1
|
van Steenis EM, Huijbregts SCJ, Vliet DDV, Heiner-Fokkema MR, Rennings AJM, Baron P, Sijens PE, van Spronsen FJ. Inter-individuality in the transport and effect of phenylalanine in the brain: A double case report of two 'unusual' phenylketonuria patients. Mol Genet Metab 2025; 145:109085. [PMID: 40154188 DOI: 10.1016/j.ymgme.2025.109085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND In phenylketonuria, high plasma phenylalanine concentrations have been associated with cognitive impairments. Still, there are reports of patients with high plasma phenylalanine without apparent cognitive dysfunction. This suggests inter-individual differences in the extent and nature of the negative effects of elevated plasma phenylalanine. This work reports two 'unusual' female patients, of 56 and 57 years old, who were late-treated, with a diagnosis at 8 and 2 years old, but show an estimated IQ of 105. Insight into the functioning of these 'unusual' patients aids our understanding of the pathology behind phenylketonuria. METHODS Neurocognitive functioning was evaluated with the Amsterdam Neuropsychological Tasks, comparing measures of executive functions (EF; sustained attention, cognitive flexibility and working memory) and emotion recognition with 25 adult early-treated phenylketonuria patients (ET-PKU; mean 35.2 years, SD 3.3) from the COBESO-PKU database. Brain phenylalanine levels were determined with magnetic resonance spectroscopy, and compared to those of 'usual' phenylketonuria patients reported in literature. RESULTS On the EF, performance was only slightly decreased (#A), or similar (#B) compared to ET-PKU, while plasma phenylalanine concentrations were 883 and 1181 μmol/L (mean ET-PKU: 687.5 μmol/L, SD 329.5). The brain-to-blood phenylalanine ratio of patient #A (0.20) was close to the expected range for 'usual' phenylketonuria patients (median 0.28, IQR 0.11), while #B showed a lower ratio (0.07). DISCUSSION Both #A and #B have a far better outcome than expected based on their late diagnosis and dietary adherence afterwards. Although both patients had no severe neurocognitive dysfunction, slight deficits on EF and emotion regulation compared to ET-PKU cannot be ruled out. This underlines the importance of individually-tailored treatment in these patients. Interestingly, inter-individuality in the brain-to-blood phenylalanine ratio could explain the 'unusually' good outcome of patient #B, but not in patient #A. Suggesting that altered phenylalanine transport between blood and brain can explain some, but not all 'unusual' cases. Other explanations are needed and may relate to inter-individual vulnerability of the brain to elevated phenylalanine.
Collapse
Affiliation(s)
- E M van Steenis
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Division of Metabolic Diseases, Groningen, the Netherlands
| | - S C J Huijbregts
- Leiden University, Department of Education and Child Studies, Leiden, the Netherlands
| | - D Draaisma-van Vliet
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Division of Metabolic Diseases, Groningen, the Netherlands
| | - M R Heiner-Fokkema
- University of Groningen, University Medical Center Groningen, Laboratory of Metabolic Diseases, Groningen, the Netherlands
| | - A J M Rennings
- Radboud University Medical Center Nijmegen, Department of Internal Medicine, Nijmegen, the Netherlands
| | - P Baron
- University of Groningen, University Medical Center Groningen, Department of Radiology, Groningen, the Netherlands
| | - P E Sijens
- University of Groningen, University Medical Center Groningen, Department of Radiology, Groningen, the Netherlands
| | - F J van Spronsen
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Division of Metabolic Diseases, Groningen, the Netherlands.
