1
|
Segura-Hernández L, Hebets EA, Montooth KL, DeLong JP. How Hot is too Hot? Metabolic Responses to Temperature Across Life Stages of a Small Ectotherm. Integr Comp Biol 2024; 64:178-188. [PMID: 38955397 DOI: 10.1093/icb/icae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
To understand how global warming will impact biodiversity, we need to pay attention to those species with higher vulnerability. However, to assess vulnerability, we also need to consider the thermoregulatory mechanisms, body size, and thermal tolerance of species. Studies addressing thermal tolerance on small ectotherms have mostly focused on insects, while other arthropods, such as arachnids remain understudied. Here, we quantified the physiological thermal sensitivity of the pseudoscorpion Dactylochelifer silvestris using a respirometry setup with a ramping temperature increase. Overall, we found that D. silvestris has a much lower metabolic rate than other organisms of similar size. As expected, metabolic rate increased with body size, with adults having larger metabolic rates, but the overall metabolic scaling exponent was low. Both the temperature at which metabolism peaked and the critical thermal maxima were high (>44°C) and comparable to those of other arachnids. The activation energy, which characterizes the rising portion of the thermal sensitivity curve, was 0.66 eV, consistent with predictions for insects and other taxa in general. Heat tolerances and activation energy did not differ across life stages. We conclude that D. silvestris has low metabolic rates and a high thermal tolerance, which would likely influence how all stages and sexes of this species could endure climate change.
Collapse
Affiliation(s)
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - John P DeLong
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
2
|
Duell ME, Gray MT, Roe AD, MacQuarrie CJ, Sinclair BJ. Plasticity drives extreme cold tolerance of emerald ash borer ( Agrilus planipennis) during a polar vortex. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100031. [PMID: 36003259 PMCID: PMC9387492 DOI: 10.1016/j.cris.2022.100031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 05/17/2023]
Abstract
Invasive species must often survive combinations of environmental conditions that differ considerably from their native range; however, for a given species it is unclear whether improved tolerance is the result of phenotypic plasticity or genetic adaptation (or both). Agrilus planipennis (Coleoptera: Buprestidae; the emerald ash borer) is an invasive pest of Fraxinus trees in North America and Europe. Previous studies in SW Ontario, Canada, showed that A. planipennis is freeze avoidant, preventing internal ice formation by accumulating Molar concentrations of glycerol in its hemolymph and depressing its supercooling point (SCP, the temperature at which it freezes). The cold tolerance of these SW Ontario animals was used to predict potential distribution, revealing that some Canadian cities should be too cold to allow populations to persist. However, a small population of A. planipennis has persisted in Winnipeg, Manitoba, Canada, through several severe 'polar vortex' events. In 2018/19, we collected A. planipennis larvae and prepupae from Winnipeg, MB and Southern Ontario, and found that individuals from Winnipeg were extremely cold tolerant - with SCPs as low as -52°C in prepupae (compared to -32°C in SW Ontario), and observed survival of unfrozen individuals exposed to -50°C for one hour. This cold tolerance was accompanied by higher hemolymph osmolality and glycerol concentration than in the SW Ontario individuals. To distinguish between phenotypic plasticity and local adaptation, in 2020/21 we overwintered Winnipeg-sourced individuals either outdoors in SW Ontario or in a simulated Winnipeg winter. Simulated Winnipeg winter individuals had cold tolerance similar to those overwintered in Winnipeg, while SW Ontario overwintered individuals had cold tolerance similar to those collected previously in the region. The simulated winter individuals had higher hemolymph glycerol concentrations than SW Ontario overwintered animals, at least in part due to greater dehydration. Thus, A. planipennis are cold-tolerant enough to survive some of the harshest winters where their host trees can grow, and most likely attain this cold tolerance via phenotypic plasticity. These findings raise the importance of delineating sensitivity of conclusions to unexpected phenotypic plasticity when predicting potential distributions of new invasives or responses to climate change.
