1
|
Jakubas D, Wojczulanis-Jakubas K, Petersen A, Evans PGH, Boertmann D. Decline in the West Greenland population of a zooplanktivorous seabird, the little auk Alle alle. Sci Rep 2024; 14:20686. [PMID: 39237604 PMCID: PMC11377748 DOI: 10.1038/s41598-024-71823-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
The warming of the Arctic had lead to a diverse range of impacts on local biota, including northward shifts of some species range. Here, we report past and present distribution and abundance of an Arctic zooplanktivorous seabird, the little auk Alle alle in West Greenland south of 74° N, and examine the changes in sea surface temperature (SST) and sea ice concentration (SIC) in the birds foraging areas in 1850-2007. We estimated the little auk population in the studied region to be 5,200 pairs in the 1930s, 6,000-6,500 pairs in the 1940-1970s and 70-80 pairs by the 2000s. We found that periods with increased SST and reduced SIC, especially in the last few decades, coincided with little auk population declines. Besides, years with little auk presence in breeding sites were characterized by either low SST and low to moderate SIC or higher SST but moderate to high SIC. Observed contraction of the breeding range and a decrease in abundance of the little auk may be attributed to more complex climate-driven changes in the marine ecosystem at finer spatial and temporal scales and/or cannot be easily detected given the coarseness of data used. It is possible that the population in this region has never been very numerous being subjected to local impacts such as disease, bycatch, predation, etc. The climate warming that is currently being observed, along with corresponding shifts in zooplankton communities, may lead to extirpation of the studied little auk populations.
Collapse
Affiliation(s)
- Dariusz Jakubas
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Katarzyna Wojczulanis-Jakubas
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | | | - Peter G H Evans
- School of Ocean Sciences, Bangor University, Isle of Anglesey, Menai Bridge, LL57 2DG, UK
- Sea Watch Foundation, Ewyn y Don, Bull Bay, Isle of Anglesey, Amlwch, LL68 9SD, UK
| | - David Boertmann
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| |
Collapse
|
2
|
Jakubas D, Wojczulanis-Jakubas K, Szeligowska M, Darecki M, Boehnke R, Balazy K, Trudnowska E, Kidawa D, Grissot A, Descamps S, Błachowiak-Samołyk K. Gone with the wind - Wind speed affects prey accessibility for a High Arctic zooplanktivorous seabird, the little auk Alle alle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158533. [PMID: 36067858 DOI: 10.1016/j.scitotenv.2022.158533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Foraging ecology of chick rearing seabirds is affected mainly by the food availability on feeding grounds, but it can be also modulated by environmental conditions during the foraging trip, in that wind force. Considering predicted strengthening of surface winds over the Arctic Ocean, this factor may have a growing impact on the foraging performance of Arctic seabirds. Here, we studied how wind speed could affect prey accessibility for the High Arctic zooplanktivorous seabird, the little auk Alle alle breeding in Svalbard in 2015-2019. First, we estimated availability of its preferred prey, a cold water copepod Calanus glacialis, based on wider-scale mesozooplankton biomass model and environmental conditions. Then we estimated prey accessibility by including wind speed, the factor affecting the flapping flight performance of little auks commuting from/to the colony. Finally, we compared reproductive performance of the little auks (chick diet, growth rate and survival and duration of foraging flights of adults) between the studied years differing in wind and food availability conditions. We found that wind speed could affect significantly food accessibility for a zooplanktivorous seabird. Despite high spatial and temporal variability in prey availability and accessibility in shelf waters of SW Spitsbergen, interannual differences in duration of foraging flights and chick growth rate, little auks were able to sustain high breeding success confirming their capacity to buffer suboptimal foraging conditions. Our multidisciplinary work, combining multi-year remote sensing of oceanographic conditions, zooplankton availability and accessibility modelling, little auks diet composition and chick growth and survival emphasizes the importance of including wind conditions in the studies of foraging ecology of seabirds.
