1
|
Zhong Q, Xu Y, Rao Y. Mechanism of Rice Resistance to Bacterial Leaf Blight via Phytohormones. PLANTS (BASEL, SWITZERLAND) 2024; 13:2541. [PMID: 39339516 PMCID: PMC11434988 DOI: 10.3390/plants13182541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Rice is one of the most important food crops in the world, and its yield restricts global food security. However, various diseases and pests of rice pose a great threat to food security. Among them, bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious bacterial diseases affecting rice globally, creating an increasingly urgent need for research in breeding resistant varieties. Phytohormones are widely involved in disease resistance, such as auxin, abscisic acid (ABA), ethylene (ET), jasmonic acid (JA), and salicylic acid (SA). In recent years, breakthroughs have been made in the analysis of their regulatory mechanism in BLB resistance in rice. In this review, a series of achievements of phytohormones in rice BLB resistance in recent years were summarized, the genes involved and their signaling pathways were reviewed, and a breeding strategy combining the phytohormones regulation network with modern breeding techniques was proposed, with the intention of applying this strategy to molecular breeding work and playing a reference role for how to further improve rice resistance.
Collapse
Affiliation(s)
- Qianqian Zhong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuqing Xu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuchun Rao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
2
|
Xue P, Zhang L, Fan R, Li Y, Han X, Qi T, Zhao L, Yu D, Shen QH. HvMPK4 phosphorylates HvWRKY1 to enhance its suppression of barley immunity to powdery mildew fungus. J Genet Genomics 2024; 51:313-325. [PMID: 37225086 DOI: 10.1016/j.jgg.2023.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species. However, the functions of MAPK signaling pathways in crop disease resistance are largely unknown. Here we report the function of HvMKK1-HvMPK4-HvWRKY1 module in barley immune system. HvMPK4 is identified to play a negative role in barley immune response against Bgh, as virus-induced gene silencing of HvMPK4 results in enhanced disease resistance whilst stably overexpressing HvMPK4 leads to super-susceptibility to Bgh infection. Furthermore, the barley MAPK kinase HvMKK1 is found to specifically interact with HvMPK4, and the activated HvMKK1DD variant specifically phosphorylates HvMPK4 in vitro. Moreover, the transcription factor HvWRKY1 is identified to be a downstream target of HvMPK4 and phosphorylated by HvMPK4 in vitro in the presence of HvMKK1DD. Phosphorylation assay coupled with mutagenesis analyses identifies S122, T284, and S347 in HvWRKY1 as the major residues phosphorylated by HvMPK4. HvWRKY1 is phosphorylated in barley at the early stages of Bgh infection, which enhances its suppression on barley immunity likely due to enhanced DNA-binding and transcriptional repression activity. Our data suggest that the HvMKK1-HvMPK4 kinase pair acts upstream of HvWRKY1 to negatively regulate barley immunity against powdery mildew.
Collapse
Affiliation(s)
- Pengya Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Renchun Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Qi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lifang Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deshui Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Jiang R, Zhou S, Da X, Yan P, Wang K, Xu J, Mo X. OsMKK6 Regulates Disease Resistance in Rice. Int J Mol Sci 2023; 24:12678. [PMID: 37628859 PMCID: PMC10454111 DOI: 10.3390/ijms241612678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Mitogen-activated protein kinase cascades play important roles in various biological programs in plants, including immune responses, but the underlying mechanisms remain elusive. Here, we identified the lesion mimic mutant rsr25 (rust spots rice 25) and determined that the mutant harbored a loss-of-function allele for OsMKK6 (MITOGEN-ACTIVATED KINASE KINASE 6). rsr25 developed reddish-brown spots on its leaves at the heading stage, as well as on husks. Compared to the wild type, the rsr25 mutant exhibited enhanced resistance to the fungal pathogen Magnaporthe oryzae (M. oryzae) and to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). OsMKK6 interacted with OsMPK4 (MITOGEN-ACTIVATED KINASE 4) in vivo, and OsMKK6 phosphorylated OsMPK4 in vitro. The Osmpk4 mutant is also a lesion mimic mutant, with reddish-brown spots on its leaves and husks. Pathogen-related genes were significantly upregulated in Osmpk4, and this mutant exhibited enhanced resistance to M. oryzae compared to the wild type. Our results indicate that OsMKK6 and OsMPK4 form a cascade that regulates immune responses in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China; (R.J.); (S.Z.); (X.D.); (P.Y.); (K.W.); (J.X.)