Collapse
Affiliation(s)
- Meghan E. Duell
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Meghan T. Gray
- Great Lakes Forestry Centre, Canadian Forest Service, Natrual Resources Canada, Sault Ste. Marie, Ontario, Canada
| | - Amanda D. Roe
- Great Lakes Forestry Centre, Canadian Forest Service, Natrual Resources Canada, Sault Ste. Marie, Ontario, Canada
| | - Chris J.K. MacQuarrie
- Great Lakes Forestry Centre, Canadian Forest Service, Natrual Resources Canada, Sault Ste. Marie, Ontario, Canada
| | - Brent J. Sinclair
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Correspondence: Brent Sinclair, Department of Biology, Western University, London, ON, N6A 5B7, Canada
| |
Collapse
|
3
|
Napiórkowska T, Templin J, Grodzicki P, Kobak J. Thermal preferences of two spider species: an orb-web weaver and a synanthropic funnel-web weaver. THE EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2021.1950223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- T. Napiórkowska
- Department of Invertebrate Zoology and Parasitology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Poland
| | - J. Templin
- Department of Invertebrate Zoology and Parasitology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Poland
| | - P. Grodzicki
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Poland
| | - J. Kobak
- Department of Invertebrate Zoology and Parasitology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Poland
| |
Collapse
|
4
|
Anthony SE, Buddle CM, Høye TT, Hein N, Sinclair BJ. Thermal acclimation has limited effect on the thermal tolerances of summer-collected Arctic and sub-Arctic wolf spiders. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110974. [PMID: 33965582 DOI: 10.1016/j.cbpa.2021.110974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023]
Abstract
High-latitude ectotherms contend with large daily and seasonal temperature variation. Summer-collected wolf spiders (Araneae; Lycosidae) from sub-Arctic and Arctic habitats have been previously documented as having low temperature tolerance insufficient for surviving year-round in their habitat. We tested two competing hypotheses: that they would have broad thermal breadth, or that they would use plasticity to extend the range of their thermal performance. We collected Pardosa moesta and P. lapponica from the Yukon Territory, Canada, P. furcifera, P. groenlandica, and P. hyperborea from southern Greenland, and P. hyperborea from sub-Arctic Norway, and acclimated them to warm (12 or 20 °C) or cool (4 °C) conditions under constant light for one week. We measured critical thermal minimum (CTmin) or supercooling point (SCP) as a measure of lower thermal limit, and critical thermal maximum (CTmax) as a measure of upper thermal limit. We found relatively little impact of acclimation on thermal limits, and some counterintuitive responses; for example, warm acclimation decreased the SCP and/or cool acclimation increased the CTmax in several cases. Together, this meant that acclimation did not appear to modify the thermal breadth, which supports our first hypothesis, but allows us to reject the hypothesis that spiders use plasticity to fine-tune their thermal physiology, at least in the summer. We note that we still cannot explain how these spiders withstand the very cold winters, and speculate that there are acclimatisation cues or processes that we were unable to capture in our study.
Collapse
Affiliation(s)
- Susan E Anthony
- Department of Biology, University of Western Ontario, London, ON, Canada.
| | - Christopher M Buddle
- Department of Natural Resource Sciences, McGill University, Macdonald Campus, Ste-Anne-de-Bellevue, QC, Canada.
| | - Toke T Høye
- Department of Bioscience and Arctic Research Centre, Aarhus University, Grenåvej 14, 8410 Rønde, Denmark.
| | - Nils Hein
- Zoological Research Museum Alexander Koenig, Leibniz Institute for Animal Biodiversity, Adenauerallee 160, 53113 Bonn, Germany.
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
5
|
Bahrndorff S, Lauritzen JMS, Sørensen MH, Noer NK, Kristensen TN. Responses of terrestrial polar arthropods to high and increasing temperatures. J Exp Biol 2021; 224:238094. [PMID: 34424971 DOI: 10.1242/jeb.230797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Terrestrial arthropods in the Arctic and Antarctic are exposed to extreme and variable temperatures, and climate change is predicted to be especially pronounced in these regions. Available ecophysiological studies on terrestrial ectotherms from the Arctic and Antarctic typically focus on the ability of species to tolerate the extreme low temperatures that can occur in these regions, whereas studies investigating species plasticity and the importance of evolutionary adaptation to periodically high and increasing temperatures are limited. Here, we provide an overview of current knowledge on thermal adaptation to high temperatures of terrestrial arthropods in Arctic and Antarctic regions. Firstly, we summarize the literature on heat tolerance for terrestrial arthropods in these regions, and discuss variation in heat tolerance across species, habitats and polar regions. Secondly, we discuss the potential for species to cope with increasing and more variable temperatures through thermal plasticity and evolutionary adaptation. Thirdly, we summarize our current knowledge of the underlying physiological adjustments to heat stress in arthropods from polar regions. It is clear that very little data are available on the heat tolerance of arthropods in polar regions, but that large variation in arthropod thermal tolerance exists across polar regions, habitats and species. Further, the species investigated show unique physiological adjustments to heat stress, such as their ability to respond quickly to increasing or extreme temperatures. To understand the consequences of climate change on terrestrial arthropods in polar regions, we suggest that more studies on the ability of species to cope with stressful high and variable temperatures are needed.