Collapse
Affiliation(s)
- Dariusz Jakubas
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, PL-80-308 Gdańsk, Poland.
| | - Katarzyna Wojczulanis-Jakubas
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, PL-80-308 Gdańsk, Poland
| | - Marlena Szeligowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Miroslaw Darecki
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Rafał Boehnke
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Kaja Balazy
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Emilia Trudnowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Dorota Kidawa
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, PL-80-308 Gdańsk, Poland
| | - Antoine Grissot
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, PL-80-308 Gdańsk, Poland
| | | | | |
Collapse
|
3
|
Jakubas D, Wojczulanis-Jakubas K, Petersen A. A quiet extirpation of the breeding little auk Alle alle population in Iceland in the shadow of the famous cousin extermination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152167. [PMID: 34875336 DOI: 10.1016/j.scitotenv.2021.152167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
The little auk Alle alle is an Arctic seabird breeding in the North Atlantic. Its southernmost breeding population in the Low Arctic occurred in Iceland but started to decline in numbers at the beginning of the 20th century ending in extirpation at the end of the same century. Climate warming has been blamed for the disappearance of this population. However, it was also exploited by humans (mainly for eggs). Thus, it is unclear what was the main driver for the population collapse. In this study, we reconstruct population dynamics in relation to changes in environmental conditions, and perform stochastic modelling of population viability considering various scenarios including presence/absence of climate warming and/or egg harvest. We found that extirpation of the studied population was attributed to synergistic effects of both climate warming and human harvest. The simulations revealed that climate warming without harvest would cause a 71% decline in population size but not lead to extirpation. Models with climate warming and egg harvesting resulted in population estimates close to the real data (decrease from 400 individuals in 1903 to 2 in 1996). This is one of the few studies documenting synergistic effect of climate warming and human exploitation on extirpation. A strong harvesting component in the explanation for the decline of the study population emphasizes the continuing need to control commercial harvest of animal species in the face of other pressures such as climate warming.
Collapse
Affiliation(s)
- Dariusz Jakubas
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, The University of Gdańsk, Gdańsk, Poland.
| | | | | |
Collapse
|
4
|
Abstract
AbstractThe Little Auk Alle alle is a small planktivorous auk breeding colonially in the High Arctic. Owing to its large population size and bi-environmental lifestyle, resulting in the large-scale transport of matter from sea to land, the Little Auk is one of the most important components of the marine and terrestrial ecosystems in the Arctic. As a result of globalization, which facilitates access to remote areas of the Earth, a growing number of studies is being dedicated to this endemic Arctic seabird. Research has focussed primarily on the importance of the Little Auk as an ecological indicator reacting to the climatic and oceanological changes that are particularly evident in the Arctic as a result of Arctic amplification (warming is more rapid in the Arctic than in any other region on Earth). Importantly, the species is also used as a model to investigate matter and energy flow through the ecosystem, mate choice, parental care and biological rhythms. Here, we review the natural history of the Little Auk, highlighting studies with the potential to provide answers to universal questions regarding the response of seabirds to climate variability and avian reproductive behaviour, e.g. threshold of foraging flexibility in response to environmental variability, carry-over effects between the breeding and non-breeding periods, the reasons for the transition from bi- to uni-parental care, parental coordination mechanisms.
Collapse
|
5
|
Doyle S, Gray A, McMahon BJ. Anthropogenic impacts on the demographics of Arctic-breeding birds. Polar Biol 2020. [DOI: 10.1007/s00300-020-02756-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Wojczulanis-Jakubas K, Jiménez-Muñoz M, Jakubas D, Kidawa D, Karnovsky N, Cole D, Matechou E. Duration of female parental care and their survival in the little auk Alle alle - are these two traits linked? Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02862-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
Desertion of offspring before its independence by one of the parents is observed in a number of avian species with bi-parental care but reasons for this strategy are not fully understood. This behaviour is particularly intriguing in species where bi-parental care is crucial to raise the brood successfully. Here, we focus on the little auk, Alle alle, a small seabird with intensive bi-parental care, where the female deserts the brood at the end of the chick rearing period. The little auk example is interesting as most hypotheses to explain desertion of the brood by females (e.g. “re-mating hypothesis”, “body condition hypothesis”) have been rejected for this species. Here, we analysed a possible relationship between the duration of female parental care over the chick and her chances to survive to the next breeding season. We performed the study in two breeding colonies on Spitsbergen with different foraging conditions – more favourable in Hornsund and less favourable in Magdalenefjorden. We predicted that in Hornsund females would stay for shorter periods of time with the brood and would have higher survival rates in comparison with birds from Magdalenefjorden. We found that indeed in less favourable conditions of Magdalenefjorden, females stay longer with the brood than in the more favourable conditions of Hornsund. Moreover, female survival was negatively affected by the length of stay in the brood. Nevertheless, duration of female parental care over the chick was not related to their parental efforts, earlier in the chick rearing period, and survival of males and females was similar. Thus, although females brood desertion and winter survival are linked, the relationship is not straightforward.
