1
|
Liszewski MC, Ciet P, Winant AJ, Lee EY. Magnetic Resonance Imaging of Pediatric Lungs and Airways: New Paradigm for Practical Daily Clinical Use. J Thorac Imaging 2024; 39:57-66. [PMID: 37015830 DOI: 10.1097/rti.0000000000000707] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Disorders of the lungs and airways are among the most common indications for diagnostic imaging in infants and children. Traditionally, chest radiograph has been the first-line imaging test for detecting these disorders and when cross-sectional imaging is necessary, computed tomography (CT) has typically been the next step. However, due to concerns about the potentially harmful effects of ionizing radiation, pediatric imaging in general has begun to shift away from CT toward magnetic resonance imaging (MRI) as a preferred modality. Several unique technical challenges of chest MRI, including motion artifact from respiratory and cardiac motion as well as low signal-to-noise ratios secondary to relatively low proton density in the lung have slowed this shift in thoracic imaging. However, technical advances in MRI in recent years, including developments in non-Cartesian MRI data sampling methods such as radial, spiral, and PROPELLER imaging and the development of ultrashort TE and zero TE sequences that render CT-like high-quality imaging with minimal motion artifact have allowed for a shift to MRI for evaluation of lung and large airways in centers with specialized expertise. This article presents a practical approach for radiologists in current practice to begin to consider MRI for evaluation of the pediatric lung and large airways and begin to implement it in their practices. The current role for MRI in the evaluation of disorders of the pediatric lung and large airways is reviewed, and example cases are presented. Challenges for MRI of the lung and large airways in children are discussed, practical tips for patient preparation including sedation are described, and imaging techniques suitable for current clinical practice are presented.
Collapse
Affiliation(s)
- Mark C Liszewski
- Departments of Radiology and Pediatrics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - Pierluigi Ciet
- Departments of Radiology and Nuclear Medicine
- Pediatric Respiratory Medicine, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Radiology, University Hospital of Cagliari, Cagliari, Italy
| | - Abbey J Winant
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Edward Y Lee
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Wucherpfennig L, Kauczor HU, Eichinger M, Wielpütz MO. [Magnetic resonance imaging of the lung : State of the art]. RADIOLOGIE (HEIDELBERG, GERMANY) 2023; 63:849-862. [PMID: 37851088 DOI: 10.1007/s00117-023-01229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Due to the low proton density of the lung parenchyma and the rapid signal decay at the air-tissue interfaces, for a long time the lungs were difficult to access using magnetic resonance imaging (MRI); however, technical advances could address most of these obstacles. Pulmonary alterations associated with tissue proliferation ("plus pathologies"), can now be detected with high diagnostic accuracy because of the locally increased proton density. Compared to computed tomography (CT), MRI provides a comprehensive range of functional imaging procedures (respiratory mechanics, perfusion and ventilation). In addition, as a radiation-free noninvasive examination modality, it enables repeated examinations for assessment of the course or monitoring of the effects of treatment, even in children. This article discusses the technical aspects, gives suggestions for protocols and explains the role of MRI of the lungs in the routine assessment of various diseases.
Collapse
Affiliation(s)
- Lena Wucherpfennig
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland
| | - Hans-Ulrich Kauczor
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland
| | - Monika Eichinger
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland
| | - Mark O Wielpütz
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland.
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland.
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland.
| |
Collapse
|
3
|
Sanchez F, Tyrrell PN, Cheung P, Heyn C, Graham S, Poon I, Ung Y, Louie A, Tsao M, Oikonomou A. Detection of solid and subsolid pulmonary nodules with lung MRI: performance of UTE, T1 gradient-echo, and single-shot T2 fast spin echo. Cancer Imaging 2023; 23:17. [PMID: 36793094 PMCID: PMC9933280 DOI: 10.1186/s40644-023-00531-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/04/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Although MRI is a radiation-free imaging modality, it has historically been limited in lung imaging due to inherent technical restrictions. The aim of this study is to explore the performance of lung MRI in detecting solid and subsolid pulmonary nodules using T1 gradient-echo (GRE) (VIBE, Volumetric interpolated breath-hold examination), ultrashort time echo (UTE) and T2 Fast Spin Echo (HASTE, Half fourier Single-shot Turbo spin-Echo). METHODS Patients underwent a lung MRI in a 3 T scanner as part of a prospective research project. A baseline Chest CT was obtained as part of their standard of care. Nodules were identified and measured on the baseline CT and categorized according to their density (solid and subsolid) and size (> 4 mm/ ≤ 4 mm). Nodules seen on the baseline CT were classified as present or absent on the different MRI sequences by two thoracic radiologists independently. Interobserver agreement was determined using the simple Kappa coefficient. Paired differences were compared using nonparametric Mann-Whitney U tests. The McNemar test was used to evaluate paired differences in nodule detection between MRI sequences. RESULTS Thirty-six patients were prospectively enrolled. One hundred forty-nine nodules (100 solid/49 subsolid) with mean size 10.8 mm (SD = 9.4) were included in the analysis. There was substantial interobserver agreement (k = 0.7, p = 0.05). Detection for all nodules, solid and subsolid nodules was respectively; UTE: 71.8%/71.0%/73.5%; VIBE: 61.6%/65%/55.1%; HASTE 72.4%/72.2%/72.7%. Detection rate was higher for nodules > 4 mm in all groups: UTE 90.2%/93.4%/85.4%, VIBE 78.4%/88.5%/63.4%, HASTE 89.4%/93.8%/83.8%. Detection of lesions ≤4 mm was low for all sequences. UTE and HASTE performed significantly better than VIBE for detection of all nodules and subsolid nodules (diff = 18.4 and 17.6%, p = < 0.01 and p = 0.03, respectively). There was no significant difference between UTE and HASTE. There were no significant differences amongst MRI sequences for solid nodules. CONCLUSIONS Lung MRI shows adequate performance for the detection of solid and subsolid pulmonary nodules larger than 4 mm and can serve as a promising radiation-free alternative to CT.
Collapse
Affiliation(s)
- Felipe Sanchez
- grid.17063.330000 0001 2157 2938Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 Canada
| | - Pascal N. Tyrrell
- grid.17063.330000 0001 2157 2938Department of Medical Imaging, Department of Statistical Sciences, Institute of Medical Science, University of Toronto, 263 McCaul Street, Toronto, Ontario M5T 1WT Canada
| | - Patrick Cheung
- grid.17063.330000 0001 2157 2938Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 Canada
| | - Chinthaka Heyn
- grid.17063.330000 0001 2157 2938Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 Canada
| | - Simon Graham
- grid.17063.330000 0001 2157 2938Physical Sciences Platform of Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 Canada
| | - Ian Poon
- grid.17063.330000 0001 2157 2938Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 Canada
| | - Yee Ung
- grid.17063.330000 0001 2157 2938Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 Canada
| | - Alexander Louie
- grid.17063.330000 0001 2157 2938Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 Canada
| | - May Tsao
- grid.17063.330000 0001 2157 2938Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 Canada
| | - Anastasia Oikonomou
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada.
| |
Collapse
|
4
|
Lung and large airway imaging: magnetic resonance imaging versus computed tomography. Pediatr Radiol 2022; 52:1814-1825. [PMID: 35570212 DOI: 10.1007/s00247-022-05386-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 12/29/2022]
Abstract
Disorders of the respiratory system are common in children and imaging plays an important role for initial diagnosis and follow-up evaluation. Radiographs are typically the first-line imaging test for respiratory symptoms in children and, when advanced imaging is required, CT has been the most frequently used imaging modality. However, because of increasing concern about potentially harmful effects of ionizing radiation on children, there has been a shift toward MRI in pediatric imaging. Although MRI of chest in children presents many technical challenges, recent advances in MRI technology are overcoming many of these issues, and MRI is now being used for evaluating the lung and large airway in children at centers with expertise in pediatric chest MRI. In this article we review the state of pediatric lung and large airway imaging, with an emphasis on cross-sectional modalities and the roles of MRI versus CT.
