1
|
Landaeta MF, Pareja M, Hüne M, Zenteno-Devaud L, Vera-Duarte J, Bernal-Durán V, Castillo MI, La Mesa M. Morphology and diet are decoupled in nearshore notothenoids from King George Island, West Antarctica. JOURNAL OF FISH BIOLOGY 2024; 104:957-968. [PMID: 38032136 DOI: 10.1111/jfb.15632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
Antarctic notothenioid fishes show wide adaptive morphological radiation, linked to habitat preferences and food composition. However, direct comparisons of phenotypic variability and feeding habits are still lacking, particularly in stages inhabiting nearshore areas. To assess these relationships, we collected juveniles and adults of the most common benthic species inhabiting shallow waters off the South Shetland Islands within a similar size range, the plunderfish Harpagifer antarcticus, the black rockcod Notothenia coriiceps, and the marbled rockcod Notothenia rossii. Individual size ranges varied from 44.0 to 98.9 mm standard length (LS) (H. antarcticus), from 95.8 to 109.3 mm LS (N. coriiceps), and from 63.0 to 113.0 mm LS (N. rossii). Notothenioid fish showed different morphospace variability, being larger for H. antarcticus than the other Notothenia species and associated with the position of the posterior end of the operculum, along with the location and relative size of the eye. The evolutionary allometry was low, but the static allometry was much higher, especially for H. antarcticus and N. rossii. The diet was mainly carnivorous, consisting of amphipods and euphausiids. Macroalgae were scarce or totally absent in the gut contents of all species. Only H. antarcticus showed an increase in the prey number and ingested prey volume with fish size. Finally, there was a significant covariation between shape changes and LS in all species (allometric effects), however, not with prey composition, probably due to the small size range or ontogenetic stage and the relative similarity (or lack of contrast) in the benthic environment that they utilized.
Collapse
Affiliation(s)
- Mauricio F Landaeta
- Laboratorio de Ictiología e Interacciones Biofísicas (LABITI), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Observación Marino para Estudios de Riesgos del Ambiente Costero (COSTA-R), Universidad de Valparaíso, Viña del Mar, Chile
- Millennium Nucleus for the Ecology and Conservation of Temperate Mesophotic Reef Ecosystem (NUTME), Las Cruces, Chile
| | - Matías Pareja
- Laboratorio de Ictiología e Interacciones Biofísicas (LABITI), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Mathias Hüne
- Centro de Investigación para la Conservación de los Ecosistemas Australes (ICEA), Punta Arenas, Chile
- Rewilding Chile, Puerto Varas, Chile
| | - Lisette Zenteno-Devaud
- Centro de Estudios del Cuaternario Fuego-Patagonia y Antártica, Avenida España 184, Punta Arenas, Chile
| | - Javier Vera-Duarte
- Laboratorio de Ictiología e Interacciones Biofísicas (LABITI), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Magíster en Ecología Marina, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Valentina Bernal-Durán
- Laboratorio de Ictiología e Interacciones Biofísicas (LABITI), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Manuel I Castillo
- Centro de Observación Marino para Estudios de Riesgos del Ambiente Costero (COSTA-R), Universidad de Valparaíso, Viña del Mar, Chile
- Laboratorio de Oceanografía Física y Satelital (LOFISAT), Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso, Viña del Mar, Chile
| | - Mario La Mesa
- CNR, Istituto di Scienze Polari (ISP), c/o Area di Ricerca di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Carlig E, Christiansen JS, Di Blasi D, Ferrando S, Pisano E, Vacchi M, O’Driscoll RL, Ghigliotti L. Midtrophic fish feeding modes at the poles: an ecomorphological comparison of polar cod (Boreogadus saida) and Antarctic silverfish (Pleuragramma antarctica). Polar Biol 2021. [DOI: 10.1007/s00300-021-02900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AbstractThe polar cod (Boreogadus saida) and the Antarctic silverfish (Pleuragramma antarctica) are pelagic fish endemic to the Arctic and Antarctica sea, respectively. Both species are abundant and play a central role as midtrophic wasp-waist species in polar ecosystems. Due to their biological and ecological characteristics (small size, complex life histories, relatively short generation cycles, movement capability, planktivorous diet, and importance as prey), the polar cod and the Antarctic silverfish are potentially good sentinels of ecosystem change. Changes in polar zooplankton communities are well documented. How changes impact ecosystems as a whole largely depend on the degree of diet specialization and feeding flexibility of midtrophic species. Here, we provide the ecomorphological characterization of polar cod and Antarctic silverfish feeding performances. A comparative functional ecology approach, based on the analysis of morpho-anatomical traits, including calculation of suction index and mechanical advantage in jaw closing, was applied to profile the feeding modes and flexibility of the two species. Ecomorphological evidence supports differences in food acquisition: the polar cod appears able to alternate particulate ram-suction feeding to a pump filter feeding, and the Antarctic silverfish results be both a particulate ram and a tow-net filter feeder. Both species exhibit opportunistic feeding strategies and appear able to switch feeding mode according to the abundance and size of the available prey, which is a clue of potential resilience to a changing environment.
