1
|
Mali A, Kaijzel EL, Lamb HJ, Cruz LJ. 19F-nanoparticles: Platform for in vivo delivery of fluorinated biomaterials for 19F-MRI. J Control Release 2021; 338:870-889. [PMID: 34492234 DOI: 10.1016/j.jconrel.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
Fluorine-19 (19F) magnetic resonance imaging (MRI) features one of the most investigated and innovative techniques for quantitative and unambiguous cell tracking, providing information for both localization and number of cells. Because of the relative insensitivity of the MRI technique, a high number of magnetically equivalent fluorine atoms are required to gain detectable signals. However, an increased amount of 19F nuclei induces low solubility in aqueous solutions, making fluorine-based probes not suitable for in vivo imaging applications. In this context, nanoparticle-based platforms play a crucial role, since nanoparticles may carry a high payload of 19F-based contrast agents into the relevant cells or tissues, increase the imaging agents biocompatibility, and provide a highly versatile platform. In this review, we present an overview of the 19F-based nanoprobes for sensitive 19F-MRI, focusing on the main nanotechnologies employed to date, such as fluorine and theranostic nanovectors, including their design and applications.
Collapse
Affiliation(s)
- Alvja Mali
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Eric L Kaijzel
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
2
|
Dallet L, Stanicki D, Voisin P, Miraux S, Ribot EJ. Micron-sized iron oxide particles for both MRI cell tracking and magnetic fluid hyperthermia treatment. Sci Rep 2021; 11:3286. [PMID: 33558583 PMCID: PMC7870900 DOI: 10.1038/s41598-021-82095-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Iron oxide particles (IOP) are commonly used for Cellular Magnetic Resonance Imaging (MRI) and in combination with several treatments, like Magnetic Fluid Hyperthermia (MFH), due to the rise in temperature they provoke under an Alternating Magnetic Field (AMF). Micrometric IOP have a high sensitivity of detection. Nevertheless, little is known about their internalization processes or their potential heat power. Two micrometric commercial IOP (from Bangs Laboratories and Chemicell) were characterized by Transmission Electron Microscopy (TEM) and their endocytic pathways into glioma cells were analyzed. Their Specific Absorption Rate (SAR) and cytotoxicity were evaluated using a commercial AMF inductor. T2-weighted imaging was used to monitor tumor growth in vivo after MFH treatment in mice. The two micron-sized IOP had similar structures and r2 relaxivities (100 mM-1 s-1) but involved different endocytic pathways. Only ScreenMAG particles generated a significant rise in temperature following AMF (SAR = 113 W g-1 Fe). After 1 h of AMF exposure, 60% of ScreenMAG-labeled cells died. Translated to a glioma model, 89% of mice responded to the treatment with smaller tumor volume 42 days post-implantation. Micrometric particles were investigated from their characterization to their intracellular internalization pathways and applied in one in vivo cancer treatment, i.e. MFH.
Collapse
Affiliation(s)
- Laurence Dallet
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Univ. Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Dimitri Stanicki
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000, Mons, Belgium
| | - Pierre Voisin
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Univ. Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Univ. Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Emeline J Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Univ. Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.
| |
Collapse
|
3
|
Bouvain P, Temme S, Flögel U. Hot spot 19 F magnetic resonance imaging of inflammation. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1639. [PMID: 32380579 DOI: 10.1002/wnan.1639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/20/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
Among the preclinical molecular imaging approaches, lately fluorine (19 F) magnetic resonance imaging (MRI) has garnered significant scientific interest in the biomedical research community, due to the unique properties of fluorinated materials and the 19 F nucleus. Fluorine is an intrinsically sensitive nucleus for MRI-there is negligible endogenous 19 F in the body and, thus, no background signal which allows the detection of fluorinated materials as "hot spots" by combined 1 H/19 F MRI and renders fluorine-containing molecules as ideal tracers with high specificity. In addition, perfluorocarbons are a family of compounds that exhibit a very high fluorine payload and are biochemically as well as physiologically inert. Perfluorocarbon nanoemulsions (PFCs) are well known to be readily taken up by immunocompetent cells, which can be exploited for the unequivocal identification of inflammatory foci by tracking the recruitment of PFC-loaded immune cells to affected tissues using 1 H/19 F MRI. The required 19 F labeling of immune cells can be accomplished either ex vivo by PFC incubation of isolated endogenous immune cells followed by their re-injection or by intravenous application of PFCs for in situ uptake by circulating immune cells. With both approaches, inflamed tissues can unambiguously be detected via background-free 19 F signals due to trafficking of PFC-loaded immune cells to affected organs. To extend 19 F MRI tracking beyond cells with phagocytic properties, the PFC surface can further be equipped with distinct ligands to generate specificity against epitopes and/or types of immune cells independent of phagocytosis. Recent developments also allow for concurrent detection of different PFCs with distinct spectral signatures allowing the simultaneous visualization of several targets, such as various immune cell subtypes labeled with these PFCs. Since ligands and targets can easily be adapted to a variety of problems, this approach provides a general and versatile platform for inflammation imaging which will strongly extend the frontiers of molecular MRI. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease.
