinositol Transfer Proteins Genes in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112122. [PMID: 37299101 DOI: 10.3390/plants12112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The family of phosphatidylinositol transfer proteins (PITPs) is able to bind specific lipids to carry out various biological functions throughout different stages of plant life. But the function of PITPs in rice plant is unclear. In this study, 30 PITPs were identified from rice genome, which showed differences in physicochemical properties, gene structure, conservation domains, and subcellular localization. The promoter region of the OsPITPs genes included at least one type of hormone response element, such as methyl jasmonate (Me JA) and salicylic acid (SA). Furthermore, the expression level of OsML-1, OsSEC14-3, OsSEC14-4, OsSEC14-15, and OsSEC14-19 genes were significantly affected by infection of rice blast fungus Magnaporthe oryzae. Based on these findings, it is possible that OsPITPs may be involved in rice innate immunity in response to M. oryzae infection through the Me JA and SA pathway.
Collapse
Affiliation(s)
- Mengtian Pei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuze Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baoyi Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinchi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yixuan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Dinesh Babu KS, Janakiraman V, Palaniswamy H, Kasirajan L, Gomathi R, Ramkumar TR. A short review on sugarcane: its domestication, molecular manipulations and future perspectives. GENETIC RESOURCES AND CROP EVOLUTION 2022; 69:2623-2643. [PMID: 36159774 PMCID: PMC9483297 DOI: 10.1007/s10722-022-01430-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/11/2022] [Indexed: 06/16/2023]
Abstract
Sugarcane (Saccharum spp.) is a special crop plant that underwent anthropogenic evolution from a wild grass species to an important food, fodder, and energy crop. Unlike any other grass species which were selected for their kernels, sugarcane was selected for its high stem sucrose accumulation. Flowering in sugarcane is not favored since flowering diverts the stored sugar resources for the reproductive and developmental energy needs. Cultivars are vegetatively propagated and sugarcane breeding is still essentially focused on conventional methods, since the knowledge of sugarcane genetics has lagged that of other major crops. Cultivar improvement has been extremely challenging due to its polyploidy and aneuploidy nature derived from a few interspecific hybridizations between Saccharum officinarum and Saccharum spontaneum, revealing the coexistence of two distinct genome organization modes in the modern variety. Alongside implementation of modern agricultural techniques, generation of hybrid clones, transgenics and genome edited events will help to meet the ever-growing bioenergy needs. Additionally, there are two common biotechnological approaches to improve plant stress tolerance, which includes marker-assisted selection (MAS) and genetic transformation. During the past two decades, the use of molecular approaches has contributed greatly to a better understanding of the genetic and biochemical basis of plant stress-tolerance and in some cases, it led to the development of plants with enhanced tolerance to abiotic stress. Hence, this review mainly intends on the events that shaped the sugarcane as what it is now and what challenges ahead and measures taken to further improve its yield, production and maximize utilization to beat the growing demands.
Collapse
Affiliation(s)
| | - Vardhana Janakiraman
- Department of Biotechnology, Vels Institute of Science, Technology & Advanced studies (VISTAS), Chennai, TN 600117 India
| | - Harunipriya Palaniswamy
- Tissue Culture Laboratory, Division of Crop Improvement, ICAR‐Sugarcane Breeding Institute, Coimbatore, TN 641007 India
| | - Lakshmi Kasirajan
- Genomics Laboratory, Division of Crop Improvement, ICAR‐Sugarcane Breeding Institute, Coimbatore, TN 641007 India
| | - Raju Gomathi
- Plant Physiology Laboratory, Division of Crop Production, ICAR‐Sugarcane Breeding Institute, Coimbatore, TN 641007 India
| | - Thakku R. Ramkumar
- Agronomy Department, IFAS, University of Florida, Gainesville, FL 32611 USA
- Department of Biological Sciences, Delaware State University, Dover, DE 19001 USA
| |
Collapse
|
4
|