Collapse
Affiliation(s)
- Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Jannik M S Lauritzen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Mathias H Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Natasja K Noer
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Torsten N Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark.,Department of Animal Science, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| |
Collapse
|
6
|
Monsimet J, Colinet H, Devineau O, Lafage D, Pétillon J. Biogeographic position and body size jointly set lower thermal limits of wandering spiders. Ecol Evol 2021; 11:3347-3356. [PMID: 33841788 PMCID: PMC8019051 DOI: 10.1002/ece3.7286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 11/20/2022] Open
Abstract
Most species encounter large variations in abiotic conditions along their distribution range. The physiological responses of most terrestrial ectotherms (such as insects and spiders) to clinal gradients of climate, and in particular gradients of temperature, can be the product of both phenotypic plasticity and local adaptation. This study aimed to determine how the biogeographic position of populations and the body size of individuals set the limits of cold (freezing) resistance of Dolomedes fimbriatus. We compared D. fimbriatus to its sister species Dolomedes plantarius under harsher climatic conditions in their distribution range. Using an ad hoc design, we sampled individuals from four populations of Dolomedes fimbriatus originating from contrasting climatic areas (temperate and continental climate) and one population of the sister species D. plantarius from continental climate, and compared their supercooling ability as an indicator of cold resistance. Results for D. fimbriatus indicated that spiders from northern (continental) populations had higher cold resistance than spiders from southern (temperate) populations. Larger spiders had a lower supercooling ability in northern populations. The red-listed and rarest D. plantarius was slightly less cold tolerant than the more common D. fimbriatus, and this might be of importance in a context of climate change that could imply colder overwintering habitats in the north due to reduced snow cover protection. The lowest cold resistance might put D. plantarius at risk of extinction in the future, and this should be considered in conservation plan.
Collapse
Affiliation(s)
- Jérémy Monsimet
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
| | - Hervé Colinet
- CNRSECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553University of RennesRennesFrance
| | - Olivier Devineau
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
| | - Denis Lafage
- CNRSECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553University of RennesRennesFrance
- Department of Environmental and Life Sciences/BiologyKarlstad UniversityKarlstadSweden
| | - Julien Pétillon
- CNRSECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553University of RennesRennesFrance
| |
Collapse
|
7
|
Thermal adaptations of adults and eggs in the Arctic seed bug Nysius groenlandicus (Insecta: Hemiptera) from South Greenland. Polar Biol 2021. [DOI: 10.1007/s00300-021-02807-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Høye TT. Arthropods and climate change - arctic challenges and opportunities. CURRENT OPINION IN INSECT SCIENCE 2020; 41:40-45. [PMID: 32674064 DOI: 10.1016/j.cois.2020.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The harsh climate, limited human infrastructures, and basic autecological knowledge gaps represent substantial challenges for studying arthropods in the Arctic. At the same time, rapid climate change, low species diversity, and strong collaborative networks provide unique and underexploited Arctic opportunities for understanding species responses to environmental change and testing ecological theory. Here, I provide an overview of individual, population, and ecosystem level responses to climate change in Arctic arthropods. I focus on thermal performance, life history variation, population dynamics, community composition, diversity, and biotic interactions. The species-poor Arctic represents a unique opportunity for testing novel, automated arthropod monitoring methods. The Arctic can also potentially provide insights to further understand and mitigate the effects of climate change on arthropods worldwide.
Collapse
Affiliation(s)
- Toke T Høye
- Department of Bioscience and Arctic Research Centre, Aarhus University, Grenåvej 14, DK-8410 Rønde, Denmark.
| |
Collapse
|