Collapse
Affiliation(s)
- Pascal Bouvain
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Temme
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Parkins KM, Makela AV, Hamilton AM, Foster PJ. Cellular Magnetic Resonance Imaging for Tracking Metastatic Cancer Cells in the Brain. Methods Mol Biol 2019; 1869:239-251. [PMID: 30324528 DOI: 10.1007/978-1-4939-8805-1_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cellular magnetic resonance imaging (MRI) enables visualization of cells in vivo. This is accomplished by labeling cells with superparamagnetic iron oxide nanoparticles. Here, we describe the steps for labeling human cancer cells with iron for tracking them after injection into nude mice. We also provide details for validation of cell labeling, ultrasound guided intra-cardiac injection, and MRI.
Collapse
Affiliation(s)
- Katie M Parkins
- Robarts Research Institute, Western University, London, ON, Canada
| | - Ashley V Makela
- Robarts Research Institute, Western University, London, ON, Canada
| | | | - Paula J Foster
- Robarts Research Institute, Western University, London, ON, Canada.
| |
Collapse
|
5
|
Kérourédan O, Ribot EJ, Fricain JC, Devillard R, Miraux S. Magnetic Resonance Imaging for tracking cellular patterns obtained by Laser-Assisted Bioprinting. Sci Rep 2018; 8:15777. [PMID: 30361490 PMCID: PMC6202323 DOI: 10.1038/s41598-018-34226-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022] Open
Abstract
Recent advances in the field of Tissue Engineering allowed to control the three-dimensional organization of engineered constructs. Cell pattern imaging and in vivo follow-up remain a major hurdle in in situ bioprinting onto deep tissues. Magnetic Resonance Imaging (MRI) associated with Micron-sized superParamagnetic Iron Oxide (MPIO) particles constitutes a non-invasive method for tracking cells in vivo. To date, no studies have utilized Cellular MRI as a tool to follow cell patterns obtained via bioprinting technologies. Laser-Assisted Bioprinting (LAB) has been increasingly recognized as a new and exciting addition to the bioprinting’s arsenal, due to its rapidity, precision and ability to print viable cells. This non-contact technology has been successfully used in recent in vivo applications. The aim of this study was to assess the methodology of tracking MPIO-labeled stem cells using MRI after organizing them by Laser-Assisted Bioprinting. Optimal MPIO concentrations for tracking bioprinted cells were determined. Accuracy of printed patterns was compared using MRI and confocal microscopy. Cell densities within the patterns and MRI signals were correlated. MRI enabled to detect cell patterns after in situ bioprinting onto a mouse calvarial defect. Results demonstrate that MRI combined with MPIO cell labeling is a valuable technique to track bioprinted cells in vitro and in animal models.
Collapse
Affiliation(s)
- Olivia Kérourédan
- INSERM, Bioingénierie Tissulaire, U1026, F-33076, Bordeaux, France. .,CHU de Bordeaux, Services d'Odontologie et de Santé Buccale, F-33076, Bordeaux, France.