Collapse
|
3
|
Gerringer ME, Dias AS, von Hagel AA, Orr JW, Summers AP, Farina S. Habitat influences skeletal morphology and density in the snailfishes (family Liparidae). Front Zool 2021; 18:16. [PMID: 33863343 PMCID: PMC8052763 DOI: 10.1186/s12983-021-00399-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/14/2021] [Indexed: 12/23/2022] Open
Abstract
We tested the hypothesis that deep-sea fishes have poorly mineralized bone relative to shallower-dwelling species using data from a single family that spans a large depth range. The family Liparidae (snailfishes, Cottiformes) has representatives across the entire habitable depth range for bony fishes (0 m-> 8000 m), making them an ideal model for studying depth-related trends in a confined phylogeny. We used micro-computed tomography (micro-CT) scanning to test three aspects of skeletal reduction in snailfishes (50 species) across a full range of habitat depths: 1) reduction of structural dimensions, 2) loss of skeletal elements, and 3) reduction in bone density. Using depth data from the literature, we found that with increasing depth, the length of the dentary, neurocranium, and suborbital bones decreases. The ventral suction disk decreases width with increasing maximum habitat depth and is lost entirely in some deeper-living taxa, though not all. Although visual declines in bone density in deeper-living taxa were evident across full skeletons, individual densities of the lower jaw, vertebra, suction disk, hypural plate, and otoliths did not significantly decline with any depth metric. However, pelagic and polar taxa tended to show lower density bones compared to other species in the family. We propose that skeletal reductions allow snailfishes to maintain neutral buoyancy at great depths in the water column, while supporting efficient feeding and locomotion strategies. These findings suggest that changes in skeletal structure are non-linear and are driven not only by hydrostatic pressure, but by other environmental factors and by evolutionary ancestry, calling the existing paradigm into question.
Collapse
Affiliation(s)
- M E Gerringer
- State University of New York at Geneseo, Geneseo, NY, 14454, USA.
| | - A S Dias
- Whitman College, Walla Walla, WA, 99362, USA
| | | | - J W Orr
- Alaska Fisheries Science Center, RACE Division, NOAA Fisheries, Seattle, WA, 98115, USA
| | - A P Summers
- Friday Harbor Labs, Biology and SAFS, University of Washington, Friday Harbor, WA, 98250, USA
| | - S Farina
- Howard University, Washington, DC, 20059, USA
| |
Collapse
|
4
|
Abstract
Deep-sea trenches, depths 6000-11,000 m, are characterized by high pressures, low temperatures, and absence of sunlight. These features make up the majority of the deepest marine habitat-the hadal zone-home to distinct communities from those in the surrounding abyssal plains. The snailfishes, family Liparidae (Scorpaeniformes), have found notable success in the hadal zone from ∼6000 to 8200 m, comprising the dominant ichthyofauna in at least six trenches worldwide. The hadal fish community is distinct from the abyssal community where elongate, scavenging fishes such as rattails (Macrouridae), cutthroat eels (Synaphobranchidae), tripodfishes (Ipnopidae), eelpouts (Zoarcidae), and cusk eels (Ophidiidae) are most common. Until recently, little was known about the biology of these deepest-living fishes, or the factors that drive their success at hadal depths. Here, I review recent investigations spanning the abyssal-hadal boundary and discuss the factors structuring these communities, including the roles of pressure adaptation, feeding ecology, and life history. Hadal fishes show specialized adaptation to hydrostatic pressure both in accumulation of the pressure-counteractant trimethylamine n-oxide and in intrinsic changes to enzymes. Stomach content and amino acid isotope analyses, and jaw morphology suggest that suction-feeding predatory fishes like hadal liparids may find an advantage to descending into the trench where amphipods are increasingly abundant. Analysis of otolith growth zones suggest that snailfishes may be adapted to a seismically active, high-disturbance hadal environment by having relatively short life-spans. This review synthesizes the known literature on the planet's deepest-living fishes and informs new understanding of adaptations to life in the trenches.
Collapse
Affiliation(s)
- M E Gerringer
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| |
Collapse
|
5
|
|
6
|
|
7
|
Abstract
Cold-water conditions have excluded durophagous (skeleton-breaking) predators from the Antarctic seafloor for millions of years. Rapidly warming seas off the western Antarctic Peninsula could now facilitate their return to the continental shelf, with profound consequences for the endemic fauna. Among the likely first arrivals are king crabs (Lithodidae), which were discovered recently on the adjacent continental slope. During the austral summer of 2010 ‒ 2011, we used underwater imagery to survey a slope-dwelling population of the lithodid Paralomis birsteini off Marguerite Bay, western Antarctic Peninsula for environmental or trophic impediments to shoreward expansion. The population density averaged ∼ 4.5 individuals × 1,000 m(-2) within a depth range of 1,100 ‒ 1,500 m (overall observed depth range 841-2,266 m). Images of juveniles, discarded molts, and precopulatory behavior, as well as gravid females in a trapping study, suggested a reproductively viable population on the slope. At the time of the survey, there was no thermal barrier to prevent the lithodids from expanding upward and emerging on the outer shelf (400- to 550-m depth); however, near-surface temperatures remained too cold for them to survive in inner-shelf and coastal environments (<200 m). Ambient salinity, composition of the substrate, and the depth distribution of potential predators likewise indicated no barriers to expansion of lithodids onto the outer shelf. Primary food resources for lithodids--echinoderms and mollusks--were abundant on the upper slope (550-800 m) and outer shelf. As sea temperatures continue to rise, lithodids will likely play an increasingly important role in the trophic structure of subtidal communities closer to shore.
Collapse
|