| |
Collapse
|
2
|
Bokayeva K, Jamka M, Walkowiak D, Duś-Żuchowska M, Herzig KH, Walkowiak J. Vitamin Status in Patients with Phenylketonuria: A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:5065. [PMID: 38791104 PMCID: PMC11120668 DOI: 10.3390/ijms25105065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The published data on the vitamin status of patients with phenylketonuria (PKU) is contradictory; therefore, this systematic review and meta-analysis evaluated the vitamin status of PKU patients. A comprehensive search of multiple databases (PubMed, Web of Sciences, Cochrane, and Scopus) was finished in March 2024. The included studies compared vitamin levels between individuals diagnosed with early-treated PKU and healthy controls while excluding pregnant and lactating women, untreated PKU or hyperphenylalaninemia cases, control groups receiving vitamin supplementation, PKU patients receiving tetrahydrobiopterin or pegvaliase, and conference abstracts. The risk of bias in the included studies was assessed by the Newcastle-Ottawa scale. The effect sizes were expressed as standardised mean differences. The calculation of effect sizes with 95% CI using fixed-effects models and random-effects models was performed. A p-value < 0.05 was considered statistically significant. The study protocol was registered in the PROSPERO database (CRD42024519589). Out of the initially identified 11,086 articles, 24 met the criteria. The total number of participants comprised 770 individuals with PKU and 2387 healthy controls. The meta-analyses of cross-sectional and case-control studies were conducted for vitamin B12, D, A, E, B6 and folate levels. PKU patients demonstrated significantly higher folate levels (random-effects model, SMD: 1.378, 95% CI: 0.436, 2.320, p = 0.004) and 1,25-dihydroxyvitamin D concentrations (random-effects model, SMD: 2.059, 95% CI: 0.250, 3.868, p = 0.026) compared to the controls. There were no significant differences in vitamin A, E, B6, B12 or 25-dihydroxyvitamin D levels. The main limitations of the evidence include a limited number of studies and their heterogeneity and variability in patients' compliance. Our findings suggest that individuals with PKU under nutritional guidance can achieve a vitamin status comparable to that of healthy subjects. Our study provides valuable insights into the nutritional status of PKU patients, but further research is required to confirm these findings and explore additional factors influencing vitamin status in PKU.
Collapse
Affiliation(s)
- Kamila Bokayeva
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (K.B.); (M.J.); (M.D.-Ż.); (K.-H.H.)
| | - Małgorzata Jamka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (K.B.); (M.J.); (M.D.-Ż.); (K.-H.H.)
| | - Dariusz Walkowiak
- Department of Organization and Management in Health Care, Poznan University of Medical Sciences, Przybyszewskiego Str. 39, 60-356 Poznań, Poland;
| | - Monika Duś-Żuchowska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (K.B.); (M.J.); (M.D.-Ż.); (K.-H.H.)
| | - Karl-Heinz Herzig
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (K.B.); (M.J.); (M.D.-Ż.); (K.-H.H.)
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, Oulu University Hospital, University of Oulu, Aapistie Str. 5, 90220 Oulu, Finland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (K.B.); (M.J.); (M.D.-Ż.); (K.-H.H.)
| |
Collapse
|
3
|
Abstract
Magnetic resonance spectroscopy (MRS), being able to identify and measure some brain components (metabolites) in pathologic lesions and in normal-appearing tissue, offers a valuable additional diagnostic tool to assess several pediatric neurological diseases. In this review we will illustrate the basic principles and clinical applications of brain proton (H1; hydrogen) MRS (H1MRS), by now the only MRS method widely available in clinical practice. Performing H1MRS in the brain is inherently less complicated than in other tissues (e.g., liver, muscle), in which spectra are heavily affected by magnetic field inhomogeneities, respiration artifacts, and dominating signals from the surrounding adipose tissues. H1MRS in pediatric neuroradiology has some advantages over acquisitions in adults (lack of motion due to children sedation and lack of brain iron deposition allow optimal results), but it requires a deep knowledge of pediatric pathologies and familiarity with the developmental changes in spectral patterns, particularly occurring in the first two years of life. Examples from our database, obtained mainly from a 1.5 Tesla clinical scanner in a time span of 15 years, will demonstrate the efficacy of H1MRS in the diagnosis of a wide range of selected pediatric pathologies, like brain tumors, infections, neonatal hypoxic-ischemic encephalopathy, metabolic and white matter disorders.