| | - Emeline Julie Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS/Univ. Bordeaux, F-33076, Bordeaux, France
| | - Jean-Christophe Fricain
- INSERM, Bioingénierie Tissulaire, U1026, F-33076, Bordeaux, France.,CHU de Bordeaux, Services d'Odontologie et de Santé Buccale, F-33076, Bordeaux, France.,ART BioPrint, INSERM, U1026, F-33076, Bordeaux, France
| | - Raphaël Devillard
- INSERM, Bioingénierie Tissulaire, U1026, F-33076, Bordeaux, France.,CHU de Bordeaux, Services d'Odontologie et de Santé Buccale, F-33076, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS/Univ. Bordeaux, F-33076, Bordeaux, France
| |
Collapse
|
6
|
Quantifying iron content in magnetic resonance imaging. Neuroimage 2018; 187:77-92. [PMID: 29702183 DOI: 10.1016/j.neuroimage.2018.04.047] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/13/2018] [Accepted: 04/20/2018] [Indexed: 01/19/2023] Open
Abstract
Measuring iron content has practical clinical indications in the study of diseases such as Parkinson's disease, Huntington's disease, ferritinopathies and multiple sclerosis as well as in the quantification of iron content in microbleeds and oxygen saturation in veins. In this work, we review the basic concepts behind imaging iron using T2, T2*, T2', phase and quantitative susceptibility mapping in the human brain, liver and heart, followed by the applications of in vivo iron quantification in neurodegenerative diseases, iron tagged cells and ultra-small superparamagnetic iron oxide (USPIO) nanoparticles.
Collapse
|
7
|
Chen G, Lin S, Huang D, Zhang Y, Li C, Wang M, Wang Q. Revealing the Fate of Transplanted Stem Cells In Vivo with a Novel Optical Imaging Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14. [PMID: 29171718 DOI: 10.1002/smll.201702679] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/30/2017] [Indexed: 05/17/2023]
Abstract
Stem-cell-based regenerative medicine holds great promise in clinical practices. However, the fate of stem cells after transplantation, including the distribution, viability, and the cell clearance, is not fully understood, which is critical to understand the process and the underlying mechanism of regeneration for better therapeutic effects. Herein, we develop a dual-labeling strategy to in situ visualize the fate of transplanted stem cells in vivo by combining the exogenous near-infrared fluorescence imaging in the second window (NIR-II) and endogenous red bioluminescence imaging (BLI). The NIR-II fluorescence of Ag2 S quantum dots is employed to dynamically monitor the trafficking and distribution of all transplanted stem cells in vivo due to its deep tissue penetration and high spatiotemporal resolution, while BLI of red-emitting firefly luciferase (RfLuc) identifies the living stem cells after transplantation in vivo because only the living stem cells express RfLuc. This facile strategy allows for in situ visualization of the dynamic trafficking of stem cells in vivo and the quantitative evaluation of cell translocation and viability with high temporal and spatial resolution, and thus reports the fate of transplanted stem cells and how the living stem cells help, regeneration, for an instance, of a mouse with acute liver failure.
Collapse
Affiliation(s)
- Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Suying Lin
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Dehua Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Suzhou NIR-Optics Technology Co., Ltd., Suzhou, 215124, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Mao Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Blondiaux E, Pidial L, Autret G, Rahmi G, Balvay D, Audureau E, Wilhelm C, Guerin CL, Bruneval P, Silvestre JS, Menasché P, Clément O. Bone marrow-derived mesenchymal stem cell-loaded fibrin patches act as a reservoir of paracrine factors in chronic myocardial infarction. J Tissue Eng Regen Med 2017; 11:3417-3427. [DOI: 10.1002/term.2255] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 04/25/2016] [Accepted: 07/03/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Eléonore Blondiaux
- Paris Cardiovascular Research Center, INSERM U970; Université Paris Descartes, Sorbonne Paris Cité; Paris
- Radiology Department; Assistance Publique - Hôpitaux de Paris, Hôpital Trousseau, Université Pierre et Marie Curie; Paris
| | - Laetitia Pidial
- Paris Cardiovascular Research Center, INSERM U970; Université Paris Descartes, Sorbonne Paris Cité; Paris
| | - Gwennhael Autret
- Paris Cardiovascular Research Center, INSERM U970; Université Paris Descartes, Sorbonne Paris Cité; Paris
- Plateforme d'imagerie du petit animal, Université Paris Descartes, Sorbonne Paris Cité; Paris
| | - Gabriel Rahmi
- Paris Cardiovascular Research Center, INSERM U970; Université Paris Descartes, Sorbonne Paris Cité; Paris
| | - Daniel Balvay
- Paris Cardiovascular Research Center, INSERM U970; Université Paris Descartes, Sorbonne Paris Cité; Paris