Tang H, Yu Q, Li Z, Liu F, Su W, Zhang C, Ling H, Luo J, Su Y, Que Y. A PIP-mediated osmotic stress signaling cascade plays a positive role in the salt tolerance of sugarcane. BMC PLANT BIOLOGY 2021; 21:589. [PMID: 34903178 PMCID: PMC8667355 DOI: 10.1186/s12870-021-03369-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/25/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Plasma membrane intrinsic proteins (PIPs) are plant channel proteins involved in water deficit and salinity tolerance. PIPs play a major role in plant cell water balance and responses to salt stress. Although sugarcane is prone to high salt stress, there is no report on PIPs in sugarcane. RESULTS In the present study, eight PIP family genes, termed ScPIP1-1, ScPIP1-2, ScPIP1-3, ScPIP1-4, ScPIP2-1, ScPIP2-2, ScPIP2-4 and ScPIP2-5, were obtained based on the sugarcane transcriptome database. Then, ScPIP2-1 in sugarcane was cloned and characterized. Confocal microscopy observation indicated that ScPIP2-1 was located in the plasma membrane and cytoplasm. A yeast two-hybridization experiment revealed that ScPIP2-1 does not have transcriptional activity. Real time quantitative PCR (RT-qPCR) analysis showed that ScPIP2-1 was mainly expressed in the leaf, root and bud, and its expression levels in both below- and aboveground tissues of ROC22 were up-regulated by abscisic acid (ABA), polyethylene glycol (PEG) 6000 and sodium chloride (NaCl) stresses. The chlorophyll content and ion leakage measurement suggested that ScPIP2-1 played a significant role in salt stress resistance in Nicotiana benthamiana through the transient expression test. Overexpression of ScPIP2-1 in Arabidopsis thaliana proved that this gene enhanced the salt tolerance of transgenic plants at the phenotypic (healthier state, more stable relative water content and longer root length), physiologic (more stable ion leakage, lower malondialdehyde content, higher proline content and superoxide dismutase activity) and molecular levels (higher expression levels of AtKIN2, AtP5CS1, AtP5CS2, AtDREB2, AtRD29A, AtNHX1, AtSOS1 and AtHKT1 genes and a lower expression level of the AtTRX5 gene). CONCLUSIONS This study revealed that the ScPIP2-1-mediated osmotic stress signaling cascade played a positive role in plant response to salt stress.
Collapse
Affiliation(s)
- Hanchen Tang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province (Fujian Agriculture and Forestry University), Fuzhou, 350002 Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Qing Yu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Zhu Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Feng Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Chang Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Hui Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- College of Agriculture, Yulin Normal University, Yulin, 537000 Guangxi China
| | - Jun Luo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province (Fujian Agriculture and Forestry University), Fuzhou, 350002 Fujian China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| |
Collapse
|
5
|
Yaroshko OM. TRANSIENT EXPRESSION OF REPORTER GENES IN CULTIVARS OF Amaranthus caudatus L. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Local cultivars of A. caudatus: Helios and Karmin were used as plant material. Amaranth is a new pseudocereal introduced in Ukraine. The plant biomass of amaranth is used in medicine, food industry and cosmetology industry. Aim. The purpose of the work was to identify the optimal conditions for the transient expression of reporter genes in Amaranthus caudatus cultivars. Methods. Biochemical and microscopy methods were used in the following work. Seedlings and adult plants of different age were infiltrated with agrobacterial suspensions separately (genetic vector pCBV19 with a uidA gene and genetic vector pNMD2501 with a gfp gene in Agrobacterium tumefaciens GV3101 strain). Results. Transient expression of the uidA and gfp genes was obtained in amaranth plants after conduction series of experiments. The most intensive transient expression of gfp and uidA genes was observed in seedlings infiltrated at the age of 1 day. The maximum fluorescence of the GFP protein was observed on 5th–6th days. Conclusions. It was shown that the cultivar Helios was more susceptible to agrobacterial infection than the cultivar Karmin. The effectiveness of Agrobacterium mediated transformation was from 16% to 95% for the Helios cultivar and from 12% to 93% for the Karmin cultivar. The obtained results indicate that the studied amaranth cultivars can potentially be used for obtaining transient expression of target genes and synthesizing target proteins in their tissues in the future.
