1
|
Takahashi K, Kajiya T, Ishihara M. Proposal for a Display Method for Myocardial Single Photon Emission Computed Tomography Based on Left Ventricular Volume. Int Heart J 2023; 64:993-1001. [PMID: 37967986 DOI: 10.1536/ihj.23-251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Bull's eye view for the display of myocardial single-photon emission computed tomography (SPECT) 3-D perfusion maps does not reflect left ventricular (LV) volume, an important parameter. We created and evaluated a myocardial SPECT display method that reflects the LV volume.Using Digital Imaging and Communications in Medicine data, short-axis slices from the apex to the base were reconstructed and interpolated into 0.5-mm thickness. We obtained the radial lengths at 1° intervals throughout 360°, and calculated the length of the LV long axis and half circumference (1/2 circ). Myocardial perfusion was displayed as 2 ellipsoidal developments that exhibited the left anterior descending coronary artery (LAD) and non-LAD regions. We created a system that can display these processes on a personal computer. Myocardial SPECT data from 526 individuals without heart disease were analyzed. The long axis and 1/2 circ were compared with the body size, LV end-diastolic diameter (LVDd) obtained by echocardiography, and the end-diastolic volume (EDV) obtained by electrocardiogram-gated SPECT analysis. The 1/2 circle correlated with the LVDd and EDV. The images obtained allowed a diagnosis comparable to that made using the conventional coordinate display system.The new myocardial display reflects ischemia and LV volume within a single image, which cannot be achieved with conventional SPECT image display. Additional studies of this display system are required to allow its application to patients with heart disease.
Collapse
Affiliation(s)
- Keiko Takahashi
- Department of Patient Safety and Quality Management, School of Medicine, Hyogo Medical University
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University
| | | | - Masaharu Ishihara
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University
| |
Collapse
|
2
|
Taking It Personally: 3D Bioprinting a Patient-Specific Cardiac Patch for the Treatment of Heart Failure. Bioengineering (Basel) 2022; 9:bioengineering9030093. [PMID: 35324782 PMCID: PMC8945185 DOI: 10.3390/bioengineering9030093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Despite a massive global preventative effort, heart failure remains the major cause of death globally. The number of patients requiring a heart transplant, the eventual last treatment option, far outnumbers the available donor hearts, leaving many to deteriorate or die on the transplant waiting list. Treating heart failure by transplanting a 3D bioprinted patient-specific cardiac patch to the infarcted region on the myocardium has been investigated as a potential future treatment. To date, several studies have created cardiac patches using 3D bioprinting; however, testing the concept is still at a pre-clinical stage. A handful of clinical studies have been conducted. However, moving from animal studies to human trials will require an increase in research in this area. This review covers key elements to the design of a patient-specific cardiac patch, divided into general areas of biological design and 3D modelling. It will make recommendations on incorporating anatomical considerations and high-definition motion data into the process of 3D-bioprinting a patient-specific cardiac patch.
Collapse
|
3
|
Patel AR, Maffessanti F, Patel MB, Kebed K, Narang A, Singh A, Medvedofsky D, Zaidi SJ, Mediratta A, Goyal N, Kachenoura N, Lang RM, Mor-Avi V. Hemodynamic impact of coronary stenosis using computed tomography: comparison between noninvasive fractional flow reserve and 3D fusion of coronary angiography with stress myocardial perfusion. Int J Cardiovasc Imaging 2019; 35:1733-1743. [PMID: 31073698 DOI: 10.1007/s10554-019-01618-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/30/2019] [Indexed: 01/06/2023]
Abstract
Vasodilator-stress CT perfusion imaging in addition to CT coronary angiography (CTCA) may provide a single-test alternative to nuclear stress testing, commonly used to assess hemodynamic significance of stenosis. Another alternative is fractional flow reserve (FFR) calculated from cardiac CT images. We studied the concordance between these two approaches and their relationship to outcomes. We prospectively studied 150 patients with chest pain, who underwent CTCA and regadenoson CT. CTCA images were interpreted for presence and severity of stenosis. Fused 3D displays of subendocardial X-ray attenuation with coronary arteries were created to detect stress perfusion defects (SPD) in each coronary territory. In patients with stenosis > 25%, CT-FFR was quantified. Significant stenosis was determined by: (1) combination of stenosis > 50% with an SPD, (2) CT-FFR ≤ 0.80. Patients were followed-up for 36 ± 25 months for death, myocardial infarction or revascularization. After excluding patients with normal arteries and technical/quality issues, in final analysis of 76 patients, CTCA depicted stenosis > 70% in 13/224 arteries, 50-70% in 24, and < 50% in 187. CT-FFR ≤ 0.80 was found in 41/224 arteries, and combination of SPD with > 50% stenosis in 31/224 arteries. Inter-technique agreement was 89%. Despite high incidence of abnormal CT-FFR (30/76 patients), only 7 patients experienced adverse outcomes; 6/7 also had SPDs. Only 1/9 patients with CT-FFR ≤ 0.80 but normal perfusion had an event. Fusion of CTCA and stress perfusion can help determine the hemodynamic impact of stenosis in one test, in good agreement with CT-FFR. Adding stress CT perfusion analysis may help risk-stratify patients with abnormal CT-FFR.