- Plateforme d'imagerie du petit animal, Université Paris Descartes, Sorbonne Paris Cité; Paris
| | - Etienne Audureau
- Public Health Department; Hôpital Henri Mondor, Créteil, LIC EA4393, Assistance Publique - Hôpitaux de Paris, Université Paris Est; Créteil
| | - Claire Wilhelm
- Laboratoire matières et systèmes complexes (MSC), UMR 7057 CNRS, Université Paris-Diderot; Paris
| | - Coralie L. Guerin
- Paris Cardiovascular Research Center, INSERM U970; Université Paris Descartes, Sorbonne Paris Cité; Paris
| | - Patrick Bruneval
- Department of Pathology; Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris; Paris
| | - Jean-Sébastien Silvestre
- Paris Cardiovascular Research Center, INSERM U970; Université Paris Descartes, Sorbonne Paris Cité; Paris
| | - Philippe Menasché
- Paris Cardiovascular Research Center, INSERM U970; Université Paris Descartes, Sorbonne Paris Cité; Paris
- Department of Cardiovascular Surgery; Assistance Publique - Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Paris
| | - Olivier Clément
- Paris Cardiovascular Research Center, INSERM U970; Université Paris Descartes, Sorbonne Paris Cité; Paris
| |
Collapse
|
9
|
Advances in Monitoring Cell-Based Therapies with Magnetic Resonance Imaging: Future Perspectives. Int J Mol Sci 2017; 18:ijms18010198. [PMID: 28106829 PMCID: PMC5297829 DOI: 10.3390/ijms18010198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 01/07/2023] Open
Abstract
Cell-based therapies are currently being developed for applications in both regenerative medicine and in oncology. Preclinical, translational, and clinical research on cell-based therapies will benefit tremendously from novel imaging approaches that enable the effective monitoring of the delivery, survival, migration, biodistribution, and integration of transplanted cells. Magnetic resonance imaging (MRI) offers several advantages over other imaging modalities for elucidating the fate of transplanted cells both preclinically and clinically. These advantages include the ability to image transplanted cells longitudinally at high spatial resolution without exposure to ionizing radiation, and the possibility to co-register anatomical structures with molecular processes and functional changes. However, since cellular MRI is still in its infancy, it currently faces a number of challenges, which provide avenues for future research and development. In this review, we describe the basic principle of cell-tracking with MRI; explain the different approaches currently used to monitor cell-based therapies; describe currently available MRI contrast generation mechanisms and strategies for monitoring transplanted cells; discuss some of the challenges in tracking transplanted cells; and suggest future research directions.
Collapse
|
10
|
Chambers AF. Tumor metastasis, physical sciences and the value of multidisciplinary collaborations. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2016. [DOI: 10.1088/2057-1739/2/3/030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Fox MS, Gaudet JM, Foster PJ. Fluorine-19 MRI Contrast Agents for Cell Tracking and Lung Imaging. MAGNETIC RESONANCE INSIGHTS 2016; 8:53-67. [PMID: 27042089 PMCID: PMC4807887 DOI: 10.4137/mri.s23559] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/24/2016] [Accepted: 01/31/2016] [Indexed: 02/06/2023]
Abstract
Fluorine-19 (19F)-based contrast agents for magnetic resonance imaging stand to revolutionize imaging-based research and clinical trials in several fields of medical intervention. First, their use in characterizing in vivo cell behavior may help bring cellular therapy closer to clinical acceptance. Second, their use in lung imaging provides novel noninvasive interrogation of the ventilated airspaces without the need for complicated, hard-to-distribute hardware. This article reviews the current state of 19F-based cell tracking and lung imaging using magnetic resonance imaging and describes the link between the methods across these fields and how they may mutually benefit from solutions to mutual problems encountered when imaging 19F-containing compounds, as well as hardware and software advancements.
Collapse
Affiliation(s)
- Matthew S Fox
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Jeffrey M Gaudet
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Paula J Foster
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| |
Collapse
|
12
|
Ngen EJ, Wang L, Kato Y, Krishnamachary B, Zhu W, Gandhi N, Smith B, Armour M, Wong J, Gabrielson K, Artemov D. Imaging transplanted stem cells in real time using an MRI dual-contrast method. Sci Rep 2015; 5:13628. [PMID: 26330231 PMCID: PMC4556978 DOI: 10.1038/srep13628] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/31/2015] [Indexed: 12/25/2022] Open
Abstract
Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies.
