1
|
Ciesielski TM, Sonne C, Smette EI, Villanger GD, Styrishave B, Letcher RJ, Hitchcock DJ, Dietz R, Jenssen BM. Testosterone and persistent organic pollutants in east Greenland male polar bears (Ursus maritimus). Heliyon 2023; 9:e13263. [PMID: 37101474 PMCID: PMC10123070 DOI: 10.1016/j.heliyon.2023.e13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Legacy persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) are chemicals that undergo long-range transport to the Arctic. These chemicals possess endocrine disruptive properties raising concerns for development and reproduction. Here, we report the relationship between concentrations of testosterone (T) and persistent organic pollutant (POPs) in 40 East Greenland male polar bears (Ursus maritimus) sampled during January to September 1999-2001. The mean ± standard concentrations of blood T were 0.31 ± 0.49 (mean ± SD) ng/mL in juveniles/subadults (n = 22) and 3.58 ± 7.45 ng/mL in adults (n = 18). The ∑POP concentrations (mean ± SD) in adipose tissue were 8139 ± 2990 ng/g lipid weight (lw) in juveniles/subadults and 11,037 ± 3950 ng/g lw in adult males, respectively, of which Σpolychlorinated biphenyls (ΣPCBs) were found in highest concentrations. The variation in T concentrations explained by sampling date (season), biometrics and adipose tissue POP concentrations was explored using redundancy analysis (RDA). The results showed that age, body length, and adipose lipid content in adult males contributed (p = 0.02) to the variation in POP concentrations. However, although some significant relationships between individual organochlorine contaminants and T concentrations in both juveniles/subadults and adult polar bears were identified, no significant relationships (p = 0.32) between T and POP concentrations were identified by the RDAs. Our results suggest that confounders such as biometrics and reproductive status may mask the endocrine disruptive effects that POPs have on blood T levels in male polar bears, demonstrating why it can be difficult to detect effects on wildlife populations.
Collapse
Affiliation(s)
- Tomasz M. Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
- Corresponding author.
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
- Corresponding author.
| | - Eli I. Smette
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Gro Dehli Villanger
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
- Mental and Physical Health, Department of Child Health and Development, Norwegian Institute of Public Health, PO Box 222 Skoyen, NO-0213 Oslo, Norway
| | - Bjarne Styrishave
- Toxicology and Drug Metabolism Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Robert J. Letcher
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | | | - Rune Dietz
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Bjørn M. Jenssen
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
- Department of Arctic Technology, The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| |
Collapse
|
2
|
Bista D, Baxter GS, Hudson NJ, Lama ST, Weerman J, Murray PJ. Space use, interaction and recursion in a solitary specialized herbivore: a red panda case study. ENDANGER SPECIES RES 2022. [DOI: 10.3354/esr01171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Better understanding of ecology is crucial for the success of endangered species conservation programmes. Little information is available on space use, conspecific interactions and recursions by one such species, the red panda Ailurus fulgens. To address this deficiency, we used GPS telemetry to examine their home range, core area, home-range overlap, dynamic interactions and recursive movement, and investigated the effect of sex, age and body mass on these behaviours across seasons. The median annual home range size was 1.41 km2, with nearly a quarter of this range being used as the core area. Sex and reproductive status were the key determinants of space use patterns on a seasonal scale, while body mass and age remained significant correlates for the core area. The home range of males was nearly double that of females, likely because of the polygynous mating system in red pandas. Females avoided overlapping home ranges, while males overlapped home range with up to 4 females, and neighbouring males overlapped nearly half of their ranges. We found rare interactions between males and females outside the mating season. Red pandas showed site fidelity within their territory, with seasonal variation across sex classes. We also observed high individual variation in patterns of both space use and recursive movement. Taken together, these results suggest that differences in biological requirements across seasons determine red panda space use patterns, conspecific interactions and recursion. However, forage availability and quality, climatic factors, disturbances and habitat fragmentation are also likely to influence these behaviours, and these factors need to be investigated.