Significance statement
When bi-parental care is crucial to raise the brood successfully, one parent desertion raises the question of why this happens. We examined this issue in the little auk, a small seabird with females deserting the brood at the end of the chick rearing period. We hypothesised that females deserting the brood save residual energy and, in this way, increases their chance to survive to the next breeding season. We found that duration of female parental care depends on environmental conditions, with longer staying with the brood in less favourable conditions. As expected, female survival decreased with duration of their staying with the brood but it was not related to their parental efforts (i.e. number of chick feedings, duration of foraging flights). In addition, survival of males and females was similar. Thus, although little auk females brood desertion and winter survival are linked, the relationship is not straightforward.
Collapse
|
7
|
Flexibility of little auks foraging in various oceanographic features in a changing Arctic. Sci Rep 2020; 10:8283. [PMID: 32427941 PMCID: PMC7237489 DOI: 10.1038/s41598-020-65210-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/30/2020] [Indexed: 11/29/2022] Open
Abstract
Using GPS-tracked individuals, we compared foraging ecology and reproductive output of a High-Arctic zooplanktivorous seabird, the little auk Alle alle, between three years differing in environmental conditions (sea surface temperature). Despite contrasting environmental conditions, average foraging fights distance and duration were generally similar in all studied years. Also, in all years foraging locations visited by the little auk parents during short trips (ST, for chick provisioning) were significantly closer to the colony compared to those visited during long trips (LTs, mainly for adults’ self-maintenance). Nevertheless, we also found some differences in the little auk foraging behaviour: duration of LTs was the longest in the coldest year suggesting more time for resting for adults compared to warmer years. Besides, birds foraged closer to the colony and in significantly colder water in the coldest year. Interestingly, these differences did not affect chick diet: in all the years, the energy content of food loads was similar, with the Arctic copepod, Calanus glacialis copepodite stage V being the most preferred prey item (>73% of items by number and >67% by energy content). Also chick survival was similar in all the study years. However, when examining chicks growth rate we found that their peak body mass was lower in warmer years suggesting that overall conditions in the two warm years were less favourable. While our results, demonstrate a great foraging flexibility by little auks, they also point out their vulnerability to changing environmental conditions.
Collapse
|
8
|
Grissot A, Araya-Salas M, Jakubas D, Kidawa D, Boehnke R, Błachowiak-Samołyk K, Wojczulanis-Jakubas K. Parental Coordination of Chick Provisioning in a Planktivorous Arctic Seabird Under Divergent Conditions on Foraging Grounds. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Dynamics of Calanus Copepodite Structure during Little Auks’ Breeding Seasons in Two Different Svalbard Locations. WATER 2019. [DOI: 10.3390/w11071405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Populations dynamics of key zooplankton species in the European Arctic, Calanus finmarchicus and Calanus glacialis (hereafter defined as Calanus) may be sensitive to climate changes, which in turn is of great importance for higher trophic levels. The aim of this study was to investigate the complete copepodite structure and dynamics of Calanus populations in terms of body size, phenology and their relative role in the zooplankton community over time in different hydrographic conditions (two fjords on the West Spitsbergen Shelf, cold Hornsund vs. warm Kongsfjorden), from the perspective of their planktivorous predator, the little auk. High-resolution zooplankton measurements (taken by nets and a laser optical plankton counter) were adapted to the timing of bird’s breeding in the 2015 and 2016 summer seasons, and to their maximal diving depth (≤50 m). In Hornsund, the share of the Calanus in zooplankton community was greater and the copepodite structure was progressively older over time, matching the little auks timing. The importance of Calanus was much lower in Kongsfjorden, as represented mainly by younger copepodites, presumably due to the Atlantic water advections, thus making this area a less favourable feeding ground. Our results highlight the need for further studies on the match/mismatch between Calanus and little auks, because the observed trend of altered age structure towards a domination of young copepodites and the body size reduction of Calanus associated with higher seawater temperatures may result in insufficient food availability for these seabirds in the future.