Collapse
|
5
|
Jannusch K, Bruckmann NM, Geuting CJ, Morawitz J, Dietzel F, Rischpler C, Herrmann K, Bittner AK, Hoffmann O, Mohrmann S, Quick HH, Umutlu L, Antoch G, Kirchner J. Lung Nodules Missed in Initial Staging of Breast Cancer Patients in PET/MRI-Clinically Relevant? Cancers (Basel) 2022; 14:cancers14143454. [PMID: 35884513 PMCID: PMC9321171 DOI: 10.3390/cancers14143454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Image-based primary staging in women with newly-diagnosed breast cancer is important to exclude distant metastases, which affect up to 10% of women. The increasing implementation of [18F]FDG-PET/MRI as a radiation-saving primary staging tool bears the risk of missing lung nodules. Thus, chest CT serves as the diagnostic of choice for the detection and classification of pulmonary nodules. The aim of this study was the evaluation of the clinical relevance of missed lung nodules at initial staging of breast cancer patients in [18F]FDG-PET/MRI compared with CT. We demonstrated in an homogeneous population of 152 patients that all patients with newly-diagnosed breast cancer and clinically-relevant lung nodules were detected at initial [18F]FDG-PET/MRI staging. However, due to the lower sensitivity of MRI in detecting lung nodules, a small proportion of clinically-relevant lung nodules were missed. Thus, a supplemental low-dose chest CT after neoadjuvant therapy should be considered for backup. Abstract Purpose: The evaluation of the clinical relevance of missed lung nodules at initial staging of breast cancer patients in [18F]FDG-PET/MRI compared with CT. Methods: A total of 152 patients underwent an initial whole-body [18F]FDG-PET/MRI and a thoracoabdominal CT for staging. Presence, size, shape and location for each lung nodule in [18F]FDG-PET/MRI was noted. The reference standard was established by taking initial CT and follow-up imaging into account (a two-step approach) to identify clinically-relevant lung nodules. Patient-based and lesion-based data analysis was performed. Results: No patient with clinically-relevant lung nodules was missed on a patient-based analysis with MRI VIBE, while 1/84 females was missed with MRI HASTE (1%). Lesion-based analysis revealed 4/96 (4%, VIBE) and 8/138 (6%, HASTE) missed clinically-relevant lung nodules. The average size of missed lung nodules was 3.2 mm ± 1.2 mm (VIBE) and 3.6 mm ± 1.4 mm (HASTE) and the predominant location was in the left lower quadrant and close to the hilum. Conclusion: All patients with newly-diagnosed breast cancer and clinically-relevant lung nodules were detected at initial [18F]FDG-PET/MRI staging. However, due to the lower sensitivity in detecting lung nodules, a small proportion of clinically-relevant lung nodules were missed. Thus, supplemental low-dose chest CT after neoadjuvant therapy should be considered for backup.
Collapse
Affiliation(s)
- Kai Jannusch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Nils Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Charlotte Johanna Geuting
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Frederic Dietzel
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.R.); (K.H.)
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.R.); (K.H.)
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (A.-K.B.); (O.H.)
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (A.-K.B.); (O.H.)
| | - Svjetlana Mohrmann
- Department of Gynecology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany;
| | - Harald H. Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141 Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
- Correspondence: ; Tel.: +49-211-8-11-77-54
| |
Collapse
|
6
|
Bruckmann NM, Kirchner J, Morawitz J, Umutlu L, Fendler WP, Herrmann K, Bittner AK, Hoffmann O, Fehm T, Lindemann ME, Buchbender C, Antoch G, Sawicki LM. Free-breathing 3D Stack of Stars GRE (StarVIBE) sequence for detecting pulmonary nodules in 18F-FDG PET/MRI. EJNMMI Phys 2022; 9:11. [PMID: 35129774 PMCID: PMC8821742 DOI: 10.1186/s40658-022-00439-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/24/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The free-breathing T1-weighted 3D Stack of Stars GRE (StarVIBE) MR sequence potentially reduces artifacts in chest MRI. The purpose of this study was to evaluate StarVIBE for the detection of pulmonary nodules in 18F-FDG PET/MRI. MATERIAL AND METHODS In this retrospective analysis, conducted on a prospective clinical trial cohort, 88 consecutive women with newly diagnosed breast cancer underwent both contrast-enhanced whole-body 18F-FDG PET/MRI and computed tomography (CT). Patients' chests were examined on CT as well as on StarVIBE and conventional T1-weighted VIBE and T2-weighted HASTE MR sequences, with CT serving as the reference standard. Presence, size, and location of all detectable lung nodules were assessed. Wilcoxon test was applied to compare nodule features and Pearson's, and Spearman's correlation coefficients were calculated. RESULTS Out of 65 lung nodules detected in 36 patients with CT (3.7 ± 1.4 mm), StarVIBE was able to detect 31 (47.7%), VIBE 26 (40%) and HASTE 11 (16.8%), respectively. Overall, CT showed a significantly higher detectability than all MRI sequences combined (65 vs. 36, difference 44.6%, p < 0.001). The VIBE showed a significantly better detection rate than the HASTE (23.1%, p = 0.001). Detection rates between StarVIBE and VIBE did not significantly differ (7.7%, p = 0.27), but the StarVIBE showed a significant advantage detecting centrally located pulmonary nodules (66.7% vs. 16.7%, p = 0.031). There was a strong correlation in nodule size between CT and MRI sequences (HASTE: ρ = 0.80, p = 0.003; VIBE: ρ = 0.77, p < 0.001; StarVIBE: ρ = 0.78, p < 0.001). Mean image quality was rated as good to excellent for CT and MRI sequences. CONCLUSION The overall lung nodule detection rate of StarVIBE was slightly, but not significantly, higher than conventional T1w VIBE and significantly higher than T2w HASTE. Detectability of centrally located nodules is better with StarVIBE than with VIBE. Nevertheless, all MRI analyses demonstrated considerably lower detection rates for small lung nodules, when compared to CT.
Collapse
Affiliation(s)
- Nils Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | - Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Tanja Fehm
- Department of Gynecology, Medical Faculty, University Dusseldorf, 40225, Düsseldorf, Germany
| | - Maike E Lindemann
- High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Christian Buchbender
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Lino M Sawicki
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| |
Collapse
|
7
|
Bonert M, Schneider M, Solyanik O, Hellbach K, Bondesson D, Gaass T, Thaens N, Ricke J, Benkert T, Dinkel J. Diagnostic accuracy of magnetic resonance imaging for the detection of pulmonary nodules simulated in a dedicated porcine chest phantom. PLoS One 2020; 15:e0244382. [PMID: 33362273 PMCID: PMC7757901 DOI: 10.1371/journal.pone.0244382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/08/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE CT serves as gold standard for the evaluation of pulmonary nodules. However, CT exposes patients to ionizing radiation, a concern especially in screening scenarios with repeated examinations. Due to recent technological advances, MRI emerges as a potential alternative for lung imaging using 3D steady state free precession and ultra-short echo-time sequences. Therefore, in this study we assessed the performance of three state-of-the-art MRI sequences for the evaluation of pulmonary nodules. METHODS Lesions of variable sizes were simulated in porcine lungs placed in a dedicated chest phantom mimicking a human thorax, followed by CT and MRI examinations. Two blinded readers evaluated the acquired MR-images locating and measuring every suspect lesion. Using the CT-images as reference, logistic regression was performed to investigate the sensitivity of the tested MRI-sequences for the detection of pulmonary nodules. RESULTS For nodules with a diameter of 6 mm, all three sequences achieved high sensitivity values above 0.91. However, the sensitivity dropped for smaller nodules, yielding an average of 0.83 for lesions with 4 mm in diameter and less than 0.69 for lesions with 2 mm in diameter. The positive predictive values ranged between 0.91 and 0.96, indicating a low amount of false positive findings. Furthermore, the size measurements done on the MR-images were subject to a bias ranging from 0.83 mm to -1.77 mm with standard deviations ranging from 1.40 mm to 2.11 mm. There was no statistically significant difference between the three tested sequences. CONCLUSION While showing promising sensitivity values for lesions larger than 4 mm, MRI appears to be not yet suited for lung cancer screening. Nonetheless, the three tested MRI sequences yielded high positive predictive values and accurate size measurements; therefore, MRI could potentially figure as imaging method of the chest in selected follow-up scenarios, e.g. of incidental findings subject to the Fleischner Criteria.