Collapse
Affiliation(s)
- D Bista
- School of Agriculture and Food Sciences (Wildlife Science Unit), The University of Queensland, Gatton, QLD 4343, Australia
| | - GS Baxter
- School of Sciences, University of Southern Queensland, West St, Darling Heights, QLD 4350, Australia
| | - NJ Hudson
- School of Agriculture and Food Sciences (Wildlife Science Unit), The University of Queensland, Gatton, QLD 4343, Australia
| | - ST Lama
- Red Panda Network, Baluwatar, Kathmandu 44600, Nepal
| | - J Weerman
- Royal Rotterdam Zoological & Botanical Gardens, Postbus 532, 3000 AM Rotterdam, The Netherlands
| | - PJ Murray
- School of Sciences, University of Southern Queensland, West St, Darling Heights, QLD 4350, Australia
| |
Collapse
|
3
|
Blévin P, Aars J, Andersen M, Blanchet MA, Hanssen L, Herzke D, Jeffreys RM, Nordøy ES, Pinzone M, de la Vega C, Routti H. Pelagic vs Coastal-Key Drivers of Pollutant Levels in Barents Sea Polar Bears with Contrasted Space-Use Strategies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:985-995. [PMID: 31823610 DOI: 10.1021/acs.est.9b04626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the Barents Sea, pelagic and coastal polar bears are facing various ecological challenges that may explain the difference in their pollutant levels. We measured polychlorinated biphenyls, organochlorine pesticides, polybrominated diphenyl ethers in fat, and perfluoroalkyl substances in plasma in pelagic and coastal adult female polar bears with similar body condition. We studied polar bear feeding habits with bulk stable isotope ratios of carbon and nitrogen. Nitrogen isotopes of amino acids were used to investigate their trophic position. We studied energy expenditure by estimating field metabolic rate using telemetry data. Annual home range size was determined, and spatial gradients in pollutants were explored using latitude and longitude centroid positions of polar bears. Pollutant levels were measured in harp seals from the Greenland Sea and White Sea-Barents Sea as a proxy for a West-East gradient of pollutants in polar bear prey. We showed that pelagic bears had higher pollutant loads than coastal bears because (1) they feed on a higher proportion of marine and higher trophic level prey, (2) they have higher energy requirements and higher prey consumption, (3) they forage in the marginal ice zones, and (4) they feed on prey located closer to pollutant emission sources/transport pathways.
Collapse
Affiliation(s)
- Pierre Blévin
- Norwegian Polar Institute, Fram Centre , Tromsø 9296 , Norway
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre , Tromsø 9296 , Norway
| | - Magnus Andersen
- Norwegian Polar Institute, Fram Centre , Tromsø 9296 , Norway
| | | | - Linda Hanssen
- Norwegian Institute for Air Research, Fram Centre , Tromsø 9296 , Norway
| | - Dorte Herzke
- Norwegian Institute for Air Research, Fram Centre , Tromsø 9296 , Norway
| | - Rachel M Jeffreys
- School of Environmental Science , University of Liverpool , Liverpool L69 7ZX , United Kingdom
| | | | - Marianna Pinzone
- Laboratory of Oceanology, Department of Biology, Ecology & Evolution , University of Liège , Liège B-4000 , Belgium
| | - Camille de la Vega
- School of Environmental Science , University of Liverpool , Liverpool L69 7ZX , United Kingdom
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre , Tromsø 9296 , Norway
| |
Collapse
|
4
|
Gantchoff MG, Beyer D, Belant JL. Reproductive class influences risk tolerance during denning and spring for American black bears (
Ursus americanus
). Ecosphere 2019. [DOI: 10.1002/ecs2.2705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- M. G. Gantchoff
- Camp Fire Program in Wildlife Conservation College of Environmental Science and Forestry State University of New York New York New York 13210 USA
| | - D. Beyer
- Wildlife Division Michigan DNR Marquette Michigan 49855 USA
| | - J. L. Belant
- Camp Fire Program in Wildlife Conservation College of Environmental Science and Forestry State University of New York New York New York 13210 USA
| |
Collapse
|
5
|
Ciesielski TM, Sonne C, Ormbostad I, Aars J, Lie E, Bytingsvik J, Jenssen BM. Effects of biometrics, location and persistent organic pollutants on blood clinical-chemical parameters in polar bears (Ursus maritimus) from Svalbard, Norway. ENVIRONMENTAL RESEARCH 2018; 165:387-399. [PMID: 29860211 DOI: 10.1016/j.envres.2018.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/11/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
In the present study, blood clinical-chemical parameters (BCCPs) were analysed in 20 female and 18 male Svalbard polar bears (Ursus maritimus) captured in spring 2007. The aim was to study how age, body condition (BC), biometrics, plasma lipid content and geographical location may confound the relationship between persistent organic pollutants (POPs) including PCBs, HCB, chlordanes, DDTs, HCHs, mirex and OH-PCBs and the concentrations of 12 specific BCCPs (hematocrit [HCT], hemoglobin [HB], aspartate aminotransferase [ASAT], alanine aminotransferase [ALAT], γ-glutamyltransferase [GGT], creatine kinase [CK], triglycerides [TG], cholesterol [CHOL], high-density lipoprotein [HDL], creatinine (CREA], urea, potassium (K]), and to investigate if any of these BCCPs may be applied as potential biomarkers for POP exposure in polar bears. Initial PCA and O-PLS modelling showed that age, lipids, BC and geographical location (longitude and latitude) were important parameters explaining BCCPs in females. Following subsequent partial correlation analyses correcting for age and lipids, multiple POPs in females were still significantly correlated with HCT and HDL (all p < 0.05). In males, age, BM, BC and longitude were important parameters explaining BCCPs. Following partial correlation analyses correcting for age, biometrics, lipids and longitude in males, multiple POPs were significantly correlated with HCT, ASAT, GGT and CHOL (all p < 0.05). In conclusion, several confounding parameters has to be taken into account when studying the relations between BCCPs and POPs in polar bears. When correcting for these, in particular HCT may be used as a simple cost-efficient biomarker of POP exposure in polar bears. Furthermore, decreasing HDL concentrations and increasing CHOL concentration with increasing POP concentrations may indicate responses related to increased risk of cardiovascular disease. We therefore suggest to further study POP exposure and lipidome response to increase knowledge of the risk of cardiometabolic syndrome in polar bears.