Collapse
Affiliation(s)
- Amit R Patel
- Department of Medicine, Section of Cardiology, University of Chicago Medical Center, 5758 South Maryland Avenue, M.C. 9067, Chicago, IL, 60637, USA
| | - Francesco Maffessanti
- Department of Medicine, Section of Cardiology, University of Chicago Medical Center, 5758 South Maryland Avenue, M.C. 9067, Chicago, IL, 60637, USA.,Institute of Computational Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Mita B Patel
- Department of Medicine, Section of Cardiology, University of Chicago Medical Center, 5758 South Maryland Avenue, M.C. 9067, Chicago, IL, 60637, USA
| | - Kalie Kebed
- Department of Medicine, Section of Cardiology, University of Chicago Medical Center, 5758 South Maryland Avenue, M.C. 9067, Chicago, IL, 60637, USA
| | - Akhil Narang
- Department of Medicine, Section of Cardiology, University of Chicago Medical Center, 5758 South Maryland Avenue, M.C. 9067, Chicago, IL, 60637, USA
| | - Amita Singh
- Department of Medicine, Section of Cardiology, University of Chicago Medical Center, 5758 South Maryland Avenue, M.C. 9067, Chicago, IL, 60637, USA
| | - Diego Medvedofsky
- Department of Medicine, Section of Cardiology, University of Chicago Medical Center, 5758 South Maryland Avenue, M.C. 9067, Chicago, IL, 60637, USA
| | - S Javed Zaidi
- Department of Medicine, Section of Cardiology, University of Chicago Medical Center, 5758 South Maryland Avenue, M.C. 9067, Chicago, IL, 60637, USA.,Cardiology Department, Advocate Children's Hospital, Chicago, IL, USA
| | - Anuj Mediratta
- Department of Medicine, Section of Cardiology, University of Chicago Medical Center, 5758 South Maryland Avenue, M.C. 9067, Chicago, IL, 60637, USA
| | - Neha Goyal
- Department of Medicine, Section of Cardiology, University of Chicago Medical Center, 5758 South Maryland Avenue, M.C. 9067, Chicago, IL, 60637, USA
| | - Nadjia Kachenoura
- Laboratoire d'Imagerie Biomédicale, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Roberto M Lang
- Department of Medicine, Section of Cardiology, University of Chicago Medical Center, 5758 South Maryland Avenue, M.C. 9067, Chicago, IL, 60637, USA
| | - Victor Mor-Avi
- Department of Medicine, Section of Cardiology, University of Chicago Medical Center, 5758 South Maryland Avenue, M.C. 9067, Chicago, IL, 60637, USA.
