1
|
Williams TJ, Reed AJ, Peck LS, Godbold JA, Solan M. Ocean warming and acidification adjust inter- and intra-specific variability in the functional trait expression of polar invertebrates. Sci Rep 2024; 14:14985. [PMID: 38951669 PMCID: PMC11217501 DOI: 10.1038/s41598-024-65808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Climate change is known to affect the distribution and composition of species, but concomitant alterations to functionally important aspects of behaviour and species-environment relations are poorly constrained. Here, we examine the ecosystem ramifications of changes in sediment-dwelling invertebrate bioturbation behaviour-a key process mediating nutrient cycling-associated with near-future environmental conditions (+ 1.5 °C, 550 ppm [pCO2]) for species from polar regions experiencing rapid rates of climate change. We find that responses to warming and acidification vary between species and lead to a reduction in intra-specific variability in behavioural trait expression that adjusts the magnitude and direction of nutrient concentrations. Our analyses also indicate that species behaviour is not predetermined, but can be dependent on local variations in environmental history that set population capacities for phenotypic plasticity. We provide evidence that certain, but subtle, aspects of inter- and intra-specific variation in behavioural trait expression, rather than the presence or proportional representation of species per se, is an important and under-appreciated determinant of benthic biogeochemical responses to climate change. Such changes in species behaviour may act as an early warning for impending ecological transitions associated with progressive climate forcing.
Collapse
Affiliation(s)
- Thomas J Williams
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK.
| | - Adam J Reed
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| | - Lloyd S Peck
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Jasmin A Godbold
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| | - Martin Solan
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| |
Collapse
|
2
|
Morley SA, Navarro JM, Ortíz A, Détrée C, Gerrish L, González-Wevar C, Bates AE. Evolutionary constraints on physiology confound range shift predictions of two nacellid limpets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150943. [PMID: 34655637 DOI: 10.1016/j.scitotenv.2021.150943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Physiological comparisons are fundamental to quantitative assessments of the capacity of species to persist within their current distribution and to predict their rates of redistribution in response to climate change. Yet, the degree to which physiological traits are conserved through evolutionary history may fundamentally constrain the capacity for species to adapt and shift their geographic range. Taxa that straddle major climate transitions provide the opportunity to test the mechanisms underlying evolutionary constraints and how such constraints may influence range shift predictions. Here we focus on two abundant and shallow water nacellid limpets which have representative species on either side of the Polar front. We test the thermal thresholds of the Southern Patagonian limpet, Nacella deaurata and show that its optimal temperatures for growth (4 °C), activity (-1.2 to -0.2 °C) and survival (1 to 8 °C) are mismatched to its currently experienced annual sea surface temperature range (5.9 to 10 °C). Comparisons with the congeneric Antarctic limpet, N. concinna, reveal an evolutionary constraint on N. deaurata physiology, with overlapping thermal capacities, suggesting that a cold climate legacy has been maintained through the evolution of these species. These physiological assessments predict that the South American range of N. deaurata will likely decline with continued warming. It is, however, one of the first species with demonstrated physiological capacity to successfully colonize the cold Southern Ocean. With the expected increase in opportunities for transport within high southern latitudes, N. deaurata has the potential to establish and drive ecological change within the shallow Southern Ocean.
Collapse
Affiliation(s)
- Simon A Morley
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom.
| | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Alejandro Ortíz
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Camille Détrée
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Laura Gerrish
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Claudio González-Wevar
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Amanda E Bates
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's A1C 5S7, Canada
| |
Collapse
|
3
|
Vendrami DLJ, Peck LS, Clark MS, Eldon B, Meredith M, Hoffman JI. Sweepstake reproductive success and collective dispersal produce chaotic genetic patchiness in a broadcast spawner. SCIENCE ADVANCES 2021; 7:eabj4713. [PMID: 34516767 PMCID: PMC8442859 DOI: 10.1126/sciadv.abj4713] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
A long-standing paradox of marine populations is chaotic genetic patchiness (CGP), temporally unstable patterns of genetic differentiation that occur below the geographic scale of effective dispersal. Several mechanisms are hypothesized to explain CGP including natural selection, spatiotemporal fluctuations in larval source populations, self-recruitment, and sweepstake reproduction. Discriminating among them is extremely difficult but is fundamental to understanding how marine organisms reproduce and disperse. Here, we report a notable example of CGP in the Antarctic limpet, an unusually tractable system where multiple confounding explanations can be discounted. Using population genomics, temporally replicated sampling, surface drifters, and forward genetic simulations, we show that CGP likely arises from an extreme sweepstake event together with collective larval dispersal, while selection appears to be unimportant. Our results illustrate the importance of neutral demographic forces in natural populations and have important implications for understanding the recruitment dynamics, population connectivity, local adaptation, and resilience of marine populations.
Collapse
Affiliation(s)
- David L. J. Vendrami
- Department of Animal Behaviour, Bielefeld University, Postfach 100131, 33501 Bielefeld, Germany
| | - Lloyd S. Peck
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Melody S. Clark
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Bjarki Eldon
- Leibniz Institute for Evolution and Biodiversity Research, Museum für Naturkunde, 10115 Berlin, Germany
| | - Michael Meredith
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Joseph I. Hoffman
- Department of Animal Behaviour, Bielefeld University, Postfach 100131, 33501 Bielefeld, Germany
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK
| |
Collapse
|
4
|
Using correlative and mechanistic niche models to assess the sensitivity of the Antarctic echinoid Sterechinus neumayeri to climate change. Polar Biol 2021. [DOI: 10.1007/s00300-021-02886-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Guillaumot C, Saucède T, Morley SA, Augustine S, Danis B, Kooijman S. Can DEB models infer metabolic differences between intertidal and subtidal morphotypes of the Antarctic limpet Nacella concinna (Strebel, 1908)? Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Clark MS, Thorne MAS, King M, Hipperson H, Hoffman JI, Peck LS. Life in the intertidal: Cellular responses, methylation and epigenetics. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13077] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Melody S. Clark
- British Antarctic SurveyNatural Environment Research Council Cambridge UK
| | | | - Michelle King
- British Antarctic SurveyNatural Environment Research Council Cambridge UK
| | - Helen Hipperson
- NERC Biomolecular Analysis FacilityDepartment of Animal and Plant SciencesUniversity of Sheffield Sheffield UK
| | - Joseph I. Hoffman
- Department of Animal BehaviourUniversity of Bielefeld Bielefeld Germany
| | - Lloyd S. Peck
- British Antarctic SurveyNatural Environment Research Council Cambridge UK
| |
Collapse
|
7
|
Souster TA, Morley SA, Peck LS. Seasonality of oxygen consumption in five common Antarctic benthic marine invertebrates. Polar Biol 2018. [DOI: 10.1007/s00300-018-2251-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|