Collapse
Affiliation(s)
- Madeleine Bonert
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Moritz Schneider
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center, German Center for Lung Research, Munich, Germany
| | - Olga Solyanik
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Katharina Hellbach
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - David Bondesson
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center, German Center for Lung Research, Munich, Germany
| | - Thomas Gaass
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Natalie Thaens
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center, German Center for Lung Research, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Benkert
- MR Applications Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Julien Dinkel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center, German Center for Lung Research, Munich, Germany
| |
Collapse
|
8
|
|
9
|
Ohno Y, Kauczor HU, Hatabu H, Seo JB, van Beek EJR. MRI for solitary pulmonary nodule and mass assessment: Current state of the art. J Magn Reson Imaging 2018; 47:1437-1458. [PMID: 29573050 DOI: 10.1002/jmri.26009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 12/14/2022] Open
Abstract
Since the clinical introduction of magnetic resonance imaging (MRI), the chest has been one of its most challenging applications, and many physicists and radiologists have tried since the 1980s to use MR for assessment of different lung diseases as well as mediastinal and pleural diseases. Since then, however, technical advances in sequencing, scanners, and coils, adaptation of parallel imaging techniques, utilization of contrast media, and development of postprocessing tools have been reported by many basic and clinical researchers. As a result, state-of-the-art thoracic MRI is now substituted for traditional imaging techniques and/or plays a complementary role in the management of patients with various chest diseases, and especially in the detection of pulmonary nodules and in thoracic oncology. In addition, MRI has continued to be developed to help overcome the limitations of computed tomography (CT) and nuclear medicine examinations. It can currently provide not only morphological, but also functional, physiological, pathophysiological, and molecular information at 1.5T with a gradual shift from 1.5T to 3T MR systems. In this review, we focus on these recent advances in MRI for pulmonary nodule detection and pulmonary nodule and mass evaluation by using noncontrast-enhanced and contrast-enhanced techniques as well as new molecular imaging methods such as chemical exchange saturation transfer imaging for a comparison with other modalities such as single or multidetector row CT, 18F-fluoro-2-deoxyglucose positron emission tomography (FDG-PET), and/or PET/CT. LEVEL OF EVIDENCE 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1437-1458.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hans-Ulrich Kauczor
- Diagnostic and Interventional Radiology, University Medical Center Heidelberg, Translational Lung Research Center/German Center of Lung Research, Heidelberg, Germany
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital, Boston and Harvard Medical School, Boston, Massachusetts, USA
| | - Joon Beom Seo
- Department of Radiology, University of Ulsan College of Medicine, Seoul, Korea.,Division of Cardiothoracic Radiology, Department of Radiology, Asan Medical Center, Seoul, Korea
| | - Edwin J R van Beek
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
10
|
Morphologic Characterization of Pulmonary Nodules With Ultrashort TE MRI at 3T. AJR Am J Roentgenol 2018; 210:1216-1225. [PMID: 29547055 DOI: 10.2214/ajr.17.18961] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Ultrashort TE (UTE) MRI has been shown to deliver high-resolution images comparable to CT images. Here we evaluate the potential of UTE-MRI for precise lung nodule characterization. SUBJECTS AND METHODS Fifty-one patients (mean [± SD] age, 68.7 ± 10.8 years) with 119 nodules or masses (mean size, 17.4 ± 16.3 mm; range, 4-88 mm) prospectively underwent CT (1-mm slice thickness) and UTE-MRI (TE, 192 μs; 1 mm3 resolution). Two radiologists assessed nodule dimensions and morphologic features (i.e., attenuation, margins, and internal lucencies), in consensus for CT and in a blinded fashion for UTE-MRI. Sensitivity, specificity, and kappa statistics were calculated in reference to CT. RESULTS Readers 1 and 2 underestimated the nodules' long axial diameter with UTEMRI by 1.2 ± 3.4 and 2.1 ± 4.2 mm, respectively (p < 0.001). The sensitivity and specificity of UTE-MRI for subsolid attenuation were 95.9% and 70.3%, respectively, for reader 1 and 97.1% and 71.4%, respectively, for reader 2 (κ = 0.71 and 0.68). With regard to margin characteristics, for lobulation, sensitivity was 70.6% and 54.9%, and specificity was 93.2% and 96.3% for readers 1 and 2, respectively; for spiculation, sensitivity was 61.5% and 48.0%, and specificity was 95.2% and 95.0%; and for pleural tags, sensitivity was 87.0% and 73.3%, and specificity was 93.8% and 95.0%. Finally, for internal lucencies, sensitivity was 72.7% and 61.3%, and specificity was 96.1% and 97.3% for readers 1 and 2, respectively (κ = 0.64-0.81 for reader 1 and 0.48-0.72 for reader 2). Interreader agreement for attenuation, margin characteristics, and lucencies was substantial to almost perfect with few exceptions (κ = 0.51-0.90). CONCLUSION UTE-MRI systematically underestimated dimension measurements by approximately 1-2 mm but otherwise showed high diagnostic properties and interreader agreement, yet unprecedented by MRI, for nodule morphologic assessment.
Collapse
|
11
|
Karaman A, Durur-Subasi I, Alper F, Durur-Karakaya A, Subasi M, Akgun M. Is it better to include necrosis in apparent diffusion coefficient (ADC) measurements? The necrosis/wall ADC ratio to differentiate malignant and benign necrotic lung lesions: Preliminary results. J Magn Reson Imaging 2017; 46:1001-1006. [PMID: 28152254 DOI: 10.1002/jmri.25649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To determine whether the use of necrosis/wall apparent diffusion coefficient (ADC) ratios in the differentiation of necrotic lung lesions is more reliable than measuring the wall alone. MATERIALS AND METHODS In this retrospective study, a total of 76 patients (54 males and 22 females, 71% vs. 29%, with a mean age of 53 ± 18 years, range, 18-84) were enrolled, 33 of whom had lung carcinoma and 43 had a benign necrotic lung lesion. A 3T scanner was used. The calculation of the necrosis/wall ADC ratio was based on ADC values measured from necrosis and the wall of the lesions by diffusion-weighted imaging (DWI). Statistical analyses were performed with the independent samples t-test and receiver operating characteristic analysis. Intraobserver and interobserver reliability were calculated for ADC values of wall and necrosis. RESULTS The mean necrosis/wall ADC ratio was 1.67 ± 0.23 for malignant lesions and 0.75 ± 0.19 for benign lung lesions (P < 0.001). To estimate malignancy the area under the curve (AUC) values for necrosis ADC, wall ADC, and the necrosis/wall ADC ratio were 0.720, 0.073, and 0.997, respectively. A wall/necrosis ADC ratio cutoff value of 1.12 demonstrated a 100% sensitivity and 98% specificity in the estimation of malignancy. Positive predictive value was 100%, and negative predictive value 98% and diagnostic accuracy 99%. There was a good intraobserver and interobserver reliability for wall and necrosis. CONCLUSION The necrosis/wall ADC ratio appears to be a reliable and promising tool for discriminating lung carcinoma from benign necrotic lung lesions than measuring the wall alone. LEVEL OF EVIDENCE 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1001-1006.
