1
|
Jiang W, Wang Z, Li Y, Liu X, Ren Y, Li C, Luo S, Singh RM, Li Y, Kim C, Zhao C. FERONIA regulates salt tolerance in Arabidopsis by controlling photorespiratory flux. THE PLANT CELL 2024; 36:4732-4751. [PMID: 39197037 PMCID: PMC11530776 DOI: 10.1093/plcell/koae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/30/2024]
Abstract
Photorespiration is an energetically costly metabolic pathway in plants that responds to environmental stresses. The molecular basis of the regulation of the photorespiratory cycle under stress conditions remains unclear. Here, we discovered that FERONIA (FER) regulates photorespiratory flow under salt stress in Arabidopsis (Arabidopsis thaliana). FER mutation results in hypersensitivity to salt stress, but disruption of ferredoxin-dependent glutamate synthase 1 (GLU1), an enzyme that participates in the photorespiratory pathway by producing glutamate, greatly suppresses fer-4 hypersensitivity to salt stress primarily due to reduced glycine yield. In contrast, disrupting mitochondrial serine hydroxymethyltransferase1 (SHM1), which is supposed to increase glycine levels by hampering the conversion of glycine to serine in the photorespiratory cycle, aggravates fer-4 hypersensitivity to salt stress. Biochemical data show that FER interacts with and phosphorylates SHM1, and this phosphorylation modulates SHM1 stability. Additionally, the production of proline and its intermediate △1-pyrroline-5-carboxylate (P5C), which are both synthesized from glutamate, also contributes to fer-4 hypersensitivity to salt stress. In conclusion, this study elucidates the functional mechanism of FER in regulating salt tolerance by modulating photorespiratory flux, which greatly broadens our understanding of how plants adapt to high salinity.
Collapse
Affiliation(s)
- Wei Jiang
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhihao Wang
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Li
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuying Ren
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Li
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shengji Luo
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Rahul Mohan Singh
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chunzhao Zhao
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Chen J, Wang Y. Understanding the salinity resilience and productivity of halophytes in saline environments. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112171. [PMID: 38969140 DOI: 10.1016/j.plantsci.2024.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
The escalating salinity levels in cultivable soil pose a significant threat to agricultural productivity and, consequently, human sustenance. This problem is being exacerbated by natural processes and human activities, coinciding with a period of rapid population growth. Developing halophytic crops is needed to ensure food security is not impaired and land resources can be used sustainably. Evolution has created many close halophyte relatives of our major glycophytic crops, such as Puccinellia tenuiflora (relative of barley and wheat), Oryza coarctata (relative of rice) and Glycine soja (relative of soybean). There are also some halophytes have been subjected to semi-domestication and are considered as minor crops, such as Chenopodium quinoa. In this paper, we examine the prevailing comprehension of robust salinity resilience in halophytes. We summarize the existing strategies and technologies that equip researchers with the means to enhance the salt tolerance capabilities of primary crops and investigate the genetic makeup of halophytes.
Collapse
Affiliation(s)
- Jiahong Chen
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wang
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Dalian Practical Biotechnology Co. LTD., Dalian, Liaoning 116200, China.
| |
Collapse
|
3
|
Aroca A, García-Díaz I, García-Calderón M, Gotor C, Márquez AJ, Betti M. Photorespiration: regulation and new insights on the potential role of persulfidation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6023-6039. [PMID: 37486799 PMCID: PMC10575701 DOI: 10.1093/jxb/erad291] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Photorespiration has been considered a 'futile' cycle in C3 plants, necessary to detoxify and recycle the metabolites generated by the oxygenating activity of Rubisco. However, several reports indicate that this metabolic route plays a fundamental role in plant metabolism and constitutes a very interesting research topic. Many open questions still remain with regard to photorespiration. One of these questions is how the photorespiratory process is regulated in plants and what factors contribute to this regulation. In this review, we summarize recent advances in the regulation of the photorespiratory pathway with a special focus on the transcriptional and post-translational regulation of photorespiration and the interconnections of this process with nitrogen and sulfur metabolism. Recent findings on sulfide signaling and protein persulfidation are also described.
Collapse
Affiliation(s)
- Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092 Sevilla, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Inmaculada García-Díaz
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Margarita García-Calderón
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092 Sevilla, Spain
| | - Antonio J Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| |
Collapse
|
4
|
Ojosnegros S, Alvarez JM, Grossmann J, Gagliardini V, Quintanilla LG, Grossniklaus U, Fernández H. Proteome and Interactome Linked to Metabolism, Genetic Information Processing, and Abiotic Stress in Gametophytes of Two Woodferns. Int J Mol Sci 2023; 24:12429. [PMID: 37569809 PMCID: PMC10419320 DOI: 10.3390/ijms241512429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Ferns and lycophytes have received scant molecular attention in comparison to angiosperms. The advent of high-throughput technologies allowed an advance towards a greater knowledge of their elusive genomes. In this work, proteomic analyses of heart-shaped gametophytes of two ferns were performed: the apomictic Dryopteris affinis ssp. affinis and its sexual relative Dryopteris oreades. In total, a set of 218 proteins shared by these two gametophytes were analyzed using the STRING database, and their proteome associated with metabolism, genetic information processing, and responses to abiotic stress is discussed. Specifically, we report proteins involved in the metabolism of carbohydrates, lipids, and nucleotides, the biosynthesis of amino acids and secondary compounds, energy, oxide-reduction, transcription, translation, protein folding, sorting and degradation, and responses to abiotic stresses. The interactome of this set of proteins represents a total network composed of 218 nodes and 1792 interactions, obtained mostly from databases and text mining. The interactions among the identified proteins of the ferns D. affinis and D. oreades, together with the description of their biological functions, might contribute to a better understanding of the function and development of ferns as well as fill knowledge gaps in plant evolution.