Collapse
Affiliation(s)
- Roberto Liserre
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Lorenzo Pinelli
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Roberto Gasparotti
- Neuroradiology Unit, Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
4
|
Montoya Parra GA, Singh RH, Cetinyurek-Yavuz A, Kuhn M, MacDonald A. Status of nutrients important in brain function in phenylketonuria: a systematic review and meta-analysis. Orphanet J Rare Dis 2018; 13:101. [PMID: 29941009 PMCID: PMC6020171 DOI: 10.1186/s13023-018-0839-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/05/2018] [Indexed: 01/08/2023] Open
Abstract
Background Despite early and ongoing dietary management with a phe-restricted diet, suboptimal neuropsychological function has been observed in PKU. The restrictive nature of the PKU diet may expose patients to sub-optimal nutritional intake and deficiencies which may impact normal brain function. A systematic review of the published literature was carried out, where possible with meta-analysis, to compare the status of nutrients (Nutrients: DHA, EPA phospholipids, selenium, vitamins B6, B12, E, C, A, D, folic acid, choline, uridine, calcium, magnesium, zinc, iron, iodine and cholesterol) known to be important for brain development and functioning between individuals with PKU and healthy controls. Results Of 1534 publications identified, 65 studies met the entry criteria. Significantly lower levels of DHA, EPA and cholesterol were found for PKU patients compared to healthy controls. No significant differences in zinc, vitamins B12, E and D, calcium, iron and magnesium were found between PKU patients and controls. Because of considerable heterogeneity, the meta-analyses findings for folate and selenium were not reported. Due to an insufficient number of publications (< 4) no meta-analysis was undertaken for vitamins A, C and B6, choline, uridine, iodine and phospholipids. Conclusions The current data show that PKU patients have lower availability of DHA, EPA and cholesterol. Compliance with the phe-restricted diet including the micronutrient fortified protein substitute (PS) is essential to ensure adequate micronutrient status. Given the complexity of the diet, patients’ micronutrient and fatty acid status should be continuously monitored, with a particular focus on patients who are non-compliant or poorly compliant with their PS. Given their key role in brain function, assessment of the status of nutrients where limited data was found (e.g. choline, iodine) should be undertaken. Standardised reporting of studies in PKU would strengthen the output of meta-analysis and so better inform best practice for this rare condition. Electronic supplementary material The online version of this article (10.1186/s13023-018-0839-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gina A Montoya Parra
- Danone Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands.
| | - Rani H Singh
- Metabolic Genetics and Nutrition Program, Emory University, Atlanta, GA, USA
| | | | - Mirjam Kuhn
- Danone Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Anita MacDonald
- Department of Metabolic Diseases, Birmingham Children's Hospital, Birmingham, UK
| |
Collapse
|
5
|
Boot E, Hollak CEM, Huijbregts SCJ, Jahja R, van Vliet D, Nederveen AJ, Nieman DH, Bosch AM, Bour LJ, Bakermans AJ, Abeling NGGM, Bassett AS, van Amelsvoort TAMJ, van Spronsen FJ, Booij J. Cerebral dopamine deficiency, plasma monoamine alterations and neurocognitive deficits in adults with phenylketonuria. Psychol Med 2017; 47:2854-2865. [PMID: 28552082 DOI: 10.1017/s0033291717001398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Phenylketonuria (PKU), a genetic metabolic disorder that is characterized by the inability to convert phenylalanine to tyrosine, leads to severe intellectual disability and other cerebral complications if left untreated. Dietary treatment, initiated soon after birth, prevents most brain-related complications. A leading hypothesis postulates that a shortage of brain monoamines may be associated with neurocognitive deficits that are observable even in early-treated PKU. However, there is a paucity of evidence as yet for this hypothesis. METHODS We therefore assessed in vivo striatal dopamine D2/3 receptor (D2/3R) availability and plasma monoamine metabolite levels together with measures of impulsivity and executive functioning in 18 adults with PKU and average intellect (31.2 ± 7.4 years, nine females), most of whom were early and continuously treated. Comparison data from 12 healthy controls that did not differ in gender and age were available. RESULTS Mean D2/3R availability was significantly higher (13%; p = 0.032) in the PKU group (n = 15) than in the controls, which may reflect reduced synaptic brain dopamine levels in PKU. The PKU group had lower plasma levels of homovanillic acid (p < 0.001) and 3-methoxy-4-hydroxy-phenylglycol (p < 0.0001), the predominant metabolites of dopamine and norepinephrine, respectively. Self-reported impulsivity levels were significantly higher in the PKU group compared with healthy controls (p = 0.033). Within the PKU group, D2/3R availability showed a positive correlation with both impulsivity (r = 0.72, p = 0.003) and the error rate during a cognitive flexibility task (r = 0.59, p = 0.020). CONCLUSIONS These findings provide further support for the hypothesis that executive functioning deficits in treated adult PKU may be associated with cerebral dopamine deficiency.