Collapse
|
10
|
Keslinka LK, Wojczulanis-Jakubas K, Jakubas D, Neubauer G. Determinants of the little auk (Alle alle) breeding colony location and size in W and NW coast of Spitsbergen. PLoS One 2019; 14:e0212668. [PMID: 30840697 PMCID: PMC6402645 DOI: 10.1371/journal.pone.0212668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/07/2019] [Indexed: 11/25/2022] Open
Abstract
Many seabirds breed in large aggregations, making it difficult to estimate their population size and habitat preferences. This knowledge is particularly important considering their function in food webs and ecosystem services. In this study, we investigated the factors affecting distribution and abundance of the little auk Alle alle, a seabird considered a keystone species of the Arctic ecosystem. We performed the study on the W and the NW coast of Spitsbergen. Using Generalized Additive Models (GAMs) and Conditional Inference Tree (CIT) we examined factors related to presence/absence and size (estimated number of breeding pairs) of the little auk colonies. We also tested the nesting preferences for geographical features such as aspect, slope angle, altitude, solar radiation, rock type, and distance to foraging grounds. Our findings indicate that the occurrence of little auk breeding colonies is non-random and highly attributed to environmental factors. The probability of colony occurrence was significantly associated with altitude (negative relationship; preference to sites situated lower), solar radiation (positive relationship; the higher radiation, the more likely colony occurrence) and slope (positive relationship; the steeper a slope, the more likely colony occurrence), whilst aspect appeared non-significant (though the probability of colony occurrence peaked at southern slopes). Colony size was significantly associated with rock type (larger colonies in amphibolite and quartzite). The distance to foraging grounds did not appear to affect the probability of colony occurrence and size, implying that birds may choose optimal breeding sites at the cost of longer foraging flights. We estimated the Spitsbergen little auk breeding population at 728 529 (5–95% CI: 479 312–986 352). Spitsbergen comprises ca 1.9% (95% CI: 1.2%–2.7%) of the world breeding population and represents the third most important breeding area for the species, following the W and the E coast of Greenland.
Collapse
Affiliation(s)
- Liliana Katarzyna Keslinka
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
- * E-mail:
| | | | - Dariusz Jakubas
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
11
|
Amélineau F, Grémillet D, Harding AMA, Walkusz W, Choquet R, Fort J. Arctic climate change and pollution impact little auk foraging and fitness across a decade. Sci Rep 2019; 9:1014. [PMID: 30705325 PMCID: PMC6355795 DOI: 10.1038/s41598-018-38042-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/10/2018] [Indexed: 11/26/2022] Open
Abstract
Ongoing global changes apply drastic environmental forcing onto Arctic marine ecosystems, particularly through ocean warming, sea-ice shrinkage and enhanced pollution. To test impacts on arctic marine ecological functioning, we used a 12-year integrative study of little auks (Alle alle), the most abundant seabird in the Atlantic Arctic. We monitored the foraging ecology, reproduction, survival and body condition of breeding birds, and we tested linkages between these biological variables and a set of environmental parameters including sea-ice concentration (SIC) and mercury contamination. Little auks showed substantial plasticity in response to SIC, with deeper and longer dives but less time spent underwater and more time flying when SIC decreased. Their diet also contained less lipid-rich ice-associated prey when SIC decreased. Further, in contrast to former studies conducted at the annual scale, little auk fitness proxies were impacted by environmental changes: Adult body condition and chick growth rate were negatively linked to SIC and mercury contamination. However, no trend was found for adult survival despite high inter-annual variability. Our results suggest that potential benefits of milder climatic conditions in East Greenland may be offset by increasing pollution in the Arctic. Overall, our study stresses the importance of long-term studies integrating ecology and ecotoxicology.