Collapse
Affiliation(s)
- Ethel J Ngen
- The In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Lee Wang
- The In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Yoshinori Kato
- The In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA.,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Balaji Krishnamachary
- The In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Wenlian Zhu
- The In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Nishant Gandhi
- The Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21287, USA
| | - Barbara Smith
- The Institute for Basic Biomedical Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Michael Armour
- The Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21287, USA
| | - John Wong
- The Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21287, USA
| | - Kathleen Gabrielson
- The Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Dmitri Artemov
- The In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA.,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| |
Collapse
|
13
|
Modo M, Kolosnjaj-Tabi J, Nicholls F, Ling W, Wilhelm C, Debarge O, Gazeau F, Clement O. Considerations for the clinical use of contrast agents for cellular MRI in regenerative medicine. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 8:439-55. [PMID: 24375900 DOI: 10.1002/cmmi.1547] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/21/2013] [Accepted: 05/09/2013] [Indexed: 12/24/2022]
Abstract
Advances in regenerative medicine are rapidly transforming healthcare. A cornerstone of regenerative medicine is the introduction of cells that were grown or manipulated in vitro. Key questions that arise after these cells are re-introduced are: whether these cells are localized in the appropriate site; whether cells survive; and whether these cells migrate. These questions predominantly relate to the safety of the therapeutic approach (i.e. tumorigenesis), but certain aspects can also influence the efficacy of the therapeutic approach (e.g. site of injection). The European Medicines Agency has indicated that suitable methods for stem cell tracking should be applied where these methods are available. We here discuss the European regulatory framework, as well as the scientific evidence, that should be considered to facilitate the potential clinical implementation of magnetic resonance imaging contrast media to track implanted/injected cells in human studies.
Collapse
Affiliation(s)
- Michel Modo
- University of Pittsburgh, Department of Radiology, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15203, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Siegers GM, Ribot EJ, Keating A, Foster PJ. Extensive expansion of primary human gamma delta T cells generates cytotoxic effector memory cells that can be labeled with Feraheme for cellular MRI. Cancer Immunol Immunother 2013; 62:571-83. [PMID: 23100099 PMCID: PMC11029191 DOI: 10.1007/s00262-012-1353-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
Abstract
Gamma delta T cells (GDTc) comprise a small subset of cytolytic T cells shown to kill malignant cells in vitro and in vivo. We have developed a novel protocol to expand GDTc from human blood whereby GDTc were initially expanded in the presence of alpha beta T cells (ABTc) that were then depleted prior to use. We achieved clinically relevant expansions of up to 18,485-fold total GDTc, with 18,849-fold expansion of the Vδ1 GDTc subset over 21 days. ABTc depletion yielded 88.1 ± 4.2 % GDTc purity, and GDTc continued to expand after separation. Immunophenotyping revealed that expanded GDTc were mostly CD27-CD45RA- and CD27-CD45RA+ effector memory cells. GDTc cytotoxicity against PC-3M prostate cancer, U87 glioblastoma and EM-2 leukemia cells was confirmed. Both expanded Vδ1 and Vδ2 GDTc were cytotoxic to PC-3M in a T cell antigen receptor- and CD18-dependent manner. We are the first to label GDTc with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles for cellular MRI. Using protamine sulfate and magnetofection, we achieved up to 40 % labeling with clinically approved Feraheme (Ferumoxytol), as determined by enumeration of Perls' Prussian blue-stained cytospins. Electron microscopy at 2,800× magnification verified the presence of internalized clusters of iron oxide; however, high iron uptake correlated negatively with cell viability. We found improved USPIO uptake later in culture. MRI of GDTc in agarose phantoms was performed at 3 Tesla. The signal-to-noise ratios for unlabeled and labeled cells were 56 and 21, respectively. Thus, Feraheme-labeled GDTc could be readily detected in vitro via MRI.
Collapse
Affiliation(s)
- Gabrielle M Siegers
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, ON, Canada.
| | | | | | | |
Collapse
|