Collapse
Affiliation(s)
- E Boot
- Department of Nuclear Medicine,Academic Medical Center,Amsterdam,The Netherlands
| | - C E M Hollak
- Division of Endocrinology and Metabolism, Department of Internal Medicine,Academic Medical Center,Amsterdam,The Netherlands
| | - S C J Huijbregts
- Department of Clinical Child and Adolescent Studies & Leiden,Institute for Brain and Cognition, Leiden University,Leiden,The Netherlands
| | - R Jahja
- Division of Metabolic Diseases,University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital,Groningen,The Netherlands
| | - D van Vliet
- Division of Metabolic Diseases,University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital,Groningen,The Netherlands
| | - A J Nederveen
- Department of Radiology,Academic Medical Center,Amsterdam,The Netherlands
| | - D H Nieman
- Department of Psychiatry,Academic Medical Center,Amsterdam,The Netherlands
| | - A M Bosch
- Department of Pediatrics,Emma Children's Hospital, Academic Medical Center,Amsterdam,The Netherlands
| | - L J Bour
- Department of Neurology and Clinical Neurophysiology,Academic Medical Center,Amsterdam,The Netherlands
| | - A J Bakermans
- Department of Radiology,Academic Medical Center,Amsterdam,The Netherlands
| | - N G G M Abeling
- Laboratory for Genetic Metabolic Diseases,Academic Medical Center,Amsterdam,The Netherlands
| | - A S Bassett
- The Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, andCenter for Mental Health, University Health Network,Toronto, Ontario,Canada
| | - T A M J van Amelsvoort
- Department of Psychiatry and Psychology,Maastricht University,Maastricht,The Netherlands
| | - F J van Spronsen
- Division of Metabolic Diseases,University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital,Groningen,The Netherlands
| | - J Booij
- Department of Nuclear Medicine,Academic Medical Center,Amsterdam,The Netherlands
| |
Collapse
|
6
|
Basic Principles and Clinical Applications of Magnetic Resonance Spectroscopy in Neuroradiology. J Comput Assist Tomogr 2016; 40:1-13. [PMID: 26484954 DOI: 10.1097/rct.0000000000000322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Magnetic resonance spectroscopy is a powerful tool to assist daily clinical diagnostics. This review is intended to give an overview on basic principles of the technology, discuss some of its technical aspects, and present typical applications in daily clinical routine in neuroradiology.
Collapse
|
7
|
de Groot MJ, Sijens PE, Reijngoud DJ, Paans AM, van Spronsen FJ. Phenylketonuria: brain phenylalanine concentrations relate inversely to cerebral protein synthesis. J Cereb Blood Flow Metab 2015; 35:200-5. [PMID: 25352046 PMCID: PMC4426736 DOI: 10.1038/jcbfm.2014.183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/19/2014] [Accepted: 09/04/2014] [Indexed: 11/09/2022]
Abstract
In phenylketonuria, elevated plasma phenylalanine concentrations may disturb blood-to-brain large neutral amino acid (LNAA) transport and cerebral protein synthesis (CPS). We investigated the associations between these processes, using data obtained by positron emission tomography with l-[1-(11)C]-tyrosine ((11)C-Tyr) as a tracer. Blood-to-brain transport of non-Phe LNAAs was modeled by the rate constant for (11)C-Tyr transport from arterial plasma to brain tissue (K1), while CPS was modeled by the rate constant for (11)C-Tyr incorporation into cerebral protein (k3). Brain phenylalanine concentrations were measured by magnetic resonance spectroscopy in three volumes of interest (VOIs): supraventricular brain tissue (VOI 1), ventricular brain tissue (VOI 2), and fluid-containing ventricular voxels (VOI 3). The associations between k3 and each predictor variable were analyzed by multiple linear regression. The rate constant k3 was inversely associated with brain phenylalanine concentrations in VOIs 2 and 3 (adjusted R(2)=0.826, F=19.936, P=0.021). Since brain phenylalanine concentrations in these VOIs highly correlated with each other, the specific associations of each predictor with k3 could not be determined. The associations between k3 and plasma phenylalanine concentration, K1, and brain phenylalanine concentrations in VOI 1 were nonsignificant. In conclusion, our study shows an inverse association between k3 and increased brain phenylalanine concentrations.