Collapse
Affiliation(s)
- Adem Karaman
- Ataturk University, Faculty of Medicine, Department of Radiology, Erzurum, Turkey
| | - Irmak Durur-Subasi
- Diskapi Yildirim Beyazit Training and Research Hospital, Clinic of Radiology, Ankara, Turkey
| | - Fatih Alper
- Ataturk University, Faculty of Medicine, Department of Radiology, Erzurum, Turkey
| | - Afak Durur-Karakaya
- Istanbul Medipol University, Faculty of Medicine, Department of Radiology, Istanbul, Turkey
| | - Mahmut Subasi
- Turkiye Yuksek Ihtısas Training and Research Hospital, Clinic of Thoracic Surgery and Lung Transplantation, Ankara, Turkey
| | - Metin Akgun
- Ataturk University, Faculty of Medicine, Department of Chest Diseases, Erzurum, Turkey
| |
Collapse
|
12
|
Biederer J. General Requirements of MRI of the Lung and Suggested Standard Protocol. MRI OF THE LUNG 2017. [DOI: 10.1007/174_2017_98] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Screening for lung cancer: Does MRI have a role? Eur J Radiol 2017; 86:353-360. [DOI: 10.1016/j.ejrad.2016.09.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/15/2016] [Indexed: 12/17/2022]
|
14
|
Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)/MRI for Lung Cancer Staging. J Thorac Imaging 2016; 31:215-27. [DOI: 10.1097/rti.0000000000000210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Ding C, Xing X, Guo Q, Liu D, Guo Y, Cui H. Diffusion-weighted MRI findings in Sjögren's syndrome: a preliminary study. Acta Radiol 2016; 57:691-700. [PMID: 26339039 DOI: 10.1177/0284185115603245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/02/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Parotid glands diffusion-weighted imaging (DWI) in Sjögren's syndrome patients have provided conflicting results currently. PURPOSE To determine if parotid gland DWI using a small region of interest (ROI) can provide diagnosis and assess therapeutic efficacy in Sjögren's syndrome. MATERIAL AND METHODS Twenty-three women with Sjögren's syndrome, five with dry mouth who did not meet diagnostic criteria for Sjögren's syndrome, and 11 healthy volunteers (controls) were evaluated with DWI. All participants received routine T1-weighted (T1W) imaging and T2-weighted (T2W) fat-suppressed imaging, and DWI. The SI ratios (SIRs) and ADC ratios (ADCRs) for parotid gland/spinal cord were then calculated. Approximately 8-10 round ROIs measuring approximately 5 mm(2) were placed on each lobe of the parotid gland, and the signal intensity (SI) was measured while avoiding fat, ducts, and blood vessels. A ROI encompassing the entire lobe of the parotid gland was also used to measure SI. RESULTS Using 5 mm(2) ROIs significantly higher DWI SIRs were noted in participants with Sjögren's syndrome compared with either participants with dry mouth without Sjögren's syndrome or healthy volunteers (all, P <0.001). The difference was not related to the presence of fat. No differences were noted when the larger ROI was used. In addition, parotid gland from untreated Sjögren's participants showed significantly higher SIRs compared with those from treated participants (P = 0.015). CONCLUSION A small ROI DWI can provide morphological and functional information on the parotid gland in Sjögren's syndrome patients, and can aid in the diagnosis and evaluation of therapeutic efficacy.
Collapse
Affiliation(s)
- Changwei Ding
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xiaofei Xing
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Dongwu Liu
- Departments of Rheumatology and Immunology, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| | - Yun Guo
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Huadong Cui
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| |
Collapse
|
16
|
Sawicki LM, Grueneisen J, Buchbender C, Schaarschmidt BM, Gomez B, Ruhlmann V, Umutlu L, Antoch G, Heusch P. Evaluation of the Outcome of Lung Nodules Missed on 18F-FDG PET/MRI Compared with 18F-FDG PET/CT in Patients with Known Malignancies. J Nucl Med 2015; 57:15-20. [PMID: 26514173 DOI: 10.2967/jnumed.115.162966] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED The lower detection rate of (18)F-FDG PET/MRI than (18)F-FDG PET/CT regarding small lung nodules should be considered in the staging of malignant tumors. The purpose of this study was to evaluate the outcome of these small lung nodules missed by (18)F-FDG PET/MRI. METHODS Fifty-one oncologic patients (mean age ± SD, 56.6 ± 14.0 y; 29 women, 22 men; tumor stages, I [n = 7], II [n = 7], III [n = 9], IV [n = 28]) who underwent (18)F-FDG PET/CT and subsequent (18)F-FDG PET/MRI on the same day were retrospectively enrolled. Images were analyzed by 2 interpreters in random order and separate sessions with a minimum of 4 wk apart. A maximum of 10 lung nodules was identified for each patient on baseline imaging. The presence, size, and presence of focal tracer uptake was noted for each lung nodule detected on (18)F-FDG PET/CT and (18)F-FDG PET/MRI using a postcontrast T1-weighted 3-dimensional gradient echo volume-interpolated breath-hold examination sequence with fat suppression as morphologic dataset. Follow-up CT or (18)F-FDG PET/CT (mean time to follow-up, 11 mo; range, 3-35 mo) was used as a reference standard to define each missed nodule as benign or malignant based on changes in size and potential new tracer uptake. Nodule-to-nodule comparison between baseline and follow-up was performed using descriptive statistics. RESULTS Out of 134 lung nodules found on (18)F-FDG PET/CT, (18)F-FDG PET/MRI detected 92 nodules. Accordingly, 42 lung nodules (average size ± SD, 3.9 ± 1.3 mm; range, 2-7 mm) were missed by (18)F-FDG PET/MRI. None of the missed lung nodules presented with focal tracer uptake on baseline imaging or follow-up (18)F-FDG PET/CT. Thirty-three out of 42 missed lung nodules (78.6%) in 26 patients were rated benign, whereas 9 nodules (21.4%) in 4 patients were rated malignant. As a result, 1 patient required upstaging from tumor stage I to IV. CONCLUSION Although most small lung nodules missed on (18)F-FDG PET/MRI were found to be benign, there was a relevant number of undetected metastases. However, in patients with advanced tumor stages the clinical impact remains controversial as upstaging is usually more relevant in lower stages.
Collapse
Affiliation(s)
- Lino M Sawicki
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Johannes Grueneisen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Medical Faculty, University Duisburg-Essen, Essen, Germany; and
| | - Christian Buchbender
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Benedikt M Schaarschmidt
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Benedikt Gomez
- Department of Nuclear Medicine, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Verena Ruhlmann
- Department of Nuclear Medicine, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Medical Faculty, University Duisburg-Essen, Essen, Germany; and
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Philipp Heusch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
17
|
Sterman DH, Keast T, Rai L, Gibbs J, Wibowo H, Draper J, Herth FJ, Silvestri GA. High yield of bronchoscopic transparenchymal nodule access real-time image-guided sampling in a novel model of small pulmonary nodules in canines. Chest 2015; 147:700-707. [PMID: 25275338 DOI: 10.1378/chest.14-0724] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Bronchoscopic transparenchymal nodule access (BTPNA) is a novel approach to accessing pulmonary nodules. This real-time, image-guided approach was evaluated for safety, accuracy, and yield in the healthy canine model. METHODS A novel, inorganic model of subcentimeter pulmonary nodules was developed, consisting of 0.25-cc aliquots of calcium hydroxylapatite (Radiesse) implanted via transbronchial access in airways seven generations beyond the main bronchi to represent targets for evaluation of accuracy and yield. Thoracic CT scans were acquired for each subject, and from these CT scans LungPoint Virtual Bronchoscopic Navigation software provided guidance to the region of interest. Novel transparenchymal nodule access software algorithms automatically generated point-of-entry recommendations, registered CT images, and real-time fluoroscopic images and overlaid guidance onto live bronchoscopic and fluoroscopic video to achieve a vessel-free, straight-line path from a central airway through parenchymal tissue for access to peripheral lesions. RESULTS In a nine-canine cohort, the BTPNA procedure was performed to sample 31 implanted Radiesse targets, implanted to simulate pulmonary nodules, via biopsy forceps through a specially designed sheath. The mean length of the 31 tunnels was 35 mm (20.5-50.3-mm range). Mean tunnel creation time was 16:52 min, and diagnostic yield was 90.3% (28 of 31). No significant adverse events were noted in the status of any of the canine subjects post BTPNA, with no pneumothoraces and minimal bleeding (all bleeding events < 2 mL in volume). CONCLUSIONS These canine studies demonstrate that BTPNA has the potential to achieve the high yield of transthoracic needle aspiration with the low complication profile associated with traditional bronchoscopy. These results merit further study in humans.