Collapse
Affiliation(s)
- Françoise Amélineau
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE) UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier, France.
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - Université de La Rochelle, La Rochelle, France.
| | - David Grémillet
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE) UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier, France
- Percy FitzPatrick Institute and DST/NRF Excellence Centre at the University of Cape Town, Rondebosch, South Africa
| | - Ann M A Harding
- Environmental Science Department, Alaska Pacific University, Anchorage, AK, USA
| | - Wojciech Walkusz
- Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, Canada
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Rémi Choquet
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE) UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier, France
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - Université de La Rochelle, La Rochelle, France
| |
Collapse
|
12
|
Habitat foraging niche of a High Arctic zooplanktivorous seabird in a changing environment. Sci Rep 2017; 7:16203. [PMID: 29176574 PMCID: PMC5701252 DOI: 10.1038/s41598-017-16589-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 11/15/2017] [Indexed: 11/24/2022] Open
Abstract
Here, we model current and future distribution of a foraging Arctic endemic species, the little auk (Alle alle), a small zooplanktivorous Arctic seabird. We characterized environmental conditions [sea depth, sea surface temperature (SST), marginal sea ice zone (MIZ)] at foraging positions of GPS-tracked individuals from three breeding colonies in Svalbard: one located at the southern rim of the Arctic zone (hereafter ‘boreo-Arctic’) and two in the high-Arctic zone on Spitsbergen (‘high-Arctic’). The birds from one ‘high-Arctic’ colony, influenced by cold Arctic water, foraged in the shallow shelf zone near the colony. The birds from remaining colonies foraged in a wider range of depths, in a higher SST zone (‘boreo-Arctic’) or in the productive but distant MIZ (second ‘high-Arctic’ colony). Given this flexible foraging behaviour, little auks may be temporarily resilient to moderate climate changes. However, our fuzzy logic models of future distribution under scenarios of 1 °C and 2 °C SST increase predict losses of suitable foraging habitat for the majority of little auk colonies studied. Over longer time scales negative consequences of global warming are inevitable. The actual response of little auks to future environmental conditions will depend on the range of their plasticity and pace of ecosystem changes.
Collapse
|
13
|
Descamps S, Aars J, Fuglei E, Kovacs KM, Lydersen C, Pavlova O, Pedersen ÅØ, Ravolainen V, Strøm H. Climate change impacts on wildlife in a High Arctic archipelago - Svalbard, Norway. GLOBAL CHANGE BIOLOGY 2017; 23:490-502. [PMID: 27250039 DOI: 10.1111/gcb.13381] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
The Arctic is warming more rapidly than other region on the planet, and the northern Barents Sea, including the Svalbard Archipelago, is experiencing the fastest temperature increases within the circumpolar Arctic, along with the highest rate of sea ice loss. These physical changes are affecting a broad array of resident Arctic organisms as well as some migrants that occupy the region seasonally. Herein, evidence of climate change impacts on terrestrial and marine wildlife in Svalbard is reviewed, with a focus on bird and mammal species. In the terrestrial ecosystem, increased winter air temperatures and concomitant increases in the frequency of 'rain-on-snow' events are one of the most important facets of climate change with respect to impacts on flora and fauna. Winter rain creates ice that blocks access to food for herbivores and synchronizes the population dynamics of the herbivore-predator guild. In the marine ecosystem, increases in sea temperature and reductions in sea ice are influencing the entire food web. These changes are affecting the foraging and breeding ecology of most marine birds and mammals and are associated with an increase in abundance of several temperate fish, seabird and marine mammal species. Our review indicates that even though a few species are benefiting from a warming climate, most Arctic endemic species in Svalbard are experiencing negative consequences induced by the warming environment. Our review emphasizes the tight relationships between the marine and terrestrial ecosystems in this High Arctic archipelago. Detecting changes in trophic relationships within and between these ecosystems requires long-term (multidecadal) demographic, population- and ecosystem-based monitoring, the results of which are necessary to set appropriate conservation priorities in relation to climate warming.