| |
Collapse
|
4
|
Maffessanti F, Patel AR, Patel MB, Walter JJ, Mediratta A, Medvedofsky D, Kachenoura N, Lang RM, Mor-Avi V. Non-invasive assessment of the haemodynamic significance of coronary stenosis using fusion of cardiac computed tomography and 3D echocardiography. Eur Heart J Cardiovasc Imaging 2018; 18:670-680. [PMID: 27461212 DOI: 10.1093/ehjci/jew147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/21/2016] [Indexed: 12/23/2022] Open
Abstract
Aims Abnormal computed tomography coronary angiography (CTCA) often leads to stress testing to determine haemodynamic significance of stenosis. We hypothesized that instead, this could be achieved by fusion imaging of the coronary anatomy with 3D echocardiography (3DE)-derived resting myocardial deformation. Methods and results We developed fusion software that creates combined 3D displays of the coronary arteries with colour maps of longitudinal strain and tested it in 28 patients with chest pain, referred for CTCA (256 Philips scanner) who underwent 3DE (Philips iE33) and regadenoson stress CT. To obtain a reference for stenosis significance, coronaries were also fused with colour maps of stress myocardial perfusion. 3D displays were used to detect stress perfusion defect (SPD) and/or resting strain abnormality (RSA) in each territory. CTCA showed 56 normal arteries, stenosis <50% in 17, and >50% in 8 arteries. Of the 81 coronary territories, SPDs were noted in 20 and RSAs in 29. Of the 59 arteries with no stenosis >50% and no SPDs, considered as normal, 12 (20%) had RSAs. Conversely, with stenosis >50% and SPDs (haemodynamically significant), RSAs were considerably more frequent (5/6 = 83%). Overall, resting strain and stress perfusion findings were concordant in 64/81 arteries (79% agreement). Conclusions Fusion of CTCA and 3DE-derived data allows direct visualization of each coronary artery and strain in its territory. In this feasibility study, resting strain showed good agreement with stress perfusion, indicating that it may be potentially used to assess haemodynamic impact of coronary stenosis, as an alternative to stress testing that entails additional radiation exposure.
Collapse
Affiliation(s)
| | - Amit R Patel
- University of Chicago Medical Center, Chicago, IL, USA
| | - Mita B Patel
- University of Chicago Medical Center, Chicago, IL, USA
| | | | | | | | - Nadjia Kachenoura
- University of Chicago Medical Center, Chicago, IL, USA.,Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, UPMC University Paris 06, CNRS 7371, INSERM 1146, F-75013, Paris, France
| | | | | |
Collapse
|
5
|
Fusion of Three-Dimensional Echocardiographic Regional Myocardial Strain with Cardiac Computed Tomography for Noninvasive Evaluation of the Hemodynamic Impact of Coronary Stenosis in Patients with Chest Pain. J Am Soc Echocardiogr 2018; 31:664-673. [PMID: 29576220 DOI: 10.1016/j.echo.2018.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Combined evaluation of coronary stenosis and the extent of ischemia is essential in patients with chest pain. Intermediate-grade stenosis on computed tomographic coronary angiography (CTCA) frequently triggers downstream nuclear stress testing. Alternative approaches without stress and/or radiation may have important implications. Myocardial strain measured from echocardiographic images can be used to detect subclinical dysfunction. The authors recently tested the feasibility of fusion of three-dimensional (3D) echocardiography-derived regional resting longitudinal strain with coronary arteries from CTCA to determine the hemodynamic significance of stenosis. The aim of the present study was to validate this approach against accepted reference techniques. METHODS Seventy-eight patients with chest pain referred for CTCA who also underwent 3D echocardiography and regadenoson stress computed tomography were prospectively studied. Left ventricular longitudinal strain data (TomTec) were used to generate fused 3D displays and detect resting strain abnormalities (RSAs) in each coronary territory. Computed tomographic coronary angiographic images were interpreted for the presence and severity of stenosis. Fused 3D displays of subendocardial x-ray attenuation were created to detect stress perfusion defects (SPDs). In patients with stenosis >25% in at least one artery, fractional flow reserve was quantified (HeartFlow). RSA as a marker of significant stenosis was validated against two different combined references: stenosis >50% on CTCA and SPDs seen in the same territory (reference standard A) and fractional flow reserve < 0.80 and SPDs in the same territory (reference standard B). RESULTS Of the 99 arteries with no stenosis >50% and no SPDs, considered as normal, 19 (19%) had RSAs. Conversely, with stenosis >50% and SPDs, RSAs were considerably more frequent (17 of 24 [71%]). The sensitivity, specificity, and accuracy of RSA were 0.71, 0.81, and 0.79, respectively, against reference standard A and 0.83, 0.81, and 0.82 against reference standard B. CONCLUSIONS Fusion of CTCA and 3D echocardiography-derived resting myocardial strain provides combined displays, which may be useful in determination of the hemodynamic or functional impact of coronary abnormalities, without additional ionizing radiation or stress testing.