Collapse
|
6
|
Su W, Zhang C, Wang D, Ren Y, Sun T, Feng J, Su Y, Xu L, Shi M, Que Y. The CaCA superfamily genes in Saccharum: comparative analysis and their functional implications in response to biotic and abiotic stress. BMC Genomics 2021; 22:549. [PMID: 34275454 PMCID: PMC8286586 DOI: 10.1186/s12864-021-07828-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In plants, Calcium (Ca2+) acts as a universal messenger in various signal transduction pathways, including responses to biotic and abiotic stresses and regulation of cellular and developmental processes. The Ca2+/cation antiporter (CaCA) superfamily proteins play vital roles in the transport of Ca2+ and/or other cations. However, the characteristics of these superfamily members in Saccharum and their evolutionary and functional implications have remained unclear. RESULTS A total of 34 CaCA genes in Saccharum spontaneum, 5 CaCA genes in Saccharum spp. R570, and 14 CaCA genes in Sorghum bicolor were identified and characterized. These genes consisted of the H+/cation exchanger (CAX), cation/Ca2+ exchanger (CCX), EF-hand / CAX (EFCAX), and Mg2+/H+ exchanger (MHX) families, among which the CCX and EFCAX could be classified into three groups while the CAX could be divided into two groups. The exon/intron structures and motif compositions suggested that the members in the same group were highly conserved. Synteny analysis of CaCAs established their orthologous and paralogous relationships among the superfamily in S. spontaneum, R570, and S. bicolor. The results of protein-protein interactions indicated that these CaCA proteins had direct or indirect interactions. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis demonstrated that most members of Saccharum CaCA genes exhibited a similar expression pattern in response to hormonal (abscisic acid, ABA) treatment but played various roles in response to biotic (Sporisorium scitamineum) and abiotic (cold) stresses. Furthermore, ScCAX4, a gene encoding a cytoplasm, plasma membrane and nucleus positioning protein, was isolated from sugarcane. This gene was constitutively expressed in different sugarcane tissues and its expression was only induced at 3 and 6 h time points after ABA treatment, however was inhibited and indued in the whole process under cold and S. scitamineum stresses, respectively. CONCLUSIONS This study systematically conducted comparative analyses of CaCA superfamily genes among S. spontaneum, R570, and S. bicolor, delineating their sequence and structure characteristics, classification, evolutionary history, and putative functions. These results not only provided rich gene resources for exploring the molecular mechanism of the CaCA superfamily genes but also offered guidance and reference for research on other gene families in Saccharum.
Collapse
Affiliation(s)
- Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Chang Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Yongjuan Ren
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Tingting Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Jingfang Feng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Mutian Shi
- College of Horticulture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian Province China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| |
Collapse
|
7
|
Zhou X, Shafique K, Sajid M, Ali Q, Khalili E, Javed MA, Haider MS, Zhou G, Zhu G. Era-like GTP protein gene expression in rice. BRAZ J BIOL 2021; 82:e250700. [PMID: 34259718 DOI: 10.1590/1519-6984.250700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/19/2021] [Indexed: 11/22/2022] Open
Abstract
The mutations are genetic changes in the genome sequences and have a significant role in biotechnology, genetics, and molecular biology even to find out the genome sequences of a cell DNA along with the viral RNA sequencing. The mutations are the alterations in DNA that may be natural or spontaneous and induced due to biochemical reactions or radiations which damage cell DNA. There is another cause of mutations which is known as transposons or jumping genes which can change their position in the genome during meiosis or DNA replication. The transposable elements can induce by self in the genome due to cellular and molecular mechanisms including hypermutation which caused the localization of transposable elements to move within the genome. The use of induced mutations for studying the mutagenesis in crop plants is very common as well as a promising method for screening crop plants with new and enhanced traits for the improvement of yield and production. The utilization of insertional mutations through transposons or jumping genes usually generates stable mutant alleles which are mostly tagged for the presence or absence of jumping genes or transposable elements. The transposable elements may be used for the identification of mutated genes in crop plants and even for the stable insertion of transposable elements in mutated crop plants. The guanine nucleotide-binding (GTP) proteins have an important role in inducing tolerance in rice plants to combat abiotic stress conditions.