| |
Collapse
|
4
|
Wang H, Tu R, Ruan Z, Wu D, Peng Z, Zhou X, Liu Q, Wu W, Cao L, Cheng S, Sun L, Zhan X, Shen X. STRIPE3, encoding a human dNTPase SAMHD1 homolog, regulates chloroplast development in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111395. [PMID: 35878695 DOI: 10.1016/j.plantsci.2022.111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast is an important organelle for photosynthesis and numerous essential metabolic processes, thus ensuring plant fitness or survival. Although many genes involved in chloroplast development have been identified, mechanisms underlying such development are not fully understood. Here, we isolated and characterized the stripe3 (st3) mutant which exhibited white-striped leaves with reduced chlorophyll content and abnormal chloroplast development during the seedling stage, but gradually produced nearly normal green leaves as it developed. Map-based cloning and transgenic tests demonstrated that a splicing mutation in ST3, encoding a human deoxynucleoside triphosphate triphosphohydrolase (dNTPase) SAMHD1 homolog, was responsible for st3 phenotypes. ST3 is highly expressed in the third leaf at three-leaf stage and expressed constitutively in root, stem, leaf, sheath, and panicle, and the encoded protein, OsSAMHD1, is localized to the cytoplasm. The st3 mutant showed more severe albino leaf phenotype under exogenous 1-mM dATP/dA, dCTP/dC, and dGTP/dG treatments compared with the control conditions, indicating that ST3 is involved in dNTP metabolism. This study reveals a gene associated with dNTP catabolism, and propose a model in which chloroplast development in rice is regulated by the dNTP pool, providing a potential application of these results to hybrid rice breeding.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Ranran Tu
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Zheyan Ruan
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Duo Wu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zequn Peng
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Xingpeng Zhou
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Qunen Liu
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Weixun Wu
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Liyong Cao
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Lianping Sun
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China.
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China.
| | - Xihong Shen
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China.
| |
Collapse
|
5
|
Van Dingenen J. A virulence effector resolved: how a fungal phosphatase effector promotes rice false smut. THE PLANT CELL 2022; 34:2831-2832. [PMID: 35666569 PMCID: PMC9338801 DOI: 10.1093/plcell/koac158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 05/28/2023]
|
6
|
Zheng X, Fang A, Qiu S, Zhao G, Wang J, Wang S, Wei J, Gao H, Yang J, Mou B, Cui F, Zhang J, Liu J, Sun W. Ustilaginoidea virens secretes a family of phosphatases that stabilize the negative immune regulator OsMPK6 and suppress plant immunity. THE PLANT CELL 2022; 34:3088-3109. [PMID: 35639755 PMCID: PMC9338817 DOI: 10.1093/plcell/koac154] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 05/16/2023]
Abstract
Rice false smut caused by Ustilaginoidea virens is emerging as a devastating disease of rice (Oryza sativa) worldwide; however, the molecular mechanisms underlying U. virens virulence and pathogenicity remain largely unknown. Here we demonstrate that the small cysteine-rich secreted protein SCRE6 in U. virens is translocated into host cells during infection as a virulence factor. Knockout of SCRE6 leads to attenuated U. virens virulence to rice. SCRE6 and its homologs in U. virens function as a novel family of mitogen-activated protein kinase phosphatases harboring no canonical phosphatase motif. SCRE6 interacts with and dephosphorylates the negative immune regulator OsMPK6 in rice, thus enhancing its stability and suppressing plant immunity. Ectopic expression of SCRE6 in transgenic rice promotes pathogen infection by suppressing the host immune responses. Our results reveal a previously unidentified fungal infection strategy in which the pathogen deploys a family of tyrosine phosphatases to stabilize a negative immune regulator in the host plant to facilitate its infection.