Collapse
Affiliation(s)
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre, Tromsø, 9296, Norway
| | - Eva Fuglei
- Norwegian Polar Institute, Fram Centre, Tromsø, 9296, Norway
| | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, Tromsø, 9296, Norway
| | | | - Olga Pavlova
- Norwegian Polar Institute, Fram Centre, Tromsø, 9296, Norway
| | | | | | - Hallvard Strøm
- Norwegian Polar Institute, Fram Centre, Tromsø, 9296, Norway
| |
Collapse
|
14
|
Amélineau F, Grémillet D, Bonnet D, Le Bot T, Fort J. Where to Forage in the Absence of Sea Ice? Bathymetry As a Key Factor for an Arctic Seabird. PLoS One 2016; 11:e0157764. [PMID: 27438790 PMCID: PMC4954664 DOI: 10.1371/journal.pone.0157764] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 06/03/2016] [Indexed: 02/06/2023] Open
Abstract
The earth is warming at an alarming rate, especially in the Arctic, where a marked decline in sea ice cover may have far-ranging consequences for endemic species. Little auks, endemic Arctic seabirds, are key bioindicators as they forage in the marginal ice zone and feed preferentially on lipid-rich Arctic copepods and ice-associated amphipods sensitive to the consequences of global warming. We tested how little auks cope with an ice-free foraging environment during the breeding season. To this end, we took advantage of natural variation in sea ice concentration along the east coast of Greenland. We compared foraging and diving behaviour, chick diet and growth and adult body condition between two years, in the presence versus nearby absence of sea ice in the vicinity of their breeding site. Moreover, we sampled zooplankton at sea when sea ice was absent to evaluate prey location and little auk dietary preferences. Little auks foraged in the same areas both years, irrespective of sea ice presence/concentration, and targeted the shelf break and the continental shelf. We confirmed that breeding little auks showed a clear preference for larger copepod species to feed their chick, but caught smaller copepods and nearly no ice-associated amphipod when sea ice was absent. Nevertheless, these dietary changes had no impact on chick growth and adult body condition. Our findings demonstrate the importance of bathymetry for profitable little auk foraging, whatever the sea-ice conditions. Our investigations, along with recent studies, also confirm more flexibility than previously predicted for this key species in a warming Arctic.
Collapse
Affiliation(s)
- Françoise Amélineau
- CEFE UMR 5175, CNRS – Université de Montpellier – Université Paul-Valéry Montpellier – EPHE, Montpellier, France
| | - David Grémillet
- CEFE UMR 5175, CNRS – Université de Montpellier – Université Paul-Valéry Montpellier – EPHE, Montpellier, France
- Percy FitzPatrick Institute, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch, South Africa
| | - Delphine Bonnet
- Laboratoire MARBEC, Université de Montpellier, Montpellier, France
| | - Tangi Le Bot
- CEFE UMR 5175, CNRS – Université de Montpellier – Université Paul-Valéry Montpellier – EPHE, Montpellier, France
| | - Jérôme Fort
- Department of Bioscience, Aarhus University, Roskilde, Denmark
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de La Rochelle, La Rochelle, France
| |
Collapse
|
15
|
Intra-seasonal variation in zooplankton availability, chick diet and breeding performance of a high Arctic planktivorous seabird. Polar Biol 2016. [DOI: 10.1007/s00300-015-1880-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Boehnke R, Gluchowska M, Wojczulanis-Jakubas K, Jakubas D, Karnovsky NJ, Walkusz W, Kwasniewski S, Błachowiak-Samołyk K. Supplementary diet components of little auk chicks in two contrasting regions on the West Spitsbergen coast. Polar Biol 2015; 38:261-267. [PMID: 26069395 PMCID: PMC4459656 DOI: 10.1007/s00300-014-1568-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 11/30/2022]
Abstract
The complete diet composition structure of the most numerous planktivorous sea bird, little auk (Alle alle), in the European Arctic, is still not fully recognized. Although regular constituents of little auk chick diets, the copepods, Calanus glacialis and C. finmarchicus have been previously relatively well described, more taxa were frequent ingredients of the bird’s meals. Therefore, the role of the little auks supplementary diet components (SDCs) at two colonies in the Svalbard Archipelago, Hornsund and Magdalenefjorden, in 2007–2009, is a main subject of this comparative study. Because the SDCs often consisted of scarce but large zooplankters, this investigation was focused on biomass as a proxy of the SDCs’ energy input. Although the total biomass of the food delivered to chicks in both colonies was similar, in Magdalenefjorden, the proportion of SDCs was twice that found in Hornsund. The main SDCs in Hornsund were Decapoda larvae (with predominating Pagurus pubescens) and Thysanoessa inermis, whereas the main SDCs in Magdalenefjorden were C. hyperboreus and Apherusa glacialis. Previous investigations, which indicated lipid richness of SDCs, together with our ecological results from the colonies, suggest that this category might play a compensatory role in little auk chick diets. The ability to forage on diverse taxa may help the birds to adapt to ongoing Arctic ecosystem changes.