Collapse
|
8
|
Danad I, Raijmakers PG, Knaapen P. Diagnosing coronary artery disease with hybrid PET/CT: it takes two to tango. J Nucl Cardiol 2013; 20:874-90. [PMID: 23842709 DOI: 10.1007/s12350-013-9753-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The noninvasive diagnosis of coronary artery disease (CAD) is a challenging task. Although a large armamentarium of imaging modalities is available to evaluate the functional consequences of the extent and severity of CAD, cardiac perfusion positron emission tomography (PET) is considered the gold standard for this purpose. Alternatively, noninvasive anatomical imaging of coronary atherosclerosis with coronary computed tomography angiography (CCTA) has recently been successfully implemented in clinical practice. Although each of these diagnostic approaches has its own merits and caveats, functional and morphological imaging techniques provide fundamentally different insights into the disease process and should be considered to be complementary rather than overlapping. Hybrid imaging with PET/CT offers the possibility to evaluate both aspects nearly simultaneously, and studies have demonstrated that such a comprehensive assessment results in superior diagnostic accuracy, better prognostication, and helps in guiding clinical patient management. The aim of this review is to discuss the value of stand-alone CCTA and PET in CAD, and to summarize the available data on the surplus value of hybrid PET/CT including its strengths and limitations.
Collapse
Affiliation(s)
- Ibrahim Danad
- Department of Cardiology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | | |
Collapse
|
9
|
Hybrid image visualization tool for 3D integration of CT coronary anatomy and quantitative myocardial perfusion PET. Int J Comput Assist Radiol Surg 2012; 8:221-32. [PMID: 22752392 DOI: 10.1007/s11548-012-0777-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/11/2012] [Indexed: 12/19/2022]
Abstract
PURPOSE Multimodal cardiac imaging by CTA and quantitative PET enables acquisition of patient-specific coronary anatomy and absolute myocardial perfusion at rest and during stress. In the clinical setting, integration of this information is performed visually or using coronary arteries distribution models. We developed a new tool for CTA and quantitative PET integrated 3D visualization, exploiting XML and DICOM clinical standards. METHODS The hybrid image tool (HIT) developed in the present study included four main modules: (1) volumetric registration for spatial matching of CTA and PET data sets, (2) an interface to PET quantitative analysis software, (3) a derived DICOM generator able to build DICOM data set from quantitative polar maps, and (4) a 3D visualization tool of integrated anatomical and quantitative flow information. The four modules incorporated in the HIT tool communicate by defined standard XML files: XML-transformation and XML MIST standards. RESULTS The HIT tool implements a 3D representation of CTA showing real coronary anatomy fused to PET-derived quantitative myocardial blood flow distribution. The technique was validated on 16 data sets from EVINCI study population. The validation of the method confirmed the high matching between "original" and derived data sets as well as the accuracy of the registration procedure. CONCLUSIONS Three-dimensional integration of patient- specific coronary artery anatomy provided by CTA and quantitative myocardial blood flow obtained from PET imaging can improve cardiac disease assessment. The HIT tool introduced in this paper may represent a significant advancement in the clinical use of this multimodal approach.
Collapse
|
10
|
Gupta V, Kirişli HA, Hendriks EA, van der Geest RJ, van de Giessen M, Niessen W, Reiber JHC, Lelieveldt BPF. Cardiac MR perfusion image processing techniques: a survey. Med Image Anal 2012; 16:767-85. [PMID: 22297264 DOI: 10.1016/j.media.2011.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 02/05/2023]
Abstract
First-pass cardiac MR perfusion (CMRP) imaging has undergone rapid technical advancements in recent years. Although the efficacy of CMRP imaging in the assessment of coronary artery diseases (CAD) has been proven, its clinical use is still limited. This limitation stems, in part, from manual interaction required to quantitatively analyze the large amount of data. This process is tedious, time-consuming, and prone to operator bias. Furthermore, acquisition and patient related image artifacts reduce the accuracy of quantitative perfusion assessment. With the advent of semi- and fully automatic image processing methods, not only the challenges posed by these artifacts have been overcome to a large extent, but a significant reduction has also been achieved in analysis time and operator bias. Despite an extensive literature on such image processing methods, to date, no survey has been performed to discuss this dynamic field. The purpose of this article is to provide an overview of the current state of the field with a categorical study, along with a future perspective on the clinical acceptance of image processing methods in the diagnosis of CAD.
Collapse
Affiliation(s)
- Vikas Gupta
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|