Collapse
Affiliation(s)
| | | | - Lav Rai
- Broncus Medical, Mountain View, CA
| | | | | | | | - Felix J Herth
- Department of Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg and Translational Lung Research Center Heidelberg, Germany
| | | |
Collapse
|
18
|
|
19
|
Ohno Y, Koyama H, Yoshikawa T, Takenaka D, Seki S, Yui M, Yamagata H, Aoyagi K, Matsumoto S, Sugimura K. Three-way Comparison of Whole-Body MR, Coregistered Whole-Body FDG PET/MR, and Integrated Whole-Body FDG PET/CT Imaging: TNM and Stage Assessment Capability for Non-Small Cell Lung Cancer Patients. Radiology 2015; 275:849-61. [PMID: 25584709 DOI: 10.1148/radiol.14140936] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To prospectively compare the capabilities for TNM classification and assessment of clinical stage and operability among whole-body magnetic resonance (MR) imaging, coregistered positron emission tomographic (PET)/MR imaging with and without MR signal intensity (SI) assessment, and integrated fluorine 18 fluorodeoxyglucose (FDG) PET/computed tomography (CT) in non-small cell lung cancer (NSCLC) patients. MATERIALS AND METHODS The institutional review board approved this study, and written informed consent was obtained from each patient. One hundred forty consecutive NSCLC patients (75 men, 65 women; mean age, 72 years) prospectively underwent whole-body MR imaging, FDG PET/CT, conventional radiologic examinations, and surgical, pathologic, and/or follow-up examinations. All factors and clinical stage and operability were then visually assessed. All PET/MR examinations were assessed with and without SI assessment. One examination used anatomic, metabolic, and relaxation-time information, and the other used only anatomic and metabolic information. κ statistics were used for assessment of all factors and clinical stages with final diagnoses. McNemar test was used to compare the capability of all methods to assess operability. RESULTS Agreements of assessment of every factor (κ = 0.63-0.97) and clinical stage (κ = 0.65-0.90) were substantial or almost perfect. Regarding capability to assess operability, accuracy of whole-body MR imaging and PET/MR imaging with SI assessment (97.1% [136 of 140]) was significantly higher than that of MR/PET without SI assessment and integrated FDG PET/CT (85.0% [119 of 140]; P < .001). CONCLUSION Accuracies of whole-body MR imaging and PET/MR imaging with SI assessment are superior to PET/MR without SI assessment and PET/CT for identification of TNM factor, clinical stage, and operability evaluation of NSCLC patients.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- From the Advanced Biomedical Imaging Research Center (Y.O., T.Y., S.M.), Division of Functional and Diagnostic Imaging Research, Department of Radiology (Y.O., T.Y., S.M.), and Division of Radiology, Department of Radiology (H.K., D.T., S.S., K.S.), Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Akashi 650-0017, Japan; Department of Radiology, Hyogo Cancer Center, Kobe, Japan (D.T.); and Toshiba Medical Systems Corporation, Otawara, Japan (M.Y., H.Y., K.A.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sommer G, Koenigkam-Santos M, Biederer J, Puderbach M. [Role of MRI for detection and characterization of pulmonary nodules]. Radiologe 2015; 54:470-7. [PMID: 24756231 DOI: 10.1007/s00117-013-2604-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Due to physical and technical limitations, magnetic resonance imaging (MRI) has hitherto played only a minor role in image-based diagnostics of the lungs. However, as a consequence of important methodological developments during recent years, MRI has developed into a technically mature and clinically well-proven method for specific pulmonary questions. OBJECTIVES AND METHODS The purpose of this article is to provide an overview on the currently available sequences and techniques for assessment of pulmonary nodules and analyzes the clinical significance according to the current literature. The main focus is on the detection of lung metastases, the detection of primary pulmonary malignancies in high-risk individuals and the differentiation between pulmonary nodules of benign and malignant character. RESULTS AND CONCLUSION The MRI technique has a sensitivity of approximately 80 % for detection of malignant pulmonary nodules compared to the reference standard low-dose computed tomography (CT) and is thus somewhat inferior to CT. Advantages of MRI on the other hand are a higher specificity in differentiating malignant and benign pulmonary nodules and the absence of ionizing radiation exposure. A systematic use of MRI as a primary tool for detection and characterization of pulmonary nodules is currently not recommended due to insufficient data. The diagnostic potential of MRI for early detection and staging of malignant pulmonary diseases, however, seems promising. Therefore, further evaluation of MRI as a secondary imaging modality in clinical trials is highly warranted.
Collapse
Affiliation(s)
- G Sommer
- Klinik für Radiologie und Nuklearmedizin, Universitätsspital Basel, Petersgraben 4, 4031, Basel, Schweiz,
| | | | | | | |
Collapse
|
21
|
Kim HS, Lee KS, Ohno Y, van Beek EJ, Biederer J. PET/CT versus MRI for diagnosis, staging, and follow-up of lung cancer. J Magn Reson Imaging 2014; 42:247-60. [DOI: 10.1002/jmri.24776] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/27/2014] [Indexed: 12/19/2022] Open
Affiliation(s)
- Hyun Su Kim
- Department of Radiology and Center for Imaging Science; Samsung Medical Center, Sungkyunkwan University School of Medicine; Seoul Korea
| | - Kyung Soo Lee
- Department of Radiology and Center for Imaging Science; Samsung Medical Center, Sungkyunkwan University School of Medicine; Seoul Korea
| | - Yoshiharu Ohno
- Division of Functional and Diagnostic Imaging Research; Department of Radiology; and Advanced Biomedical Imaging Research Centre, Kobe University Graduate School of Medicine; Kobe Japan
| | | | - Juergen Biederer
- Radiologie Darmstadt; Gross-Gerau County Hospital; Gross-Gerau Germany
| |
Collapse
|
22
|
|
23
|
Heusch P, Köhler J, Wittsack HJ, Heusner TA, Buchbender C, Poeppel TD, Nensa F, Wetter A, Gauler T, Hartung V, Lanzman RS. Hybrid [18F]-FDG PET/MRI including non-Gaussian diffusion-weighted imaging (DWI): Preliminary results in non-small cell lung cancer (NSCLC). Eur J Radiol 2013; 82:2055-60. [DOI: 10.1016/j.ejrad.2013.05.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 02/02/2023]
|
24
|
Characterisation of solitary pulmonary lesions combining visual perfusion and quantitative diffusion MR imaging. Eur Radiol 2013; 24:531-41. [PMID: 24173597 DOI: 10.1007/s00330-013-3053-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/14/2013] [Accepted: 10/08/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate the diagnostic accuracy of dynamic contrast-enhanced (DCE) magnetic resonance (MR) and diffusion-weighted imaging (DWI) sequences for defining benignity or malignancy of solitary pulmonary lesions (SPL). METHODS First, 54 consecutive patients with SPL, clinically staged (CT and PET or integrated PET-CT) as N0M0, were included in this prospective study. An additional 3-Tesla MR examination including DCE and DWI was performed 1 day before the surgical procedure. Histopathology of the surgical specimen served as the standard of reference. Subsequently, this functional method of SPL characterisation was validated with a second cohort of 54 patients. RESULTS In the feasibility group, 11 benign and 43 malignant SPL were included. Using the combination of conventional MR sequences with visual interpretation of DCE-MR curves resulted in a sensitivity, specificity and accuracy of 100%, 55% and 91%, respectively. These results can be improved by DWI (with a cut-off value of 1.52 × 10(-3) mm(2)/s for ADChigh) leading to a sensitivity, specificity and accuracy of 98%, 82% and 94%, respectively. In the validation group these results were confirmed. CONCLUSION Visual DCE-MR-based curve interpretation can be used for initial differentiation of benign from malignant SPL, while additional quantitative DWI-based interpretation can further improve the specificity. KEY POINTS • Magnetic resonance imaging is increasingly being used to help differentiate lung lesions. • Solitary pulmonary lesions (SPL) are accurately characterised by combining DCE-MRI and DWI. • Visual DCE-MRI assessment facilitates the diagnostic throughput in patients with SPL. • DWI provides additional information in inconclusive DCE-MRI (type B pattern).