Collapse
Affiliation(s)
- Tomasz Maciej Ciesielski
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, POBox 358, DK-4000 Roskilde, Denmark.
| | - Ingunn Ormbostad
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway.
| | - Elisabeth Lie
- Norwegian Institute for Water research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway.
| | - Jenny Bytingsvik
- Akvaplan-niva AS, Fram Centre - High North Research Centre for Climate and the Environment, Hjalmar Johansens Gate 14, 9007 Tromsø, Norway.
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, POBox 358, DK-4000 Roskilde, Denmark; Department of Arctic Technology, The University Centre in Svarbard, POBox 156, NO-9171 Longyearbyen, Norway.
| |
Collapse
|
6
|
Tartu S, Aars J, Andersen M, Polder A, Bourgeon S, Merkel B, Lowther AD, Bytingsvik J, Welker JM, Derocher AE, Jenssen BM, Routti H. Choose Your Poison-Space-Use Strategy Influences Pollutant Exposure in Barents Sea Polar Bears. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3211-3221. [PMID: 29363970 DOI: 10.1021/acs.est.7b06137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Variation in space-use is common within mammal populations. In polar bears, Ursus maritimus, some individuals follow the sea ice (offshore bears) whereas others remain nearshore yearlong (coastal bears). We studied pollutant exposure in relation to space-use patterns (offshore vs coastal) in adult female polar bears from the Barents Sea equipped with satellite collars (2000-2014, n = 152). First, we examined the differences in home range (HR) size and position, body condition, and diet proxies (nitrogen and carbon stable isotopes, n = 116) between offshore and coastal space-use. Second, we investigated how HR, space-use, body condition, and diet were related to plasma concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) ( n = 113), perfluoroalkyl substances (PFASs; n = 92), and hydroxylated-PCBs ( n = 109). Offshore females were in better condition and had a more specialized diet than did coastal females. PCBs, OCPs, and hydroxylated-PCB concentrations were not related to space-use strategy, yet PCB concentrations increased with increasing latitude, and hydroxylated-PCB concentrations were positively related to HR size. PFAS concentrations were 30-35% higher in offshore bears compared to coastal bears and also increased eastward. On the basis of the results we conclude that space-use of Barents Sea female polar bears influences their pollutant exposure, in particular plasma concentrations of PFAS.