Collapse
Affiliation(s)
- Sara Ojosnegros
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain; (S.O.); (J.M.A.)
| | - José Manuel Alvarez
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain; (S.O.); (J.M.A.)
| | - Jonas Grossmann
- Functional Genomic Center Zurich, University and ETH Zurich, 8092 Zurich, Switzerland;
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland; (V.G.); (U.G.)
| | - Luis G. Quintanilla
- Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos, 28933 Móstoles, Spain;
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland; (V.G.); (U.G.)
| | - Helena Fernández
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain; (S.O.); (J.M.A.)
| |
Collapse
|
5
|
Koper K, Han SW, Pastor DC, Yoshikuni Y, Maeda HA. Evolutionary Origin and Functional Diversification of Aminotransferases. J Biol Chem 2022; 298:102122. [PMID: 35697072 PMCID: PMC9309667 DOI: 10.1016/j.jbc.2022.102122] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Aminotransferases (ATs) are pyridoxal 5′-phosphate–dependent enzymes that catalyze the transamination reactions between amino acid donor and keto acid acceptor substrates. Modern AT enzymes constitute ∼2% of all classified enzymatic activities, play central roles in nitrogen metabolism, and generate multitude of primary and secondary metabolites. ATs likely diverged into four distinct AT classes before the appearance of the last universal common ancestor and further expanded to a large and diverse enzyme family. Although the AT family underwent an extensive functional specialization, many AT enzymes retained considerable substrate promiscuity and multifunctionality because of their inherent mechanistic, structural, and functional constraints. This review summarizes the evolutionary history, diverse metabolic roles, reaction mechanisms, and structure–function relationships of the AT family enzymes, with a special emphasis on their substrate promiscuity and multifunctionality. Comprehensive characterization of AT substrate specificity is still needed to reveal their true metabolic functions in interconnecting various branches of the nitrogen metabolic network in different organisms.
Collapse
Affiliation(s)
- Kaan Koper
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sang-Woo Han
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Yasuo Yoshikuni
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Global Center for Food, Land, and Water Resources, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
6
|
Han M, Xu X, Li X, Xu M, Hu M, Xiong Y, Feng J, Wu H, Zhu H, Su T. New Insight into Aspartate Metabolic Pathways in Populus: Linking the Root Responsive Isoenzymes with Amino Acid Biosynthesis during Incompatible Interactions of Fusarium solani. Int J Mol Sci 2022; 23:ijms23126368. [PMID: 35742809 PMCID: PMC9224274 DOI: 10.3390/ijms23126368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 01/10/2023] Open
Abstract
Integrating amino acid metabolic pathways into plant defense and immune systems provides the building block for stress acclimation and host-pathogen interactions. Recent progress in L-aspartate (Asp) and its deployed metabolic pathways highlighted profound roles in plant growth and defense modulation. Nevertheless, much remains unknown concerning the multiple isoenzyme families involved in Asp metabolic pathways in Populus trichocarpa, a model tree species. Here, we present comprehensive features of 11 critical isoenzyme families, representing biological significance in plant development and stress adaptation. The in silico prediction of the molecular and genetic patterns, including phylogenies, genomic structures, and chromosomal distribution, identify 44 putative isoenzymes in the Populus genome. Inspection of the tissue-specific expression demonstrated that approximately 26 isogenes were expressed, predominantly in roots. Based on the transcriptomic atlas in time-course experiments, the dynamic changes of the genes transcript were explored in Populus roots challenged with soil-borne pathogenic Fusarium solani (Fs). Quantitative expression evaluation prompted 12 isoenzyme genes (PtGS2/6, PtGOGAT2/3, PtAspAT2/5/10, PtAS2, PtAspg2, PtAlaAT1, PtAK1, and PtAlaAT4) to show significant induction responding to the Fs infection. Using high-performance liquid chromatography (HPLC) and non-target metabolomics assay, the concurrent perturbation on levels of Asp-related metabolites led to findings of free amino acids and derivatives (e.g., Glutamate, Asp, Asparagine, Alanine, Proline, and α-/γ-aminobutyric acid), showing marked differences. The multi-omics integration of the responsive isoenzymes and differential amino acids examined facilitates Asp as a cross-talk mediator involved in metabolite biosynthesis and defense regulation. Our research provides theoretical clues for the in-depth unveiling of the defense mechanisms underlying the synergistic effect of fine-tuned Asp pathway enzymes and the linked metabolite flux in Populus.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Xianglei Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Xue Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Mingyue Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Mei Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yuan Xiong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Junhu Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Hao Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-1589-598-3381
| |
Collapse
|
7
|
Shi M, Ge T, Wang Y, Zhao L. Photorespiration is essential for acclimation to salt stress under high carbon availability in Chlamydomonas. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|