Collapse
Affiliation(s)
- Martijn J de Groot
- 1] Department of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands [2] Department of Digestive and Metabolic Diseases, Center for Liver, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paul E Sijens
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dirk-Jan Reijngoud
- 1] Department of Digestive and Metabolic Diseases, Center for Liver, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands [2] Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anne M Paans
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Francjan J van Spronsen
- 1] Department of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands [2] Department of Digestive and Metabolic Diseases, Center for Liver, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Mori T, Mori K, Ito H, Goji A, Miyazaki M, Harada M, Kurosawa K, Kagami S. Age-related changes in a patient with Pelizaeus-Merzbacher disease determined by repeated 1H-magnetic resonance spectroscopy. J Child Neurol 2014; 29:283-8. [PMID: 24056155 DOI: 10.1177/0883073813499635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A boy with Pelizaeus-Merzbacher disease underwent repeated evaluations by 3-Tesla (1)H-magnetic resonance spectroscopy (MRS). The patient showed overlap of the PLP1. Individuals selected as normal controls for (1)H-magnetic resonance spectroscopy consisted of healthy age-matched children. For (1)H-magnetic resonance spectroscopy, the center of a voxel was positioned in the right parietal lobe. (1)H-magnetic resonance spectroscopy was performed when the patient was 2, 6, 14, and 25 months old. γ-Aminobutyric acid concentration in early childhood was increased compared with that in normal controls. However, the γ-aminobutyric acid concentration in the Pelizaeus-Merzbacher disease patient was normalized at 14 and 25 months. No remarkable changes were observed in choline-containing compounds concentration at any time. These results suggest that the changes in metabolite concentrations during growth can reflect the pathological condition of Pelizaeus-Merzbacher disease. Furthermore, the lack of change in the choline-containing compounds concentration can be useful for differentiating Pelizaeus-Merzbacher disease from other white matter disorders.
Collapse
Affiliation(s)
- Tatsuo Mori
- 1Department of Pediatrics, Institute of Health Bioscience, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Di Costanzo A, Trojsi F, Tosetti M, Schirmer T, Lechner SM, Popolizio T, Scarabino T. Proton MR spectroscopy of the brain at 3 T: an update. Eur Radiol 2007; 17:1651-62. [PMID: 17235536 DOI: 10.1007/s00330-006-0546-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 11/07/2006] [Accepted: 11/14/2006] [Indexed: 01/20/2023]
Abstract
Proton magnetic resonance spectroscopy ((1)H-MRS) provides specific metabolic information not otherwise observable by any other imaging method. (1)H-MRS of the brain at 3 T is a new tool in the modern neuroradiological armamentarium whose main advantages, with respect to the well-established and technologically advanced 1.5-T (1)H-MRS, include a higher signal-to-noise ratio, with a consequent increase in spatial and temporal resolutions, and better spectral resolution. These advantages allow the acquisition of higher quality and more easily quantifiable spectra in smaller voxels and/or in shorter times, and increase the sensitivity in metabolite detection. However, these advantages may be hampered by intrinsic field-dependent technical issues, such as decreased T(2) signal, chemical shift dispersion errors, J-modulation anomalies, increased magnetic susceptibility, eddy current artifacts, challenges in designing and obtaining appropriate radiofrequency coils, magnetic field instability and safety hazards. All these limitations have been tackled by manufacturers and researchers and have received one or more solutions. Furthermore, advanced (1)H-MRS techniques, such as specific spectral editing, fast (1)H-MRS imaging and diffusion tensor (1)H-MRS imaging, have been successfully implemented at 3 T. However, easier and more robust implementations of these techniques are still needed before they can become more widely used and undertake most of the clinical and research (1)H-MRS applications.
Collapse
|
10
|
|