Collapse
Affiliation(s)
- Sabrina Tartu
- Norwegian Polar Institute , Fram Centre , Tromsø NO-9296 , Norway
| | - Jon Aars
- Norwegian Polar Institute , Fram Centre , Tromsø NO-9296 , Norway
| | - Magnus Andersen
- Norwegian Polar Institute , Fram Centre , Tromsø NO-9296 , Norway
| | - Anuschka Polder
- Norwegian University of Life Science , Campus Adamstua , Oslo NO-1432 , Norway
| | - Sophie Bourgeon
- UiT-The Arctic University of Norway , Department of Arctic and Marine Biology , Tromsø NO-9010 , Norway
| | - Benjamin Merkel
- Norwegian Polar Institute , Fram Centre , Tromsø NO-9296 , Norway
| | - Andrew D Lowther
- Norwegian Polar Institute , Fram Centre , Tromsø NO-9296 , Norway
| | | | - Jeffrey M Welker
- Department of Biological Sciences , University of Alaska-Anchorage , Anchorage , Alaska 99508 , United States
- Department of Arctic Technology , University Center in Svalbard , Longyearbyen, Svalbard NO-9171 , Norway
| | - Andrew E Derocher
- Department of Biological Sciences , University of Alberta , Edmonton T6G 2R3 , Canada
| | - Bjørn Munro Jenssen
- Department of Arctic Technology , University Center in Svalbard , Longyearbyen, Svalbard NO-9171 , Norway
- Department of Biology , Norwegian University of Science and Technology , Trondheim NO-7491 , Norway
| | - Heli Routti
- Norwegian Polar Institute , Fram Centre , Tromsø NO-9296 , Norway
| |
Collapse
|
7
|
Sonne C, Letcher RJ, Jenssen BM, Desforges JP, Eulaers I, Andersen-Ranberg E, Gustavson K, Styrishave B, Dietz R. A veterinary perspective on One Health in the Arctic. Acta Vet Scand 2017; 59:84. [PMID: 29246165 PMCID: PMC5732494 DOI: 10.1186/s13028-017-0353-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/08/2017] [Indexed: 11/22/2022] Open
Abstract
Exposure to long-range transported industrial chemicals, climate change and diseases is posing a risk to the overall health and populations of Arctic wildlife. Since local communities are relying on the same marine food web as marine mammals in the Arctic, it requires a One Health approach to understand the holistic ecosystem health including that of humans. Here we collect and identify gaps in the current knowledge of health in the Arctic and present the veterinary perspective of One Health and ecosystem dynamics. The review shows that exposure to persistent organic pollutants (POPs) is having multiple organ-system effects across taxa, including impacts on neuroendocrine disruption, immune suppression and decreased bone density among others. Furthermore, the warming Arctic climate is suspected to influence abiotic and biotic long-range transport and exposure pathways of contaminants to the Arctic resulting in increases in POP exposure of both wildlife and human populations. Exposure to vector-borne diseases and zoonoses may increase as well through range expansion and introduction of invasive species. It will be important in the future to investigate the effects of these multiple stressors on wildlife and local people to better predict the individual-level health risks. It is within this framework that One Health approaches offer promising opportunities to survey and pinpoint environmental changes that have effects on wildlife and human health.
Collapse
Affiliation(s)
- Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Robert James Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3 Canada
| | - Bjørn Munro Jenssen
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Arctic Technology, The University Centre in Svalbard, PO Box 156, 9171 Longyearbyen, Norway
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Igor Eulaers
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Emilie Andersen-Ranberg
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Kim Gustavson
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Bjarne Styrishave
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| |
Collapse
|
8
|
Sonne C, Torjesen PA, Fuglei E, Muir DCG, Jenssen BM, Jørgensen EH, Dietz R, Ahlstrøm Ø. Exposure to Persistent Organic Pollutants Reduces Testosterone Concentrations and Affects Sperm Viability and Morphology during the Mating Peak Period in a Controlled Experiment on Farmed Arctic Foxes (Vulpes lagopus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4673-4680. [PMID: 28301147 DOI: 10.1021/acs.est.7b00289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigated testosterone production and semen parameters in farmed Arctic foxes by dietary exposure to persistent organic pollutants (POPs) for 22 months. Eight male foxes were given a diet of POP-contaminated minke whale blubber, whereas their eight male siblings were fed a control diet containing pig fat as the main fat source. The minke whale-based feed contained a ∑POPs concentration of 802 ng/g ww, whereas the pig-based feed contained ∑POPs of 24 ng/g ww. At the end of the experiment, ∑POP concentrations in adipose tissue were 8856 ± 2535 ng/g ww in the exposed foxes and 1264 ± 539 ng/g ww in the control foxes. The exposed group had 45-64% significantly lower testosterone concentrations during their peak mating season compared to the controls (p ≤ 0.05), while the number of dead and defect sperm cells was 27% (p = 0.07) and 15% (p = 0.33) higher in the exposed group. Similar effects during the mating season in wild Arctic foxes may affect mating behavior and reproductive success. On the basis of these results, we recommend testosterone as a sensitive biomarker of POP exposure and that seasonal patterns are investigated when interpreting putative endocrine disruption in Arctic wildlife with potential population-level effects.
Collapse
Affiliation(s)
- Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology , Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Peter A Torjesen
- Department of Endocrinology, Hormone Laboratory , Oslo University Hospital, NO-0514 Oslo, Norway
| | - Eva Fuglei
- Norwegian Polar Institute , Fram Centre, NO-9296 Tromsø, Norway
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada , Burlington, Ontario, Canada L7S 1A1
| | - Bjørn Munro Jenssen
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology , Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
- Department of Biology, Norwegian University of Science and Technology , NO-7491 Trondheim, Norway
- Department of Arctic Technology, The University Centre in Svarbard , P.O. Box 156, NO-9171 Longyearbyen, Norway
| | - Even H Jørgensen
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway , NO-9037 Tromsø, Norway
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology , Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Øystein Ahlstrøm
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences , NO-1433 Ås, Norway
| |
Collapse
|