Collapse
|
25
|
Liszewski MC, Hersman FW, Altes TA, Ohno Y, Ciet P, Warfield SK, Lee EY. Magnetic resonance imaging of pediatric lung parenchyma, airways, vasculature, ventilation, and perfusion: state of the art. Radiol Clin North Am 2013; 51:555-82. [PMID: 23830786 DOI: 10.1016/j.rcl.2013.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Magnetic resonance (MR) imaging is a noninvasive imaging modality, particularly attractive for pediatric patients given its lack of ionizing radiation. Despite many advantages, the physical properties of the lung (inherent low signal-to-noise ratio, magnetic susceptibility differences at lung-air interfaces, and respiratory and cardiac motion) have posed technical challenges that have limited the use of MR imaging in the evaluation of thoracic disease in the past. However, recent advances in MR imaging techniques have overcome many of these challenges. This article discusses these advances in MR imaging techniques and their potential role in the evaluation of thoracic disorders in pediatric patients.
Collapse
Affiliation(s)
- Mark C Liszewski
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 330 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Alper F, Kurt ATP, Aydin Y, Ozgokce M, Akgun M. The role of dynamic magnetic resonance imaging in the evaluation of pulmonary nodules and masses. Med Princ Pract 2013; 22:80-6. [PMID: 22797711 PMCID: PMC5586702 DOI: 10.1159/000339475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 05/09/2012] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The aim of our study was to determine whether or not dynamic magnetic resonance imaging (MRI) with kinetic and morphological parameters can reveal significant differences between malignant and benign pulmonary lesions, and thus to evaluate the use of dynamic MRI in the management of pulmonary nodules. PATIENTS AND METHODS Thirty-one patients (4 women and 27 men) underwent 1.5 T MRI, where 10 consecutive dynamic series were performed every 30 s by using 3D fast low-angle shot sequences. The percentage increase in the signal intensity of the lesions was determined for each time point. Time-enhancement curves of the lesions were drawn and classified into four types: A, B, C and D. Early peak (EP) and maximum peak (MP) values of the curves were calculated and compared with the diagnoses of the patients. The usefulness of these parameters was tested statistically. In addition to the comparison of the parameters between the groups, receiver-operating characteristic analysis was used to assess sensitivity, specificity, and both positive and negative predictive values of EP and MP parameters. RESULTS Of the 31 pulmonary lesions, 16 (52%) were malignant. These showed a stronger enhancement with higher median values of EP and MP (77.08 and 123.15, respectively) than those corresponding to the benign lesions (14.45 and 32.53, respectively). There were significant differences between the benign and malignant lesions (p < 0.001). Sensitivity, specificity, positive predictive value and negative predictive value were 75, 93, 92 and 78% for EP and 93, 86, 88 and 93% for MP, respectively. CONCLUSION A combination of kinetic and morphological evaluation in dynamic MRI provided accurate differentiation between benign and malignant pulmonary lesions. It was a useful and noninvasive method of evaluating pulmonary nodules.
Collapse
Affiliation(s)
| | | | - Yener Aydin
- Department of Thoracic Surgery, Erzurum, Turkey
- *Dr. Yener Aydin, Department of Thoracic Surgery, Faculty of Medicine, Ataturk University, TR-252400 Erzurum (Turkey), Tel. +90 442 316 6333/2181, E-Mail
| | | | - Metin Akgun
- Department of Chest Diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
28
|
Lin WC, Chang YC, Chang CY, Cheng YC, Hwang JJ. Primary lung cancers <1 cm found with MR screening appeared larger with half-Fourier sequences than with three-dimensional acquisition techniques. Clin Imaging 2012; 36:739-45. [DOI: 10.1016/j.clinimag.2012.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/27/2011] [Accepted: 02/08/2012] [Indexed: 12/21/2022]
|
29
|
Diffusion weighted MRI and 18F-FDG PET/CT in non-small cell lung cancer (NSCLC): Does the apparent diffusion coefficient (ADC) correlate with tracer uptake (SUV)? Eur J Radiol 2012; 81:2913-8. [DOI: 10.1016/j.ejrad.2011.11.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 11/13/2011] [Accepted: 11/14/2011] [Indexed: 11/23/2022]
|
30
|
Rajaram S, Swift AJ, Capener D, Telfer A, Davies C, Hill C, Condliffe R, Elliot C, Hurdman J, Kiely DG, Wild JM. Lung morphology assessment with balanced steady-state free precession MR imaging compared with CT. Radiology 2012; 263:569-77. [PMID: 22396606 DOI: 10.1148/radiol.12110990] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE To evaluate the utility of 1.5-T noncontrast magnetic resonance (MR) imaging of the lung parenchyma and to compare it with computed tomography (CT) in the assessment of interstitial lung disease and other morphologic lung abnormalities. MATERIALS AND METHODS Institutional review board approval was obtained for retrospective image analysis. A total of 236 patients who underwent MR imaging and CT as part of their assessment for suspected pulmonary hypertension were included in this study. Lung MR imaging was performed with a 1.5-T system as a stack of axial two-dimensional balanced steady-state free precession (bSSFP) acquisitions. Two radiologists independently evaluated CT and MR images for various morphologic abnormalities, such as pulmonary fibrosis, pleural and mediastinal disease, solid lesions, bronchial disease, and emphysema. Κ statistics were used to measure interobserver agreement. RESULTS Sensitivity and specificity of MR imaging in the identification of pulmonary fibrosis (n = 46) were 89% (95% confidence interval: 77%, 96%) and 91% (95% confidence interval: 76%, 98%), respectively, when compared with CT. In comparison to CT, MR imaging depicted 75% of ground-glass opacities. Nine of the 12 noncalcified nodules were identified on MR images. Lung nodules (75%, κ = 0.71) and effusions (100%, κ = 0.89) were also well visualized on MR images. MR imaging was however less effective in depicting emphysema (16%, κ = 0.60) and minor fibrosis (67%, κ = 0.79). CONCLUSION This study shows bSSFP MR imaging is inferior to CT in imaging parenchymal lung disease; however, this study does demonstrate for the first time a potential role for the bSSFP sequence as an alternative radiation-free noncontrast imaging modality for use in patients with pulmonary fibrosis.