Collapse
Affiliation(s)
- Rafał Boehnke
- Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Marta Gluchowska
- Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | | | - Dariusz Jakubas
- Department of Vertebrate Ecology and Zoology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Nina J Karnovsky
- Department of Biology, Pomona College, 175 W. 6th St., Claremont, CA 91711 USA
| | - Wojciech Walkusz
- Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland ; Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB R3T 2N6 Canada
| | - Slawomir Kwasniewski
- Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | | |
Collapse
|
17
|
Hovinen JEH, Welcker J, Descamps S, Strøm H, Jerstad K, Berge J, Steen H. Climate warming decreases the survival of the little auk (Alle alle), a high Arctic avian predator. Ecol Evol 2014; 4:3127-38. [PMID: 25247069 PMCID: PMC4161185 DOI: 10.1002/ece3.1160] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/07/2014] [Accepted: 06/14/2014] [Indexed: 11/06/2022] Open
Abstract
Delayed maturity, low fecundity, and high adult survival are traits typical for species with a long-life expectancy. For such species, even a small change in adult survival can strongly affect the population dynamics and viability. We examined the effects of both regional and local climatic variability on adult survival of the little auk, a long-lived and numerous Arctic seabird species. We conducted a mark-resighting study for a period of 8 years (2006-2013) simultaneously at three little auk breeding sites that are influenced by the West Spitsbergen Current, which is the main carrier of warm, Atlantic water into the Arctic. We found that the survival of adult little auks was negatively correlated with both the North Atlantic Oscillation (NAO) index and local summer sea surface temperature (SST), with a time lag of 2 and 1 year, respectively. The effects of NAO and SST were likely mediated through a change in food quality and/or availability: (1) reproduction, growth, and development of Arctic Calanus copepods, the main prey of little auks, are negatively influenced by a reduction in sea ice, reduced ice algal production, and an earlier but shorter lasting spring bloom, all of which result from an increased NAO; (2) a high sea surface temperature shortens the reproductive period of Arctic Calanus, decreasing the number of eggs produced. A synchronous variation in survival rates at the different colonies indicates that climatic forcing was similar throughout the study area. Our findings suggest that a predicted warmer climate in the Arctic will negatively affect the population dynamics of the little auk, a high Arctic avian predator.
Collapse
Affiliation(s)
- Johanna E H Hovinen
- Norwegian Polar Institute, Fram CentreTromsø, Norway
- University Centre in SvalbardLongyearbyen, Norway
- Faculty of Biosciences, Fisheries and Economics, Uit-The Arctic University of NorwayTromsø, Norway
| | - Jorg Welcker
- Norwegian Polar Institute, Fram CentreTromsø, Norway
| | | | | | | | - Jørgen Berge
- Faculty of Biosciences, Fisheries and Economics, Uit-The Arctic University of NorwayTromsø, Norway
| | - Harald Steen
- Norwegian Polar Institute, Fram CentreTromsø, Norway
| |
Collapse
|