Collapse
Affiliation(s)
- Xinhang Zheng
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Anfei Fang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
- College of Plant Protection, Southwest University, Chongqing, China
| | - Shanshan Qiu
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Guosheng Zhao
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiyang Wang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Shanzhi Wang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Junjun Wei
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Han Gao
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiyun Yang
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Baohui Mou
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Fuhao Cui
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jie Zhang
- Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Jun Liu
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | | |
Collapse
|
7
|
Gao H, Jiang L, Du B, Ning B, Ding X, Zhang C, Song B, Liu S, Zhao M, Zhao Y, Rong T, Liu D, Wu J, Xu P, Zhang S. GmMKK4-activated GmMPK6 stimulates GmERF113 to trigger resistance to Phytophthora sojae in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:473-495. [PMID: 35562858 DOI: 10.1111/tpj.15809] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Phytophthora root and stem rot is a worldwide soybean (Glycine max) disease caused by the soil-borne pathogen Phytophthora sojae. This disease is devastating to soybean production, so improvement of resistance to P. sojae is a major target in soybean breeding. Mitogen-activated protein kinase (MAPK) cascades are important signaling modules that convert environmental stimuli into cellular responses. Compared with extensive studies in Arabidopsis, the molecular mechanism of MAPK cascades in soybean disease resistance is barely elucidated. In this work, we found that the gene expression of mitogen-activated protein kinase 6 (GmMPK6) was potently induced by P. sojae infection in the disease-resistant soybean cultivar 'Suinong 10'. Overexpression of GmMPK6 in soybean resulted in enhanced resistance to P. sojae and silencing of GmMPK6 led to the opposite phenotype. In our attempt to dissect the role of GmMPK6 in soybean resistance to phytophthora disease, we found that MAPK kinase 4 (GmMKK4) and the ERF transcription factor GmERF113 physically interact with GmMPK6, and we determined that GmMKK4 could phosphorylate and activate GmMPK6, which could subsequently phosphorylate GmERF113 upon P. sojae infection, suggesting that P. sojae can stimulate the GmMKK4-GmMPK6-GmERF113 signaling pathway in soybean. Moreover, phosphorylation of GmERF113 by the GmMKK4-GmMPK6 module promoted GmERF113 stability, nuclear localization and transcriptional activity, which significantly enhanced expression of the defense-related genes GmPR1 and GmPR10-1 and hence improved disease resistance of the transgenic soybean seedlings. In all, our data reveal that the GmMKK4-GmMPK6-GmERF113 cascade triggers resistance to P. sojae in soybean and shed light on functions of MAPK kinases in plant disease resistance.
Collapse
Affiliation(s)
- Hong Gao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Liangyu Jiang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
- Jilin Agricultural University, Changchun, 130118, China
| | - Banghan Du
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Bin Ning
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Xiaodong Ding
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Chuanzhong Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Bo Song
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Shanshan Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Ming Zhao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Yuxin Zhao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Tianyu Rong
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Dongxue Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Soybean Cultivation of Ministry of Agriculture P. R. China, Harbin, 150086, China
| | - Pengfei Xu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Shuzhen Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| |
Collapse
|
8
|
Rice Lesion Mimic Gene Cloning and Association Analysis for Disease Resistance. Curr Issues Mol Biol 2022; 44:2350-2361. [PMID: 35678689 PMCID: PMC9164038 DOI: 10.3390/cimb44050160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Lesion mimic mutants refer to a class of mutants that naturally form necrotic lesions similar to allergic reactions on leaves in the absence of significant stress or damage and without being harmed by pathogens. Mutations in most lesion mimic genes, such as OsACL-A2 and OsSCYL2, can enhance mutants’ resistance to pathogens. Lesion mimic mutants are ideal materials for studying programmed cell death (PCD) and plant defense mechanisms. Studying the genes responsible for the rice disease-like phenotype is of great significance for understanding the disease resistance mechanism of rice. In this paper, the nomenclature, occurrence mechanism, genetic characteristics, regulatory pathways, and the research progress on the cloning and disease resistance of rice lesion mimic mutant genes were reviewed, in order to further analyze the various lesion mimic mutants of rice. The mechanism lays a theoretical foundation and provides a reference for rice breeding.
Collapse
|