Collapse
Affiliation(s)
- Smitha Rajaram
- University of Sheffield, C Floor, Royal Hallamshire Hospital, Sheffield, England.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Biederer J, Beer M, Hirsch W, Wild J, Fabel M, Puderbach M, Van Beek EJR. MRI of the lung (2/3). Why … when … how? Insights Imaging 2012; 3:355-71. [PMID: 22695944 PMCID: PMC3481084 DOI: 10.1007/s13244-011-0146-8] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/20/2011] [Accepted: 12/19/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Among the modalities for lung imaging, proton magnetic resonance imaging (MRI) has been the latest to be introduced into clinical practice. Its value to replace X-ray and computed tomography (CT) when radiation exposure or iodinated contrast material is contra-indicated is well acknowledged: i.e. for paediatric patients and pregnant women or for scientific use. One of the reasons why MRI of the lung is still rarely used, except in a few centres, is the lack of consistent protocols customised to clinical needs. METHODS This article makes non-vendor-specific protocol suggestions for general use with state-of-the-art MRI scanners, based on the available literature and a consensus discussion within a panel of experts experienced in lung MRI. RESULTS Various sequences have been successfully tested within scientific or clinical environments. MRI of the lung with appropriate combinations of these sequences comprises morphological and functional imaging aspects in a single examination. It serves in difficult clinical problems encountered in daily routine, such as assessment of the mediastinum and chest wall, and even might challenge molecular imaging techniques in the near future. CONCLUSION This article helps new users to implement appropriate protocols on their own MRI platforms. Main Messages • MRI of the lung can be readily performed on state-of-the-art 1.5-T MRI scanners. • Protocol suggestions based on the available literature facilitate its use for routine • MRI offers solutions for complicated thoracic masses with atelectasis and chest wall invasion. • MRI is an option for paediatrics and science when CT is contra-indicated.
Collapse
Affiliation(s)
- J Biederer
- University Hospital Schleswig-Holstein, Campus Kiel, Department of Diagnostic Radiology, Arnold-Heller-Straße 3, Haus 23, 24105, Kiel, Germany,
| | | | | | | | | | | | | |
Collapse
|
32
|
Regier M, Schwarz D, Henes FO, Groth M, Kooijman H, Begemann PG, Adam G. Diffusion-weighted MR-imaging for the detection of pulmonary nodules at 1.5 Tesla: intraindividual comparison with multidetector computed tomography. J Med Imaging Radiat Oncol 2011; 55:266-74. [PMID: 21696559 DOI: 10.1111/j.1754-9485.2011.02263.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION To investigate the feasibility of diffusion-weighted imaging (DWI) MRI for detecting pulmonary nodules at 1.5 Tesla in comparison with standard multidetector computed tomography (MDCT). METHODS Twenty patients with disseminated cancer disease in which MDCT had assured the presence of at least one pulmonary nodule were examined using a respiratory-gated DWI MR-sequence. Grey scale inverted source images and coronal maximum intensity projection (MIP) images were consensually analysed by two experienced radiologists. Size and location of any nodule detected were assessed. Additionally, the readers evaluated each hemithorax for the presence of at least one nodule and applied a four-point conspicuity scale (1-hemithorax definitely affected; 4-hemithorax definitely not affected). MDCT data served as reference. RESULTS At MDCT, a total of 71 pulmonary noduIes was found (size 3-5mm, n=16; 6-9mm, n=22; ≥10mm, n=33). For the DWI MR-sequence, a sensitivity of 86.4% was calculated for nodules ranging 6-9mm and 97% for nodules ≥10mm. In contrast, only 43.8% of lesions ≤5mm was detected. The separate analysis of each hemithorax for the presence of at least one pulmonary nodule revealed a specificity rate, PPV and NPV of DWI-MR of 92.3%, 96% and 80%, respectively. CONCLUSIONS The presented study is the first to confirm the diagnostic potential of DWI-MR in the detection of solid lung nodules. This technique allows for the detection of nodules ≥6mm with reasonably high sensitivity rates (>86%). The observation of false positive findings decreases the accuracy of this approach compared with MDCT.
Collapse
Affiliation(s)
- Marc Regier
- Center for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf Philips Medical Systems, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Biederer J, Hintze C, Fabel M, Dinkel J. Magnetic resonance imaging and computed tomography of respiratory mechanics. J Magn Reson Imaging 2011; 32:1388-97. [PMID: 21105143 DOI: 10.1002/jmri.22386] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy for organs with respiratory motion has motivated the development of dynamic volume lung imaging with computed tomography (4D-CT) or magnetic resonance imaging (4D-MRI). 4D-CT can be realized in helical (continuous couch translation during image acquisition) or cine mode (translation step-by-step), either acquired prospectively or reconstructed retrospectively with temporal resolutions of up to 250 msec. Long exposure times result in high radiation dose and restrict 4D-CT to specific indications (ie, radiotherapy planning). Dynamic MRI accelerated by parallel imaging and echo sharing reaches temporal resolutions of up to 10 images/sec (2D+t) or 1 volume/s (3D+t) that allow analyzing respiratory motion of the lung and its tumors. Near isotropic 4D-MRI can be used to assess tumor displacement, chest wall invasion, and segmental respiratory mechanics. Limited temporal resolution of dynamic volume acquisitions (in their current implementation) may lead to an overestimation of tumor size, as the mass is volume averaged into many voxels during motion. Nevertheless, 4D-MRI allows for repeated and prolonged measurements without radiation exposure and therefore appears to be appropriate for patient selection in motion-adapted radiotherapy as well as for a broad spectrum of scientific applications.
Collapse
Affiliation(s)
- Jürgen Biederer
- Department of Diagnostic Radiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany.
| | | | | | | |
Collapse
|
34
|
Sieren JC, Ohno Y, Koyama H, Sugimura K, McLennan G. Recent technological and application developments in computed tomography and magnetic resonance imaging for improved pulmonary nodule detection and lung cancer staging. J Magn Reson Imaging 2011; 32:1353-69. [PMID: 21105140 DOI: 10.1002/jmri.22383] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This review compares the emerging technologies and approaches in the application of magnetic resonance (MR) and computed tomography (CT) imaging for the assessment of pulmonary nodules and staging of malignant findings. Included in this review is a brief definition of pulmonary nodules and an introduction to the challenges faced. We have highlighted the current status of both MR and CT for the early detection of lung nodules. Developments are detailed in this review for the management of pulmonary nodules using advanced imaging, including: dynamic imaging studies, dual energy CT, computer aided detection and diagnosis, and imaging assisted nodule biopsy approaches which have improved lung nodule detection and diagnosis rates. Recent advancements linking in vivo imaging to corresponding histological pathology are also highlighted. In vivo imaging plays a pivotal role in the clinical staging of pulmonary nodules through TNM assessment. While CT and positron emission tomography (PET)/CT are currently the most commonly clinically employed modalities for pulmonary nodule staging, studies are presented that highlight the augmentative potential of MR.