Collapse
Affiliation(s)
- X Zhou
- Linyi University, College of Life Science, Linyi, Shandong, China
| | - K Shafique
- Government Sadiq College Women University, Department of Botany, Bahawalpur, Pakistan
| | - M Sajid
- University of Okara, Faculty of Life Sciences, Department of Biotechnology, Okara, Pakistan
| | - Q Ali
- University of Lahore, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
| | - E Khalili
- Tarbiat Modarres University, Faculty of Science, Department of Plant Science, Tehran, Iran
| | - M A Javed
- University of the Punjab Lahore, Department of Plant Breeding and Genetics, Lahore, Pakistan
| | - M S Haider
- University of the Punjab Lahore, Department of Plant Pathology, Lahore, Pakistan
| | - G Zhou
- Yangzhou University, The Ministry of Education of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
| | - G Zhu
- Yangzhou University, The Ministry of Education of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
| |
Collapse
|
8
|
Genome-Wide Characterization of Lectin Receptor Kinases in Saccharum spontaneum L. and Their Responses to Stagonospora tainanensis Infection. PLANTS 2021; 10:plants10020322. [PMID: 33567504 PMCID: PMC7915762 DOI: 10.3390/plants10020322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022]
Abstract
Sugarcane is an important sugar and bioenergy ethanol crop, and the hyperploidy has led to stagnant progress in sugarcane genome decipherment, which also hindered the genome-wide analyses of versatile lectin receptor kinases (LecRKs). The published genome of Saccharum spontaneum, one of the two sugarcane ancestor species, enables us to study the characterization of LecRKs and their responses to sugarcane leaf blight (SLB) triggered by Stagonospora tainanensis. A total of 429 allelic and non-allelic LecRKs, which were classified into evolved independently three types according to signal domains and phylogeny, were identified based on the genome. Regarding those closely related LecRKs in the phylogenetic tree, their motifs and exon architectures of representative L- and G-types were similar or identical. LecRKs showed an unequal distribution on chromosomes and more G-type tandem repeats may come from the gene expansion. Comparing the differentially expressed LecRKs (DELs) in response to SLB in sugarcane hybrid and ancestor species S. spontaneum, we found that the DEL number in the shared gene sets was highly variable among each sugarcane accession, which indicated that the expression dynamics of LecRKs in response to SLB were quite different between hybrids and particularly between sugarcane hybrid and S. spontaneum. In addition, C-type LecRKs may participate in metabolic processes of plant–pathogen interaction, mainly including pathogenicity and plant resistance, indicating their putative roles in sugarcane responses to SLB infection. The present study provides a basic reference and global insight into the further study and utilization of LecRKs in plants.
Collapse
|
9
|
Sun T, Cen G, You C, Lou W, Wang Z, Su W, Wang W, Li D, Que Y, Su Y. ScAOC1, an allene oxide cyclase gene, confers defense response to biotic and abiotic stresses in sugarcane. PLANT CELL REPORTS 2020; 39:1785-1801. [PMID: 33001313 DOI: 10.1007/s00299-020-02606-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE An allene oxide cyclase gene which is involved in defense against biotic and abiotic stresses was cloned and characterized in sugarcane. Allene oxide cyclase (AOC), a key enzyme in jasmonate acid (JA) biosynthesis, affects the stereoisomerism and biological activity of JA molecules, and plays an important role in plant stress resistance. In this study, four SsAOC alleles (SsAOC1-SsAOC4), which shared similar gene structure and were located on Chr1A, Chr1B, Chr1C, and Chr1D, respectively, were mined from sugarcane wild species Saccharum spontaneum, and a homologous gene ScAOC1 (GenBank Accession Number: MK674849) was cloned from sugarcane hybrid variety Yacheng05-179 inoculated with Sporisorium scitamineum for 48 h. ScAOC1 and SsAOC1-SsAOC4 were alkaline, unstable, hydrophilic, and non-secretory proteins, which possess the same set of conserved motifs and were clustered into one group in the phylogenetic analysis. ScAOC1 was expressed in all sugarcane tissues, but with different levels. After infection by S. scitamineum, the transcripts of ScAOC1 were increased significantly both in the smut-susceptible (ROC22) and resistant (Yacheng05-179) varieties, but its transcripts were more accumulated and lasted for a longer period in the smut-resistant variety than in the smut-susceptible one. ScAOC1 was down-regulated under MeJA and NaCl treatments, but up-regulated under SA, ABA, PEG, and cold stresses. Transiently overexpressing ScAOC1 gene into Nicotiana benthamiana leaves regulated the responses of N. benthamiana to two pathogens Ralstonia solanacearum and Fusarium solani var. coeruleum. Furthermore, prokaryotic expression analysis showed overexpression of ScAOC1 in Escherichia coli BL21 could enhance its tolerance to NaCl, mannitol, and cold stimuli. These results indicated that ScAOC1 may play an active role in response to biotic and abiotic stresses in sugarcane.