Collapse
Affiliation(s)
- Jessica C Sieren
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA.
| | | | | | | | | |
Collapse
|
35
|
Henzler T, Dietrich O, Krissak R, Wichmann T, Lanz T, Reiser MF, Schoenberg SO, Fink C. Half-Fourier-acquisition single-shot turbo spin-echo (HASTE) MRI of the lung at 3 Tesla using parallel imaging with 32-receiver channel technology. J Magn Reson Imaging 2009; 30:541-6. [PMID: 19711408 DOI: 10.1002/jmri.21882] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To assess the feasibility of half-Fourier-acquisition single-shot turbo spin-echo (HASTE) of the lung at 3 Tesla (T) using parallel imaging with a prototype of a 32-channel torso array coil, and to determine the optimum acceleration factor for the delineation of intrapulmonary anatomy. MATERIALS AND METHODS Nine volunteers were examined on a 32-channel 3T MRI system using a prototype 32-channel-torso-array-coil. HASTE-MRI of the lung was acquired at both, end-inspiratory and end-expiratory breathhold with parallel imaging (Generalized autocalibrating partially parallel acquisitions = GRAPPA) using acceleration factors ranging between R = 1 (TE = 42 ms) and R = 6 (TE = 16 ms). The image quality of intrapulmonary anatomy and subjectively perceived noise level was analyzed by two radiologists in consensus. In addition quantitative measurements of the signal-to-noise ratio (SNR) of HASTE with different acceleration factors were assessed in phantom measurements. RESULTS Using an acceleration factor of R = 4 image blurring was substantially reduced compared with lower acceleration factors resulting in sharp delineation of intrapulmonary structures in expiratory scans. For inspiratory scans an acceleration factor of 2 provided the best image quality. Expiratory scans had a higher subjectively perceived SNR than inspiratory scans. CONCLUSION Using optimized multi-element coil geometry HASTE-MRI of the lung is feasible at 3T with acceleration factors up to 4. Compared with nonaccelerated acquisitions, shorter echo times and reduced image blurring are achieved. Expiratory scanning may be favorable to compensate for susceptibility associated signal loss at 3T.
Collapse
Affiliation(s)
- Thomas Henzler
- Department of Clinical Radiology and Nuclear Medicine, University of Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Assessment of Chest High-Field Magnetic Resonance Imaging in Children and Young Adults With Noncystic Fibrosis Chronic Lung Disease. Invest Radiol 2009; 44:532-8. [DOI: 10.1097/rli.0b013e3181b4c1ba] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Detection of pulmonary nodules with move-during-scan magnetic resonance imaging using a free-breathing turbo inversion recovery magnitude sequence. Invest Radiol 2008; 43:359-67. [PMID: 18496040 DOI: 10.1097/rli.0b013e31816901fa] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Detection of pulmonary metastases is still a challenging task for magnetic resonance imaging (MRI). It was the aim of this study to evaluate the potential of a free-breathing move-during-scan turbo inversion recovery magnitude sequence for the detection of pulmonary nodules. MATERIALS AND METHODS The sensitivities and positive-predictive values of 2 radiologists to detect pulmonary nodules in 41 move-during-scan MRI examinations of 38 patients with different malignancies were calculated and subgroup analyses according to lesion size and localization were performed. Multidetector computed tomography served as the standard of reference. Additionally, 6 radiologists rated the confidence for the presence of nodular lesions in 212 regions-of-interest, which were randomly selected to represent lesions of various sizes as well as negative findings. Receiver-operator-characteristic was performed. RESULTS Three hundred twenty-one nodules were found in 30 patients by multidetector computed tomography. Sensitivity and specificity of MRI to detect pulmonary nodules larger than 3 mm on a per-patient basis were 81.8% and 94.7%, respectively. On a per-lesion basis, MRI revealed a sensitivity of 79.0% to 80.7% for lesions larger than 3 mm, if high conspicuity ratings were counted as positive, and 84.6%, if medium and high conspicuity ratings were counted as positive. Sensitivity increased uniformly with lesion size, and all lesions larger than 12 mm were detected. Receiver-operator-characteristic analysis revealed a mean accuracy of 0.90 and sensitivities over 90% for lesions larger than 3 mm with a specificity of 96.1%. For lesions larger than 6 mm the accuracy was 0.99. CONCLUSION Detection of pulmonary nodules with a move-during-scan turbo inversion recovery magnitude sequence is feasible. Excellent detection of lesions larger than 6 mm is achievable with free-breathing moving-table MRI.
Collapse
|
38
|
Abstract
Lung diseases of children often need diagnostic imaging beyond X-ray. Although CT is considered the gold standard of lung imaging, MRI is sufficient to answer most of the questions raised. After all, the exposure to radiation caused by one CT examination corresponds to approximately the effective dose of 200 chest radiographs. What is MRI's potential in the lung today? In diseases with alveolar pathology, cardiac- and respiratory-triggered MRI examinations are roughly equivalent to CT examinations. Distinct interstitial processes are easily diagnosable using MRI. Early interstitial processes may be missed by MRI, but conventional plain films fail to recognize them just as often. For identification of lung metastases, CT is still used as the initial diagnostic measure. Subsequent therapy monitoring may then be carried out with the help of MRI. Small bullae and pulmonary emphysema at present pose a problem to MRI. On the other hand, MRI is reliable for follow-up examinations in inflammatory diseases or for imaging of complications, and the increased use of lung MRI as an alternative to chest CT may contribute immensely to reducing radiation exposure in children.
Collapse
|
39
|
Abstract
Chest wall invasion by a tumour and mediastinal masses are known to benefit from the superior soft tissue contrast of magnetic resonance imaging (MRI). However, helical computed tomography (CT) (i.e. with multiple row detector systems) remains the modality of choice to detect and follow lesions of the lung parenchyma. Since minimizing radiation exposure plays a minor role in oncologic patients, there are only few routine indications for which MRI of lung parenchyma is preferred to CT. This includes whole body MR imaging for staging or scientific studies with frequent follow-up examinations. MR-based lung imaging in this context was always considered as a weak point. Depending on the sequence technique and imaging conditions (i.e. ability to hold breath) the threshold for lung nodule detection with MRI using 1.5 T systems was estimated to be above 3-4 mm. The feasibility of lung MRI at 0.3-0.5 T and 3.0 T systems has been demonstrated. The clinical value of time-resolved lung nodule perfusion analysis cannot yet be determined, although the combination of perfusion characteristics with morphologic criteria contributes to estimate the integrity of a solitary lesion.
Collapse
Affiliation(s)
- Juergen Biederer
- Department of Diagnostic Radiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany.
| | | | | |
Collapse
|
40
|
Punwani S, Zhang J, Davies W, Greenhalgh R, Humphries P. Paediatric CT: the effects of increasing image noise on pulmonary nodule detection. Pediatr Radiol 2008; 38:192-201. [PMID: 18066542 DOI: 10.1007/s00247-007-0694-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 10/01/2007] [Accepted: 10/21/2007] [Indexed: 01/21/2023]
Abstract
BACKGROUND A radiation dose of any magnitude can produce a detrimental effect manifesting as an increased risk of cancer. Cancer development may be delayed for many years following radiation exposure. Minimizing radiation dose in children is particularly important. However, reducing the dose can reduce image quality and may, therefore, hinder lesion detection. OBJECTIVE We investigated the effects of reducing the image signal-to-noise ratio (SNR) on CT lung nodule detection for a range of nodule sizes. MATERIALS AND METHODS A simulated nodule was placed at the periphery of the lung on an axial CT slice using image editing software. Multiple copies of the manipulated image were saved with various levels of superimposed noise. The image creation process was repeated for a range of nodule sizes. For a given nodule size, output images were read independently by four Fellows of The Royal College of Radiologists. RESULTS The overall sensitivities in detecting nodules for the SNR ranges 0.8-0.99, 1-1.49, and 1.5-2.35 were 40.5%, 77.3% and 90.3%, respectively, and the specificities were 47.9%, 73.3% and 75%, respectively. The sensitivity for detecting lung nodules increased with nodule size and increasing SNR. There was 100% sensitivity for the detection of nodules of 4-10 mm in diameter at SNRs greater than 1.5. CONCLUSION Reducing medical radiation doses in children is of paramount importance. For chest CT examinations this may be counterbalanced by reduced sensitivity and specificity combined with an increased uncertainty of pulmonary nodule detection. This study demonstrates that pulmonary nodules of 4 mm and greater in diameter can be detected with 100% sensitivity provided that the perceived image SNR is greater than 1.5.
Collapse
Affiliation(s)
- Shonit Punwani
- Department of Specialist Radiology, Podium Level 2, University College Hospital, 235 Euston Road, London, NW1 2BU, UK.
| | | | | | | | | |
Collapse
|