Collapse
Affiliation(s)
- Tingting Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Guangli Cen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Wenyue Lou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zhoutao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Wenju Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Damei Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
10
|
Tyurin AA, Suhorukova AV, Kabardaeva KV, Goldenkova-Pavlova IV. Transient Gene Expression is an Effective Experimental Tool for the Research into the Fine Mechanisms of Plant Gene Function: Advantages, Limitations, and Solutions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1187. [PMID: 32933006 PMCID: PMC7569937 DOI: 10.3390/plants9091187] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
A large data array on plant gene expression accumulated thanks to comparative omic studies directs the efforts of researchers to the specific or fine effects of the target gene functions and, as a consequence, elaboration of relatively simple and concurrently effective approaches allowing for the insight into the physiological role of gene products. Numerous studies have convincingly demonstrated the efficacy of transient expression strategy for characterization of the plant gene functions. The review goals are (i) to consider the advantages and limitations of different plant systems and methods of transient expression used to find out the role of gene products; (ii) to summarize the current data on the use of the transient expression approaches for the insight into fine mechanisms underlying the gene function; and (iii) to outline the accomplishments in efficient transient expression of plant genes. In general, the review discusses the main and critical steps in each of the methods of transient gene expression in plants; areas of their application; main results obtained using plant objects; their contribution to our knowledge about the fine mechanisms of the plant gene functions underlying plant growth and development; and clarification of the mechanisms regulating complex metabolic pathways.
Collapse
Affiliation(s)
| | | | | | - Irina V. Goldenkova-Pavlova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences (IPP RAS), Moscow 127276, Russia; (A.A.T.); (A.V.S.); (K.V.K.)
| |
Collapse
|
11
|
Su W, Ren Y, Wang D, Su Y, Feng J, Zhang C, Tang H, Xu L, Muhammad K, Que Y. The alcohol dehydrogenase gene family in sugarcane and its involvement in cold stress regulation. BMC Genomics 2020; 21:521. [PMID: 32727370 PMCID: PMC7392720 DOI: 10.1186/s12864-020-06929-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alcohol dehydrogenases (ADHs) in plants are encoded by a multigene family. ADHs participate in growth, development, and adaptation in many plant species, but the evolution and function of the ADH gene family in sugarcane is still unclear. RESULTS In the present study, 151 ADH genes from 17 species including 32 ADH genes in Saccharum spontaneum and 6 ADH genes in modern sugarcane cultivar R570 were identified. Phylogenetic analysis demonstrated two groups of ADH genes and suggested that these genes underwent duplication during angiosperm evolution. Whole-genome duplication (WGD)/segmental and dispersed duplications played critical roles in the expansion of ADH family in S. spontaneum and R570, respectively. ScADH3 was cloned and preferentially expressed in response to cold stress. ScADH3 conferred improved cold tolerance in E. coli cells. Ectopic expression showed that ScADH3 can also enhance cold tolerance in transgenic tobacco. The accumulation of reactive oxygen species (ROS) in leaves of transgenic tobacco was significantly lower than in wild-type tobacco. The transcript levels of ROS-related genes in transgenic tobacco increased significantly. ScADH3 seems to affect cold tolerance by regulating the ROS-related genes to maintain the ROS homeostasis. CONCLUSIONS This study depicted the size and composition of the ADH gene family in 17 species, and investigated their evolution pattern. Comparative genomics analysis among the ADH gene families of S. bicolor, R570 and S. spontaneum revealed their close evolutionary relationship. Functional analysis suggested that ScADH3, which maintained the steady state of ROS by regulating ROS-related genes, was related to cold tolerance. These findings will facilitate research on evolutionary and functional aspects of the ADH genes in sugarcane, especially for the understanding of ScADH3 under cold stress.
Collapse
Affiliation(s)
- Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yongjuan Ren
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jingfang Feng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chang Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hanchen Tang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Khushi Muhammad
- Department of Genetics, Hazara University, Mansehra, Pakistan
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|